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Advances in mathematics and physics that deal with

fractal geometry, fractal kinetics and chaotic dynamics

have offered new insights for complex, kinetic and

dynamical phenomena. These concepts can be applied

to describe the heterogeneous nature of drug processes

in the human body. Using these concepts, all processes

related to gastrointestinal drug absorption (i.e. dissol-

ution or release, transit and uptake) are considered to

take place in non-homogeneous, disordered media. In

pharmacokinetic modeling, fractal spaces and branch-

ing transport networks, or stochastic models, replace

the classical compartmental models. Classical pharma-

codynamics relies on the suppression or amplification

of a steady-state baseline; however, the underlying

physiological systems are often much more complex.

Therefore, tools of nonlinear dynamics are used to ana-

lyze the drug effect.

Most research in biopharmaceutics and pharmacokinetics
is based on the concept of homogeneity, which is thought to
describe average kinetic behaviour. For example, in the
field of dissolution testing a well-stirred (homogeneous)
dissolution medium is used to mimic the in vivo conditions
prevailing in the gastrointestinal lumen. The simplest
model of pharmacokinetics – the one-compartment model
– relies on the assumption that an instantaneous
distribution equilibrium is reached after drug adminis-
tration. Similarly, homogeneity is the prevailing concept
for the drug concentration of each one of the compartments
in multi-compartmental pharmacokinetic models. In
pharmacodynamics, the application of the mass action
law to describe drug–receptor interaction assumes perfect
mixing in the microenvironment of the receptor. In
addition, most pharmacodynamic systems are considered
to be detached from the remainder of the biological system,
ignoring the inherent complexity.

One can argue, however, that the assumptions of
homogeneity and well-stirred media are in fact contrary
to the evidence provided by the anatomical and physio-
logical complexity of the human body. This means that
drug diffusion is inhibited because the drug molecules
cannot move in all directions and are constrained to locally

available sites. In these ‘under-stirred’ regions, the rate
constant of drug movement is not proportional to the
diffusion coefficient of drug molecules and thus the
classical Fick’s laws of diffusion, which relate
the concentration flux to the gradient of the concentration
through proportionality, cannot be applied. A better
description of transport limitations can be based on the
principles of diffusion in disordered media [1]. Further-
more, biological systems are composed of numerous
strongly interacting parts and thus can be nonlinear
from a dynamical systems viewpoint. Disciplines such as
physiology and biochemistry, which are closely related to
pharmacology, have adopted concepts and ideas borrowed
from mathematics and physics to achieve more realistic
modeling of the complex, heterogeneous kinetic and
dynamical phenomena. These concepts include fractal
geometry, fractal kinetics and chaotic dynamics [2,3].

A brief introduction to the above theoretical concepts is
presented in Boxes 1 and 2, and their drug-related
applications are described below. Drug transit through
the body can be roughly divided into the three phases.
Figure 1 presents a pictorial contrast between the
homogeneous and the heterogeneous approaches that
are used to describe the phenomena involved in the
time-course of a drug through the body.

Drug absorption

Drug dissolution, release, transit and uptake in the
gastrointestinal tract are heterogeneous processes
because they take place at interfaces of different phases
(solid–liquid or liquid–membrane) under variable, under-
stirred conditions. Confirmation of the inadequate mixing
in the vicinity of the gastrointestinal membrane and the
presence of fractal fingers in the mucus layer over the
surface epithelium for HCl transport has been provided
by in vitro and in vivo studies [4,5]. In addition,
dissolution [6,7] and flow experiments [8] in topo-
logically constrained media (ensuring a quasi two-dimen-
sional space) using miscible fluids of different viscosity
reveal that the interface ripples and becomes extremely
meandering (fractal).

These observations, among many others, prompted the
interpretation of drug absorption phenomena in terms of
fractal concepts [9]. An important kinetic implication isCorresponding author: Panos Macheras (macheras@pharm.uoa.gr).
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that Fick’s laws of diffusion are not valid in the
heterogeneous milieu of the gastrointestinal lumen, and
fractal-like kinetics [3] are more appropriate for the
description of kinetic processes. Thus, the concept of the
‘absorption rate coefficient’, which originates from the
fractal nature of the gastrointestinal drug processes and is
compatible with the time-dependent character of these
processes, was proposed to replace the classic notion of the
‘absorption rate constant’ [9]. Furthermore, the dis-
solution, transit and uptake of drugs in the gastroin-
testinal tract have been described probabilistically
using Monte Carlo simulations [9–11], a tool that uses
random numbers to generate a sample population of
the system from which properties can be determined.
Time-dependent absorption models have also been
used to explain the gastrointestinal absorption of
cyclosporin A [12] and propranolol from various
formulations [13].

In the field of drug dissolution and release studies, a
population growth model for dissolution was developed
[14], based on a recurrence equation. This model, which
does not rely on Fick’s first law of diffusion and the time
continuity assumption, described classical [14] and non-
classical (supersaturated) [15] dissolution data well.
Lansky and Weiss [16,17] published the continuous-time
counterpart of the population growth model based on the
non-constant fractional dissolution rate. The same authors
[18] provided an index to quantify heterogeneity for the
various dissolution models. Furthermore, the ubiquitous
empirical use of the Weibull function [which is the
exponential of a power law (i.e. a stretched exponential
function)] in dissolution studies has been justified theor-
etically in terms of fractal kinetics considerations [19]. In
parallel, physically based interpretations for the use of the
Weibull function in drug release studies have been derived
from Monte Carlo simulations [20,21].

Box 1. Fractal geometry and fractal kinetics

Ordinary geometrical objects have integer topological dimensions.

However, objects of fractional dimensions are also defined, which are

called fractals. The non-integer values for the dimensionality of these

objects come from the infinitely fine detail of their structure. The main

property of fractals is ‘self-similarity under-scaling’ (scale invariance).

This means that a part of the object looks similar, or even identical, to the

whole, and this continues for infinite levels of scaling. A classic example

of a fractal object is the Sierpinski gasket, Figure Ia [2].

An appropriate measure of an ordinary object of integer

dimension d can be the length for a curve, the area for a surface

and so on. Magnifying the object by a factor l, this measure scales

as ld ; for example, if a surface is doubled, its area is increased by

22 ¼ 4 times, which means that four of the original surfaces fit

inside the magnified surface. By contrast, magnifying the Sierpinski

gasket by a factor of 2 means that three Sierpinski gaskets of the

original size can fit. This means that the relation 2df ¼ 3 holds,

where df ¼ ln3/ln2 < 1.585 is the non-integer, fractal dimension of

the Sierpinski gasket. This value is smaller than 2, which is the

expected value for a surface. The ‘shortage’ of dimensionality

compared with an ordinary surface comes from the infinite

perforation of the object.

Fractals are not just strange mathematical objects. Self-similar

structures are also very common in nature. Examples include

leaves, snowflakes and physiological systems such the vascular

system (Figure Ib) [2]. However, the difference between mathemat-

ical fractals and real-life fractals is that for the latter, the fractal

properties apply only within a limited scale, which can be several

orders of magnitude but do not extend infinitely.

In the field of classical chemical kinetics, reactions are con-

sidered to take place in homogeneous spaces. Homogeneity is

ensured with continuous stirring of the system, which re-random-

izes constantly the positions of the reactant molecules in the

solution. However, when the stirring of the system is insufficient

(e.g. in the gastrointestinal lumen) the processes or reactions take

place in spaces that do not fulfill the topological conditions of

homogeneity. The limiting step of heterogeneous reactions is non-

classical or anomalous diffusion, which is slower than classical

diffusion and is similar to the diffusion that takes place in porous

media. Furthermore, in reactions with insufficient stirring, depletion

zones are created that tend to enlarge as a result of the lack of re-

randomization of positions of the reactant species. In these

heterogeneous conditions it has been found [3] that the reaction

rate coefficient is not constant but time dependent, following a

power law of time:

K ¼ k1t2hðt – 0Þ ðEqn IÞ

where k1 is a constant with units (time)h21 and h is a dimension-

less exponent. For example, when the reaction A þ A ! products

takes place in a three-dimensional homogeneous space, its kinetics

are second order and are characterized by a rate constant.

However, when the reaction is considered to take place in the

fractal space of the Sierpinski gasket, which has dimension 1.585,

the rate coefficient, instead of being constant, follows a power law

of time (Eqn I), where h ¼ 0.317 [3].

Figure I. (a) The Sierpinski gasket. This fractal object is created by considering

an equilateral triangle that is divided into four equal parts. The middle part is

discarded and the procedure is repeated iteratively for each one of the remain-

ing parts, producing in this way a self-similar perforated object of infinite

detail. (b) A schematic of the bifurcating vascular tree of mammals.
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Drug disposition

In classical pharmacokinetics, the description of drug
time-course is accomplished using compartmental models
(Figure 1). However, it is known that materials are
distributed throughout the body by fractal networks of
branching tubes [2] (Figure 1). Detailed analysis of the
arterial and venular trees by West et al. [22,23] revealed
that the allometric laws of biology originate from the
fractal geometry of organisms. This fractal-like architec-
ture of vascular trees was used for the development of a
physiologically based model for the transport of the
materials in the circulatory system [24] and used for the
estimation of re-circulatory parameters [25]. Another
important finding of the studies by West and colleagues
[22,23] is that the internal surface areas of organisms for
material exchange are ‘maximally fractal’. Thus, the non-
physiological values ( @ 70 l) of the apparent volume of
distribution ðVapÞ for most drugs [26] can be explained by
an extremely high and effective exchange surface area in
the internal structure of the organism. The body can be
conceived, for drug distribution purposes, as a fractal
object with an infinitely high surface to volume ratio
(Figure 2). In this context, novel pharmacokinetic par-
ameters have been proposed such as the fractal volume of
drug distribution ðvf Þ and fractal clearance ðCLf Þ [27–30].

The simplified notion of the homogeneous compart-
ments of pharmacokinetic models has been questioned in

the literature [31–34] and attempts have been made to
describe more realistically the heterogeneous character of
drug distribution in the body. In this context, a hetero-
geneous model was proposed to interpret Ca2þ pharmaco-
kinetics [35]. In this model, the kinetics of Ca2þ in deep
tissues (under-stirred spaces) is described by a rate
coefficient that decreases with time (fractal kinetics). In
a similar vein, Weiss [36] explained the anomalous
pharmacokinetics of amiodarone using fractal kinetic
concepts, assuming non-exponential tissue trapping of
the drug. These studies [35,36] seem to follow the same
principles with the anomalous diffusion of water observed
in biological tissues [37].

Another way to capture heterogeneity in pharmaco-
kinetics is by stochastic modeling approaches, where the
substance of interest is viewed as a set of molecules whose

Figure 1. Homogeneous versus heterogeneous drug processes. The concepts of

(a) homogeneous and (b) heterogeneous drug processes are contrasted. Classical

pharmacokinetic modeling relies entirely on the concept of homogeneous com-

partments. Biopharmaceutic and pharmacodynamic modeling are considered as

an extension of the compartmental pharmacokinetics, by adding compartments

that either precede or follow the central pharmacokinetic compartment. In this

vein, the mathematical basis for the description of drug processes relies on a uni-

fied compartmental approach, from the absorption phase up to the manifestation

of drug effect. However, approaches that capture the heterogeneous nature of

these processes have been proposed. Drug absorption: a mixing tank versus a per-

colation cluster [3]. Drug absorption, classically, is based on variations of the mix-

ing tank model, although models with several compartments in series have also

been used. The notion of heterogeneous gastrointestinal absorption can be con-

sidered by assuming that drug dissolution or release, transit and uptake take place

in disordered media, such as the percolation cluster shown. Drug disposition: a

scheme of a classical two-compartment model versus pictorial representations of

fractal spaces and branching transport networks. In addition, a pictorial represen-

tation of a non-homogeneous compartment, used in stochastic mathematical

models, is shown, whereas the drug quantities are described with probability dis-

tributions, P(x). Drug effect: the classical counterclockwise hysteresis loop, of the

effect (E) – plasma concentration (C) plot, which is a phase space with a point

attractor (Box 2), versus a fractal attractor originating from chemical kinetic model-

ing. Classical pharmacodynamics relies on the suppression or the amplification of

a steady-state baseline, resulting in a point attractor. By contrast, the underlying

physiological systems are often much more complex than a steady-state baseline,

exhibiting fractal strange attractors.
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Box 2. Chaotic dynamics

A dynamical system is a deterministic mathematical system that is

represented by a set of variables. The set of these variables needed to

describe the state of the system in a unique way forms a

mathematical space called phase space [2] and their number is the

dimension of the system. The time evolution, or trajectory, inside the

phase space is described by mathematical rules, usually differential

equations.

The trajectories of most dynamical systems, in the long run, are

confined to a limited part of the phase space, which is called the

attractor [2]. Every trajectory that starts outside the attractor

approaches the attractor as time passes. An attractor is an object

of lower dimension (e.g. a point or a circle) than the entire phase

space. For example, a multidimensional phase space can have a

point attractor (zero dimension; see the effect–concentration plot of

Figure 1 in the main text), which means that all trajectories tend to

concentrate in a specific point in the phase space, a steady state.

Some dynamical systems with three or more differential equations

that include nonlinear terms can exhibit chaotic behaviour (i.e.

trajectories follow complicated non-periodic patterns that resemble

randomness). This behaviour only occurs for a specific range of the

parameter values of the system. Hence, these systems exhibit

qualitatively different behaviour for even a minor change of the

parameter values. The main characteristic of chaotic dynamics is the

sensitivity of the evolution of the system from initial conditions [2].

This means that a slight change in the initial conditions produces a

completely different trajectory, which implies non-predictability of

the time evolution of the system in the long run.

Like other dynamical systems, chaotic systems also have attrac-

tors. However, these attractors can be of non-integer, fractal

dimension (Box 1). Thus, an attractor with infinite detail but confined

in a finite space is defined and called a strange attractor [2]. The

fractal topology of the strange attractors describes the complex, non-

periodic behaviour of chaotic dynamics. Chaotic attractors are

identified not only in mathematical models, but also in real-life

experimental time series data, of which the exact dynamics are

unknown.
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random movement between compartments is based on
probabilities of transfer. Various approaches in the
formulation of stochastic models exist as Markov models,
semi-Markov models, random hazard rate models and the
use of Kolmogorov equations [33,38,39]. The first three
approaches describe the random movement of homo-
geneous individual molecules whereas the last approach
refers to heterogeneous molecules because of the inherent
variability in their age, size or chemical composition.
Although stochastic modeling is a compartmental
approach, it describes the process uncertainty that does
not exist in the deterministic compartmental models and
supplies tractable forms that involve time-varying par-
ameters. A stochastic pharmacokinetic model for cyclos-
porin has been developed recently [40].

In the field of hepatic drug elimination, Michaelis–
Menten (MM) kinetics is being used extensively. The
foundation of MM formalism relies on the mass-action law
as applied to enzymatic reactions, assuming a well-stirred
medium. However, theoretical approaches based on fractal
principles have been used to describe enzyme kinetics in
low-dimensional disordered media [41–43]. Recently,
Berry [44], using Monte Carlo simulations for the
enzymatic reaction in two-dimensional lattices, showed
that one of the microconstants of the reaction is not
constant throughout the reaction course. It crosses over
from a constant region at short times to a power law
decrease at longer times, the hallmark of fractal kinetics.
A direct application of fractal concepts to the hepatic
elimination of mibefradil was reported by Fuite et al. [45].
These authors proposed that the fractal structure of the
liver, with attendant kinetic properties of drug elimin-
ation, can explain the unusual nonlinear pharmaco-
kinetics of mibefradil. Again, kinetics of the fractal type
were considered to be due to topological constrains.

Drug effect

Pharmacodynamics is the most complex process during
the presence of the drug in the human body. The drug can
interact with various physiological systems and thus it is
not uncommon for the pharmacodynamic response to be, in
reality, nonlinear and governed by mechanisms that have
not been studied extensively. However, the state of the art
in pharmacodynamic modeling handles these complicated
mechanisms with effect site compartment(s), as an
extension of compartmental pharmacokinetic modeling
[46]. The baseline of the pharmacodynamic response
(i.e. the underlying physiological system) is generally
considered as the steady state (Figure 1), which the drug
either suppresses or enhances. Furthermore, the inherent

Figure 2. Drug distribution viewed in terms of fractal concepts. (a) Drug distri-

bution is inextricably related to the internal exchange surface areas of the human

body, which are ‘maximally fractal’ [22,23]. A ‘biological– fractal’ set characterizes

the internal structure and includes the effective exchange area and the total

volume of biologically active material (v). The upper limit of the volume of drug

distribution is the fractal volume v (i.e. the body mass M of the species assuming a

uniform constant density of 1 g ml21). The fractal three-dimensional parallelepiped

in which the circulatory system is embedded provides a pictorial view of the

volume v [27]. The cube, which corresponds to a modified Menger sponge [2] (i.e.

a geometrically self-similar fractal with an infinitely high surface-to-volume ratio),

is used to represent the part of the non-accessible experimentally ‘biological– frac-

tal’ volume. Essential materials and drugs are transported through space-filling

fractal networks of branching tubes of the circulatory system, which are supposed

to occupy the empty spaces of the Menger sponge. (b) The fractal volume of drug

distribution (vf) corresponds to the portion of the volume v that is accessible to the

drug. The value of vf is determined by the physicochemical properties of drug and

is estimated from Vap values, where Vpl and Vap are the plasma volume and the

apparent volume of drug distribution, respectively [27]. (c) As a result of the
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anatomical and physiological similarities between mammalian species, the var-

ious types of volume of drug distribution can be expressed mathematically by allo-

metric equations that have the general form: Y ¼ aMb ; where M, a and b represent

the species mass, the allometric constant and the allometric exponent, respect-

ively, whereas Y denotes vf or Vap : The log– log plot of volume versus mass for

several drugs is shown for vf (red lines) and Vap (blue lines) for the data presented

in [27]. In general, volumes of drug distribution are expected to scale proportion-

ally to body mass [i.e. b ¼ 1 (dashed green line)]. In the great majority of cases the

exponent b for vf was found [27] to be either unity or very close to unity, whereas

the b values for Vap deviated from 1 considerably. This finding indicates that vf is a

physiologically sound concept.
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variability of the pharmacodynamic response is routinely
treated as ‘noise’. Nevertheless, extensive experimental
evidence, in addition to physiological modeling, indicate
that the underlying physiological systems often are non-
linear dynamical systems (Figure 1) [47,48]. Such systems
can exhibit qualitatively variable behaviour and in certain
conditions even chaotic behaviour (Box 2). In these cases,
the asymptotic behaviour of the system in the phase space
is confined to a fractal structure called a strange attractor,
instead of a steady state (i.e. a point attractor). Thus, the
pharmacodynamic response can be a perturbation of the
underlying nonlinear system and not just a suppression or
attenuation of a steady state.

Nonlinear dynamics are usually applied in physiologi-
cal systems and to the relevant drug action in two general
directions: (i) the analysis of experimental or clinical data;
and (ii) the construction of mathematical models. The
analysis of real-life time series, experimental or clinical, is
based on the hypothesis that the corresponding data
originate from an unknown nonlinear dynamical system
[2,48] that can form a strange attractor. Then, using

certain tools (e.g. phase space reconstruction [2]), the
validity of this hypothesis is tested, accounting also for the
origin of variability, attributed to either noise or under-
lying dynamics. In addition, various relevant and useful
measures, such as fractal dimensions of the attractor or of
the time series itself, can be calculated, which are
complementary to the usual statistical measures and
help to discriminate qualitatively different conditions or to
quantify the drug effect. In the case of mathematical
modeling, the incorporation of nonlinear dynamics, where
there is evidence of such presence, is neither complemen-
tary nor alternative to the classical approach. In such
systems, the appropriate mechanistic mathematical mod-
eling should be adapted to incorporate the nonlinearity
features (Box 2), not for improved accuracy or detailed
description, but to introduce a completely different
rationale that cannot be approached classically.

Although the application of nonlinear dynamics in
physiological systems is extensive, the application to
relevant drug action is limited. Some of the most
representative applications of nonlinear dynamics in

Figure 3. Study of ventricular fibrillation. The electrical activity of the heart and the initiation of ventricular fibrillation has been studied by using a diffusion reaction

equation (a) (where V is the transmembrane voltage, Iion is the total ionic current density, Cm is the capacitance and ~D is the diffusion tensor), and found to produce spiral

waves, an unstable structure that eventually breaks up and leads to chaotic, turbulent patterns (b). The spiral waves (or scroll waves, which is their three-dimensional equiv-

alent) have been identified in cases of ventricular tachycardia whereas the chaotic regime has been identified in cases of ventricular fibrillation. Antiarrhythmic drugs aim

to prevent tachycardia and to succeed in this task in 80% of cases [51]. However, their action is based on separate cells and does not address the spatiotemporal effects and

the formation of spiral waves that lead to fibrillation. In fact, it has been found that these drugs attenuate the instability of spiral waves. Thus, given that fact, the remaining

20% of cases in which the drugs fail to prevent the initiation of tachycardia makes them extremely dangerous. Therefore, antiarhythmic drugs must also have antifibrillatory

properties to prevent the breakup of spiral waves, taking into account the parameters that play a key role in the instability of these structures, such as the slope of the action

potential duration restitution (APDR), which is the slope of the action potential duration (APD) versus the diastolic interval (DI) and determines the stability of the spiral

waves. In (c) the APDR slope is .1 (dotted line is slope 1) and small perturbations in DI amplify APD, resulting in turbulent behaviour as shown in simulated tissue (d), the

respective voltage versus time of the simulation (e) and the optical snapshot of real pig heart during fibrillation (f). By contrast, when the APDR slope is ,1 (g) the spiral

waves are stable, as shown in simulated tissue (h), the respective voltage versus time of the simulation (i) and the optical snapshot of real pig heart exhibiting spiral waves

and where the restitution has been flattened by administration of bretylium (j). Part (b) is reproduced, with permission, from [51] and parts (c– j) are reproduced, with per-

mission, from [52].
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cardiovascular, central nervous and endocrinal systems,
with the presence of drugs and the study of their action,
are reviewed.

One of the major fields in which the theory of nonlinear
dynamics has been widely applied is the dynamics of the
heart. Recent applications of nonlinear dynamics focusing
on methods of analyzing experimental recordings include
work by Yambe and colleagues [49], who studied fractal
attractors of time series of ventricular elastance (Emax),
which is a parameter that is indicative of cardiac
performance, in goats following the administration of
various drugs. Furthermore, Tulppo et al. [50] studied the
variability in heart rate, in the light of fractal analysis, in
healthy subjects following the administration of various
adrenergic and vagal drugs. However, the most promising
application of nonlinear dynamics to the heart is the
mathematical modeling of its electrical activity, which has
revealed the causes of ventricular fibrillation and also the
disappointing performance of some antiarhythmic drugs
(Figure 3) [51–53].

Another important application of nonlinear dynamics is
dealing with the action of CNS drugs. The analysis is
focused mainly on the processing of electroencephalogram
(EEG) recordings, introducing novel measures to quantify
brain activity from EEG data. Comparison of several
measures of EEG recordings, both classical and nonlinear,
is made in the work by Widman et al. [54] for the
anaesthetic drug sevoflurane. Examples of the application
of nonlinear dynamics techniques to time-series analysis
of EEG data from studies with CNS drugs include the
investigation of the influence of anticonvulsive [55] and
antiepileptic [56] drugs in epilepsy, the investigation of the
electrophysiological effects of the neurotoxin 5,7-dihydrox-
ytryptamine [57] and the study of epileptiform bursts in
rats after administration of penicillin and Kþ ions [58].

The pulsatility of hormone secretion is widely acknowl-
edged, whereas there is evidence that this is of dynamical
origin and not random. It is believed that the interplay of
various hormones form nonlinear oscillators through
feedback mechanisms that can exhibit chaotic behaviour
[59]. Recent examples of pharmacological interest include
studies on parathyroid hormone and its impact on
osteoporosis [60], the dynamics of insulin and glucose
interaction [61], the secretion of cortisol and its suppres-
sion by corticosteroids [62], and the proposed set-point
model for the prediction of the time-course of 8-hydroxy-
(di-n-propylamino) tetralin-induced hypothermia [63].
Moreover, several investigations are focused on the study
ofhormonetimeseriesusingthetoolsofnonlineardynamics.
Such examples include the glucose–insulin [64] and the
cortisol–growth hormonesystems[65].Finally, ameasureof
pulsatilityof time series, which is referred toasapproximate
entropy (ApEn), has been applied extensively to hormonal
data[66].Anindicativerecentexample is thestudyofgrowth
hormone with estradiol supplementation [67].

Concluding remarks

New insights can be gained by the elucidation of the effects
of the heterogeneous structure (geometric disorder of the
medium) and of the imperfect mixing on the kinetics of the
drug processes in the human body. Thus, new levels of

understanding for drug absorption and disposition
phenomena are anticipated using fractal concepts. In
addition, the application of nonlinear dynamics to phar-
macodynamics can unveil a qualitatively different
interpretation for the mechanism(s) and/or the variability
of drug effect(s) recordings.
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