RING OPENING REACTIONS 1. THE TRIAZINONE RING OPENING OF 2H-3,4-DIHYDRO-as-TRIAZINO [3,4-b] BEN-ZOTHIAZOL-3-ONE

MICHALIS D. KAZANIS and PANAYOTIS E. MACHERAS
Laboratory of Pharmaceutical Chemistry,
University of Athens, 104 Solonos Str., Athens 144, Greece.

Summary

The triazinone ring opening of the title compound 3 in the presence of aromatic aldehydes or ketones in hydrochloric acid or methanolic hydrochloric acid is described. The ir and nmr spectra of the resulting asymmetric azines 4 are given.

Key words: 2 H -3,4-Dihydro-as-triazino [3,4-b] benzothiazol-3-one, 2-(4'-subst.-phenylidene) hy-drazone-3-carb(ometh)oxymethylbenzothiazolines.

Introduction

As a part of a programme directed towards derivatives of 2 -amino-benzothiazole with potential pharmacological activities, we studied the triazinone ring opening of $2 \mathrm{H}-3,4$-dihydro-as-triazino [3,4-b] benzothiazol-3-one (3). Allen and Van Allan ${ }^{1}$, in an attempt to synthesize 3 -carbethoxymethyl-benzothiazoline-2-hydrazone (2a), treated 3 -carbethoxymethyl-2-nitrosiminobenzothiazoline (1) with zinc in acetic acid, but the thiazinone 3 was formed instead of the desired hydrazone-ester 2a.

Hydrogenation of the nitrosiminoester 1 using palladium-charcoal catalyst afforded a mixture 2 a and 3 , which on heating in benzene or ethanol as well as in dillute hydrochloric acid gave exclusively 3^{2} (Scheme 1 , route a).

In this paper we report that the triazinone ring of 3 can be easily opened, affording the asymmetric azines 4 , by treatment with hydrochloric acid or methanolic hydrochloric acid in the presence of aromatic aldehydes or ketones.

Results and Discussion

The required 2 H -3,4-dihydro-as-triazino [3,4-b] benzothiazol-3-one (3) was synthesized according to a method described elsewhere ${ }^{2}$, by heating under reflux 2 -amino-3-carbethoxymethyl-benzothiazolium bromide ${ }^{3}$ and hydrazine in ethanol.

Compound 3 was recovered unchanged after prolonged reflux with conc. hydrochloric acid or methanolic hydrochloric acid (see Experimental).

The triazinone ring opening of 3 was achived when refluxed with 4 -subst.benzaldehydes or -acetophenones in conc. hydrocloric acid (Scheme 1, route b), to give 2-(4 subst. -phenylidene) hydrazono-3-carboxymethylbenzothiazolines (Table $\mathrm{I}, 4 \mathrm{a}-\mathrm{h}, \mathrm{R}_{1}: \mathrm{H}$). When the reaction was carried out in methanolic hydrochloric acid the corresponding methyl esters, i.e. the 2-(4-subst.-phenylidene) hydrazono-3-carbomethoxymethylbenzothiazolines where obtained. (Table I, 4i-p, $\mathrm{R}_{1}: \mathrm{CH}_{3}$)

The formation of the asymmetric azines 4 may be attributed to the postulated intermediates $2 b$ and 2 c , which in the absence of the carbonyl compounds recyclize to 3 .

The structure of the azines 4 was confirmed by elemental analysis (Table I), ir and ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectroscopy ${ }^{4}$ (Table II).

All products 4 showed the characteristic $\mathrm{vC}=0$ ir bands, the acid derivatives $\left(\mathrm{R}_{1}: \mathrm{H}\right)$ at $1710 \mathrm{~cm}^{-1}-1730 \mathrm{~cm}^{-1}$, the esters $\left(\mathrm{R}_{1}: \mathrm{Me}\right)$ at $1735 \mathrm{~cm}^{-1}$ $-1750 \mathrm{~cm}^{-1}$.

In the ${ }^{1} \mathrm{H}$-nmr spectra compounds $4 \mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{g}, \mathrm{i}, \mathrm{k}, \mathrm{m}, \mathrm{o},\left(\mathrm{R}_{2}: \mathrm{H}\right)$ showed a peak at $\delta=8.27-8.50 \mathrm{ppm}$ characteristic of the $-\mathrm{N}=\mathrm{C}(\mathrm{H})-$ Ar formyl proton ${ }^{5}$, while compounds $4 \mathrm{~b}, \mathrm{~d}, \mathrm{f}, \mathrm{h}, \mathrm{j}, \mathrm{l}, \mathrm{n}, \mathrm{p},\left(\mathrm{R}_{2}: \mathrm{CH}_{3}\right)$ showed a peak at $\delta=$ 2,38-2,46 ppm for the $-\mathrm{N}=\mathrm{C}\left(\mathrm{CH}_{3}\right)$-Ar methyl group protons. In the case of compound $4 \mathrm{~h}\left(\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}: \mathrm{CH}_{3}\right)$ the protons of $\mathrm{R}_{2}, \mathrm{R}_{3}$ methyl groups gave one singlet at $\delta=2.38 \mathrm{ppm}$. The peak of the ester methyl group protons of compounds $4 \mathrm{i}-\mathrm{p}\left(\mathrm{R}_{1}: \mathrm{CH}_{3}\right)$ appeared at $\delta=3.72-3.78 \mathrm{ppm}$, while the peak of the ether methyl group of compounds $4 \mathrm{~g}, \mathrm{~h}, \mathrm{o}, \mathrm{p}\left(\mathrm{R}_{3}: \mathrm{OCH}_{3}\right)$ appeared at $\delta=$ $3.84-3.85 \mathrm{ppm}$ (Table II).

Experimental

I Treatment of 2H-3,4-dihydro-as-triazino [3,4-b] benzothiazol-3-one (3) with a: conc. hydrochloric acid, b: methanolic hydrochloric acid. An amount of 1.02 gr (5 mmol) of 3 in 50 ml conc. hydrochloric acid was heated under reflux for 24 hours. The resulting reaction mixture was cooled at r.t. and the precipitate filtered to give 0.95 gr of starting material, m.p. $260-262^{\circ} \mathrm{C}$ (Lit. ${ }^{2}$

TABLE I. Compounds of general formula 4.

	R_{1}	R_{2}	R_{3}	Yield	Recryst. solvents	M.p. $\left({ }^{\circ} \mathrm{C}\right)^{6}$	Molecular formula	Calculated/Found		
				\%				\%C	\%H	\%N
								61.7	4.2	13.5
a	H	H	H	65	THF-n-Hex	207-09	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	61.8	3.9	13.4
								62.8	4.7	12.9
b	H	CH_{3}	H	95	THF-n-Hex.	192-98	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	62.5	4.8	12.7
c	H	H	NO_{2}	90	EtOH	196-98	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	53.9	3.4	15.7
							$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	54.0	3.4	15.7
d	H		NO_{2}	95	EtOH	166-68		55.1	3.8	15.1
								54.8	3.8	14.8
e	H	H	C	95	THF-n-Pent.	220-21	S	62.7	4.6	12.9
e				95	(HF-n-Pen		S	62.5	4.6	13.1
f	H	CH_{3}	CH_{3}	75	THF-n-Pent.	184-86		63.7	5.0	12.4
								63.6	5.2	12.2
								59,8	4.4	12.3
g	H	H	OCH_{3}	80	THF-n-Pent.	210-11	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	59.7	4.5	12.2
h	H	CH_{3}	OCH_{3}	70	THF-n-Pent.	170-71	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	60.8	4.8	11.8
								60.5	4.7	11.6
i	CH_{3}	H	H	80	$\mathrm{C}_{6} \mathrm{H}_{6}$	153-54	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	62.7	4.6	12.9
					$\mathrm{C}_{6} \mathrm{H}_{6}$			62.7	4.6	13.2
j	CH_{3}	CH_{3}	H	70	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{n}$-Pent.	105-07	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	63.7	5.0	12.4
								63.5	5.0	12.3
k	CH_{3}	H	NO_{2}	90	THF-n-Pent.	216-18	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	55.1	3.8	15.1
	CH_{3}		NO_{2}		-		$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$	54.8	3.9	15.3
1			NO_{2}	90	THF-n-Pent.	187-88		56.2	4.2	14.6
								55.9	4.3	14.7
m	C	H	C	95	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{n}$-Pent.	136-38	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	63.7	5.0	12.4
m		H			$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{n}$-Pen	136-38	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$	63.9	5.1	12.3
n	CH_{3}	CH_{3}	CH_{3}	75	$\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{n}$-Pent.	138-40	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	64.6	5.4	11.9
								64.3	4.8	11.8
o	CH_{3}	H	OCH_{3}	95	THF- $\mathrm{Et}_{2} \mathrm{O}$	146-48	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	60.5	4.8	11.8
								61.8	5.2	11.4
p	CH_{3}	CH_{3}	OCH_{3}	75	THF- $\mathrm{Et}_{2} \mathrm{O}$	143-45	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$	61.8	5.2	11.2

$260-261^{\circ} \mathrm{C}, 95 \%$ recovery). A mixture m.p. with 3 was undepressed. I.r. spectrum was identical with that of $3, \mathrm{v} \mathrm{C}=01665 \mathrm{~cm}^{-1}$. The same behavior was observed when methanol was added in the reaction mixture.
II. 2-(4'-subst.-phenylidene) hydrazono-3-carbomethylbenzothiazolines.
$\left(4, \mathrm{R}_{\mathrm{I}}: \mathrm{H}\right)$. A suspension of $3(1.02 \mathrm{gr} 5 \mathrm{mmol})$ and 5 mmol of the appropriate benzaldeyde or acetophenone in 15 ml conc. hydrochloric acid was refluxed for 3 hrs. After cooling to room temperature the product was filtered off, washed several times with water, dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and recrystallized.
III. 2-(4'subst.-phenylidene) hydrazono-3-carbomethoxymethylbenzothiazolines.
($4, \mathrm{R}_{1}: \mathrm{Me}$). These derivatives were prepared in a manner similar to the above reaction, except that 20 ml methanol were added into the reaction mixture.

The physical constants, yields and solvents of recrystallisation are listed in Table I.

TABLE II. Ir and nmr spectral data of Compounds 4.

Compound	$v \mathrm{C}=0 \mathrm{~cm}^{-1}$	${ }^{1} \mathrm{H}$-nmr δ (ppm)
4a	1715	$4.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.25-7.92(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ar}), 8.42\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{R}_{2}\right)$
4 b	1710	2.44 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{R}_{2}\right), 4.96$ (s, 2H, CH_{2}), 7.22-7.99 (m, 9H,ar).
4 c	1730	4.92 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.05-8.13$ (m, $8 \mathrm{H}, \mathrm{ar}$), $8.50\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{R}_{2}\right)$.
4 d	1725	2.46 (s, 3H, R_{2}), $5.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.94-8.19$ (m, $8 \mathrm{H}, \mathrm{ar}$) .
4 e	1710	2.35 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{R}_{3}\right), 4.8 \mathrm{l}\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.99-7.65$ (m, $\left.8 \mathrm{H}, \mathrm{ar}\right)^{\prime}, 8.27\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{R}_{2}\right)$.
4 f	1725	2.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{R}_{3}$), 2.39 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{R}_{2}\right), 4.90$ (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.04-7.82 (m, $8 \mathrm{H}, \mathrm{ar}$).
4 g	1710	$3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{3}\right), 4.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.98-7.76$ (m, $8 \mathrm{H}, \mathrm{ar}$), $8.32\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{R}_{2}\right)$.
4 h	1710	2.41 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{R}_{2}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{3}\right), 4.95$ ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.95-7.94$ (m, $8 \mathrm{H}, \mathrm{ar}$) .
4 i	1750	3.72 (s,3H,R1), 4.99 (s,1H, CH_{2}), 7.13-7.83 (m,9H,ar.) 8.37 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{R}_{2}\right)$.
4j	1750	2.40 (s, 3H, R 2), 3.75 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{R}_{\mathrm{t}}\right), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.03-7.93$ (m,9H,ar.).
4k	1750	3.78 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{R}_{1}$), $5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.06-8.17$ (m, $\left.8 \mathrm{H}, \mathrm{ar}.\right)$, 8.48 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{R}_{2}\right)$.
41	1750	$2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{2}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{1}\right), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 6.95-8.20 ($\left.\mathrm{m}, 8 \mathrm{H}, \mathrm{ar}.\right)$.
4 m	1745	$\begin{aligned} & 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{3}\right), 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{1}\right), 4.99\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.03-8.71(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ar}) \\ & 8.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{R}_{2}\right) . \end{aligned}$
4 n	1735	2.38(s, $6 \mathrm{H}, \mathrm{R}_{2}$ and R_{3}), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{1}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.01-7.08(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ar})$
40	1745	$\begin{aligned} & 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{1}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{3}\right), 5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.95-7.80(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ar}) \text {, } \\ & 8.33\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{R}_{2}\right) \end{aligned}$
4p	1745	$\begin{aligned} & 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{2}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{1}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{R}_{3}\right), 5.02\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), \\ & 6.92-7.93\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ar}^{\prime} .\right. \end{aligned}$

Пері文 $\boldsymbol{\psi} \boldsymbol{\eta}$

 2H-3,4- $\delta_{\imath} \delta \ddot{\delta \rho o-a s-\tau \rho i a \zeta ı v o ~[3,4-b] ~ \beta \varepsilon v \zeta о \theta є ı a \zeta о \lambda-3-о ́ v \eta \varsigma . ~}$

 a).

 à̧ivȩ 4 (Піvакац I).

 $\alpha к \cup \kappa \lambda \omega ́ v o u v ~ \pi \rho o ̀ ̧ ~ \tau \grave{v} 3$.
甲 ббиатобкотіаऽ (Піvакаऽ II).

References and Notes

1. Allen, C.F.H. and VanAllen, J.A.: J. Org. Chem., 13, 603 (1948).
2. Paollini, J.P.: J. Org. Chem., 33, 888, (1968).
3. Parric, J. and Pearson, K.: Chem. and Ind., 1261 (1970).
4. Ir spectra were recorded on a Perkin Elmer Model 177 spectrophotometer using nujoll mulls. ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra were determined on a 60 MHz instrument in DMSO $\left(\mathrm{D}_{6}\right)$, using TMS as internal standard.
5. Jackman, L.H. and Sternhell, S.: Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, (2nd edition), p. 191, Pergamon, Oxford (1969).
6. Melting points were determined in a Büchi capillary melting point apparatus and are uncorrected.

Acknowledgements

We thank Dr. Ch. Stasinopoulou and Dr. S. Loukas, of N.R.C. «Democritos» for their assistance to nmr spectra determination. We are also indebted to the microanalytical lab. of CNRS (France) and CIBA-GEIGY (Switzerland) for the elemental analysis.

