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a b s t r a c t

For many countries attempting to control the fast-rising number of coronavirus cases and
deaths, the race is on to ‘‘flatten the curve,’’ since the spread of coronavirus disease 2019
(COVID-19) has taken on pandemic proportions. In the absence of significant control
interventions, the curve could be steep, with the number of COVID-19 cases growing
exponentially. In fact, this level of proliferation may already be happening, since the
number of patients infected in Italy closely follows an exponential trend. Thus, we
propose a test. When the numbers are taken from an exponential distribution, it has
been demonstrated that they automatically follow Benford’s Law (BL). As a result, if the
current control interventions are successful and we flatten the curve (i.e., we slow the
rate below an exponential growth rate), then the number of infections or deaths will not
obey BL. For this reason, BL may be useful for assessing the effects of the current control
interventions and may be able to answer the question, ‘‘How flat is flat enough?’’ In this
study, we used an epidemic growth model in the presence of interventions to describe
the potential for a flattened curve, and then investigated whether the epidemic growth
model followed BL for ten selected countries with a relatively high mortality rate. Among
these countries, South Korea showed a particularly high degree of control intervention.
Although all of the countries have aggressively fought the epidemic, our analysis shows
that all countries except for Japan satisfied BL, indicating the growth rates of COVID-19
were close to an exponential trend. Based on the simulation table in this study, BL test
shows that the data from Japan is incorrect.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Coronavirus disease 2019 (COVID-19) was first identified in December 2019 and has since spread globally, resulting in
the ongoing 2020 coronavirus pandemic. For many countries attempting to control the fast-rising number of coronavirus
cases and deaths, the race is on to ‘‘flatten the curve,’’ with the ‘‘curve’’ being the projected number of people who
will contract COVID-19 over a period of time. This ‘‘curve’’ can vary based on the growth (infection) rate and degree
of intervention. Thus, ‘‘flattening the curve’’ requires intervention efforts, such as social distancing, to slow the growth
rate of COVID-19 infections and give more time to hospitals and health systems to cope with the large number of infected
patients.

In the absence of significant control interventions, the curve could be steep, with the number of COVID-19 cases
growing exponentially. In fact, this level of proliferation may already be happening, since the number of patients infected
in Italy closely follows an exponential trend according to Remuzzi and Remuzzi [1]. Thus, we propose a test. When the
numbers are taken from an exponential distribution, it is demonstrated that they automatically follow Benford’s Law (BL)
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2,3]. As a result, we can infer that when the epidemic growth curve follows exponential distribution, the number of
nfections and deaths will obey BL. To state it differently, if the current control interventions are successful and we flatten
he curve (i.e., we slow the rate below an exponential growth rate), then the number of infections or deaths will not obey
BL. Therefore, BL may be useful for assessing the effects of the current control interventions and may be able to answer
the question, ‘‘How flat is flat enough?’’

BL was an empirically discovered pattern for the frequency distribution of first digits in many real-life datasets [4,5].1
It states that in many naturally occurring collections of numbers, the leading digit is non-uniformly distributed in a
predictable manner. In addition, the leading significant digit is likely to be small. For example, the number 1 occurs
as the first digit about 30.1% of the time, while 9 occurs as the first digit about 4.5% of the time. In this situation, the
number 1 appears more than six times more frequently than 9. Checking for the validity of BL in this dataset would be
the best approach in a forensic analysis looking at potential manipulations of the number of cases [7,8], since a distribution
of first digits that deviates from the expected distribution may indicate fraud. Prior studies have shown that BL is also
applicable to genome data [9], the half-lives of unstable nuclei [3], self-reported toxic emissions data [10], tax auditing
[11], accounting [12], election data [13,14], stock markets and final data [15–20], regression coefficients [21], inflation data
[7], World Wide Web [22], religions [23–25], birth data [26], river data [27], first letter words [28], elementary particle
decay rates ([29], astrophysical measurements [30], and more.

In this study, our goal was to use an epidemic growth model in the presence of interventions to describe the potential
for a flattened curve, to investigate whether the epidemic growth model followed BL, to test the model against empirical
COVID-19 data on the number of deaths in multiple countries, and to discuss whether or not the model could be used to
detect fraud in the reported number of deaths that have occurred in the presence of interventions.

This paper is organized as follow: Section 2 briefly introduce the BL; Section 3 describes the theoretical relationship
between BL and epidemic growth model in the absence (and presence) of control intervention; Section 4 describes
simulation for testing the theoretical development from Section 3; Section 5 applies BL and the epidemic growth model
in the presence of intervention to COVID-19 data, and finally Section 6 concludes.

2. Benford’s law

BL is the observation that in many collections of numbers from real-life data or mathematical tables, the significant
digits are not uniformly distributed; they are heavily skewed toward the smaller digits. More precisely, the significant
digits in many data sets obey a very particular logarithmic distribution. The special case of the first significant digit is

P (D1 = d1) = log10
(
1 + d−1

1

)
for all d1 = 1, 2, . . . , 9,

where D1 denotes the first significant digit. From a statistical standpoint, a Borel probability measure P on R is Benford
f P ({x ∈ R: S(x) ≤ u}) = log u for all u ∈ [1, 10), where S is the significant of a real number is its coefficient when it is
xpressed as a floating point. That is, the significant function S:R → [1, 10) is defined as follows: if x is a non-zero real

number, then S (x) = u, where u is the unique number in [1, 10) with |x| = 10ku for some k ∈ Z. Then, a random variable
X is Benford if its distribution PX on R is Benford, i.e., if PX ({x ∈ R: S (x) ≤ u}) = log u for all u ∈ [1, 10).

The useful result for this study is that if U is a random variable uniformly distributed on [0, 1), then the random
variable X = 10U is Benford. To show this, let us say the cumulative distribution function of a Benford random variable
X is FX (x) = log10 (x) for all x ∈ [1, 10). Then, by rewriting the cumulative distribution function as 10FX (x) = 10log10(x), we
have 10FX (x) = x, where FX (x) ∼ U(0, 1). Thus, a Benford variable X can be generated by 10U , where U ∼ U(0, 1).

To evaluate the degree of deviation between the observed and expected first digit distribution from BL, we considered
the chi-squared test. For the corresponding χ2, the statistic can be estimated as

χ2
stat (8) =

9∑
i=0

(ei − bi)2

bi
,

where ei is the observed frequency in each bin in the observed data, and bi is the expected frequency based on Benford’s
distribution. The chi-square statistic works as a measure of the gap between the realization observed in the data and that
implied by the Benford distribution; the larger the chi-square statistic is, the stronger the deviation from the Benford
distribution will be. In this case, with a 95% confidence level, χ2 (8) = 15.507 is the critical value for the rejection of the
null hypothesis; if the value of the χ2

stat is less than the critical value, then we accept the null hypothesis and conclude
hat the data fits the Benford distribution. Then, the null hypothesis (H0) is that the observed distribution of the first
ignificant digit in the case of interest is the same as expected on the basis of BL; the alternative hypothesis (HA) is that
he observed distribution of the first significant digit in the case of interest is not the same as expected on the basis of
L. Particularly in forensic analysis, if the null hypothesis can be rejected, the observed series does not satisfy BL and thus
nfers a possible manipulation of data.

1 As shown in physics, physical constants obey BL as well [6].
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Fig. 1. Frequency of first digit in growth model in the absence of control intervention. Note: P (t) = eceαt , where ec ∼ N(1.1, 0.01), α ∼ N (0.1, 0.03),
and T = 50; Simulated first-digit distribution of the growth model in the absence of control intervention is represented (gray) along with the
corresponding probability mass for Benford’s distribution (black).

3. A generalized epidemic growth model and benford’s law

The growth pattern of infectious disease outbreak assumes exponential growth dynamics based on the differential
equation:

dP
dt

= αP r ,

here P is the cumulative number of cases, t is time, and α is a positive constant (growth rate), which varies as the
xponent r changes.

.1. Growth model in the absence of control intervention: r = 1

When r = 1, we can solve with the separation of variables:

1
P
dP = αdt

P (t) = eceαt ,

here c > 0. P (t) is considered the classical epidemic growth model; the cumulative number of cases, P (t), grows accord-
ing to the equation, where α is the growth rate per unit of time, t is time, and ec (= P0 (t)) is the number of cases at the
start of the outbreak. The growth rate, α, is related to R0 = 1+α/γ , as derived from SIR (susceptible–infected–removed)
models, where γ is the mean infectious period.

The function P (t) is Benford. The proof relies on Weyl’s equidistribution theorem, which states that if i is irrational,
then for large T , the fractional parts of it for 1 ≤ t ≤ T are uniformly scattered over the unit interval ([31,32]). More
specifically, the function eceαt , can be written as 10(c+αt) log10 e, where log10 e is irrational. Thus, for the large range of t the
fractional parts of (c + αt) log10 e become uniformly distributed over the interval [0, 1). As we mentioned in Section 2, if U
is a random variable uniformly distributed on [0, 1), then the random variable X = 10U is Benford. Therefore, the numbers
taken from the function P (t) = eceαt naturally follow BL. To visualize the relationship between P (t) and Benford. We
generated 1000 observations from P (t) = eceαt , where ec ∼ N(1.1, 0.01), α ∼ N (0.1, 0.03), and T = 50. In Fig. 1, the
simulated first-digit distribution of the growth model in the absence of control intervention is represented (gray) along
with the corresponding probability mass for Benford’s distribution (black). Although digit 1 and digit 2 exhibit slightly
higher proportion than BL, the simulated data from the growth model are quite close to following Benford distribution.
We discuss the validity of BL in more detail with different simulation scenarios in Section 4.
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Table 1
Growth model in the absence of control intervention (r = 1): P (t) = eceαt , where t = 1, 2, . . . , 30, ec ∼ N(1.1, 0.01),
α ∼ N (α0, 0.03), and α0 ∈ {0.1, 0.2, 0.3}.
Growth rate, α0 Deceleration of growth parameter, r Number of Benford cases

0.1 1 9,681 (96.81%)
0.2 1 10,000 (100.00%)
0.3 1 9,890 (98.90%)

3.2. Growth model in the presence of control intervention: 0 < r < 1

When 0 < r < 1, we have a function that does not grow as fast as exponential functions. Let us define r = 1 − 1/n,
where n is a positive integer. As we mentioned before, the larger the number we choose as n, the closer we are to
exponential growth, and therefore, the function naturally follows BL. Now, we have

P1/n−1dP = αdt

P (t) =

(α

n
t + c

)n
,

which is a polynomial of degree n. In terms of the epidemic growth model, P (t) describes the cumulative number of cases
at time t , α is a positive growth rate, and r ∈ (0, 1) is a deceleration of the growth parameter.

Similarly, in Section 3.1, the function can be written as 10n log10( α
n t+c), where log10

(
α
n t + c

)
is irrational. However,

eyl’s equidistribution theorem requires large n in order to achieve the state (or aspect) of the fractional parts that are
niformly scattered over the unit interval, and thus, the function is Benford. If r = 0 (i.e., n = 1), this function describes

the cumulative number increases linearly, and thus, P (t) is not Benford; however, if r = 1 (i.e., n = ∞), this function
describes the exponential growth, and thus, P (t) is Benford. In observational study, given the small value of α, the growth
may be not as great as exponential growth because no matter how large n is, r is still less than 1.

When r is intermediate, values that lie between 0 and 1, the function describes polynomial growth patterns. For
xample, if r = 1/2 (i.e., n = 2), the function describes constant incidence over time, while the cumulative number
f cases follows a quadratic polynomial; if r = 2/3 (i.e., n = 3), the function describes incidence grows quadratically,
hile the cumulative number of cases fits a cubic polynomial.
Thus, we believe that when r is small we may able to ‘‘flatten the curve’’. But, how small is small enough not to obey

L? To better understand the association between r and Benford, we run simulations in the next section.

. Simulation

In the previous section, we show that when the epidemic growth model can satisfy BL, epidemic growth in the presence
absence) of control intervention may dissatisfy (satisfy) Benford distribution. Nevertheless, we want to check this claim
ith more generality under uncertainty (e.g., randomly generated parameters, randomly generated initial values, and
elatively small fixed samples). Thus, we run simulations of the growth model in order to evaluate the satisfaction of BL.

imulation 1: The growth model in the absence of control intervention, P (t) = eceαt . We generate a random variable X
from the growth model with r = 1, such as P (t) = eceαt , where t = 1, 2, . . . , 30, ec ∼ N(1.1, 0.01), α ∼ N (α0, 0.03),
and α0 ∈ {0.1, 0.2, 0.3}. As mentioned before, after the calculation of the first-digit occurrence, we conduct the χ2 test
to detect deviations from BL. Table 1 presents the results of generating 10,000 series of simulated data representing the
epidemic growth in each different value of the growth rate. The length of each series is fixed at T = 30. We found that
in each scenario, the number of detected Benford cases (i.e., χ2

stat < 15.507) are consistently greater than 95%, regardless
of the growth rate (α0). To state it differently, under the uncertainty created when the deceleration of growth (r) is 1,
most of the epidemic growth will follow BL. Notably, in the absence of control intervention, the growth model will likely
satisfy BL, regardless of whether the growth rate was high or low; even a low growth rate may cause exponential growth
in the absence of intervention.

Simulation 2: The growth model in the presence of control intervention, P (t) =
(

α
n t + c

)n. We generate a random variable
from the growth model, such as P (t) =

(
α
n t + c

)n, where t = 1, 2, . . . , 30, c ∼ N (1.1, 0.01), r ∼ N (r0, 0.03) , r0 ∈

0.1, 0.2, . . . , 0.9}, α ∼ N (α0, 0.03), and α0 ∈ {0.1, 0.2, 0.3}. Table 2 presents the results of generating 10,000 series of
imulated data representing the epidemic growth in each different value of the growth rate (α0) and the deceleration of
he growth parameter (r0). The length of each series is also fixed at T = 30. We found that when the epidemic growth
ate is around 0.1, the number of cases in BL was hinged on the deceleration of growth parameter (r). For example, when
0 = 0.1 and r0 = 0.1, we found that only 752 cases out of 10,000 (7.52%) satisfied BL. In contrast, when α0 = 0.1 and
0 = 0.9, we found that 9,281 cases out of 10,000 (92.81%) satisfied BL. Notably, only moderately strong intervention
r0 ≤ 0.3) may effectively decrease the growth when the growth rate is around 0.1, and therefore, the model will likely
issatisfy BL (e.g., when α0 = 0.1 and r0 = 0.3, we found less than half of simulated cases (45.41%) satisfied BL). To state
t differently, in this setting, we may able to ‘‘flatten the curve’’ if α0 = 0.1 and r0 ≤ 0.3.

Furthermore, when α0 ≥ 0.2, in all of the scenarios, the number of detected Benford cases (i.e., χ2
stat < 15.507) is

reater than 89%, regardless of the deceleration of the growth parameter r .
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Table 2
Growth model in the presence of control intervention (0 < r < 1): P (t) =

(
α
n t + c

)n , where t = 1, 2, . . . , 30, c ∼

N (1.1, 0.01) , r ∼ N (r0, 0.03) , r0 ∈ {0.1, 0.2, . . . , 0.9} , α ∼ N (α0, 0.03) , and α0 ∈ {0.1, 0.2, 0.3}.
Growth rate, α0 Deceleration of growth parameter, r0 Number of Benford cases

0.1 0.1 752 (7.52%)
0.2 2,455 (24.55%)
0.3 4,541 (45.41%)
0.4 6,472 (64.72%)
0.5 7,873 (78.73%)
0.6 8,514 (85.14%)
0.7 9,015 (90.15%)
0.8 9,105 (91.05%)
0.9 9,281 (92.81%)

0.2 0.1 8,927 (89.27%)
0.2 9,848 (98.48%)
0.3 9,984 (99.84%)
0.4 9,999 (99.99%)
0.5 10,000 (100.00%)
0.6 10,000 (100.00%)
0.7 10,000 (100.00%)
0.8 10,000 (100.00%)
0.9 10,000 (100.00%)

0.3 0.1 9,997 (99.97%)
0.2 10,000 (100.00%)
0.3 10,000 (100.00%)
0.4 10,000 (100.00%)
0.5 10,000 (100.00%)
0.6 10,000 (100.00%)
0.7 10,000 (100.00%)
0.8 10,000 (100.00%)
0.9 10,000 (100.00%)

5. COVID-19 application

5.1. Data

In this section, we apply the epidemic growth model to the number of deaths attributed to COVID-19. The World
Health Organization declared the coronavirus outbreak to be a pandemic in early March 2020. Most countries affected
by COVID-19 have tried to stop the spread of the virus through various means, such as social distancing and quarantines.
We collected the number of deaths from the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins
University Center for Systems Science and Engineering (JHU CSSE; https://coronavirus.jhu.edu/). The 2019 Novel Coron-
avirus Visual Dashboard provides daily data on the cumulative number of deaths since January 22, 2020. We selected 10
countries that showed a relatively high mortality rate. To apply the epidemic growth model to the growth patterns of
the number of deaths, we followed the methodology used in other epidemiological studies. In particular, we focus on the
analysis of the early ascending phase of COVID-19; we used the day when coronavirus-related deaths were first observed
to the day when the number of deaths peaked in each country as the early ascending phase for this study [33–36]. For
example, in the case of the US, the first deaths were observed on February 29, which is 39 days after January 22. The peak
in the number of deaths was observed on April 6, which is 76 days after January 22.

5.2. Estimation and confidence intervals

To jointly estimate the parameters α and r , we used the least-square curve fitting, as in prior studies [36,37]. In
particular, we fit the cumulative number of deaths to the equation P (t) =

(
α
n t + c

)n. We then implemented a least-square
fitting procedure in R using the built-in function lsqcurvefit in the pracma package. In order to increase the accuracy of the
estimation, the parameters were updated with the mean square errors and prior knowledge of the parameters (i.e., the
estimated parameters in the previous iteration). Our estimation method differs from existing studies in two respects.
First, our proposed estimation approach sequentially updates the parameters by using the estimated parameters from the
previous iteration; after setting the initial value of c , the parameters α (growth rate parameter) and r (deceleration of
growth parameter) were jointly estimated after 100 times iteration. Second, the proposed method incorporates the overall
mean squared error (MSE) into the estimation procedure; once the iteration has ended, we can choose the estimated α
and r , which gives the minimum value among 100 MSEs. In contrast to our proposed approach, which is based on many
estimations (i.e., 100 iterations), to the best of our knowledge, existing studies rely on only one estimation (i.e., one
iteration).

To illustrate how the proposed approach will work with COVID-19 data, we generated values from P (t) =
(

α
n t + c

)n
with T = 50, c = 3, α = 0.6, and r = 0.5 (i.e., n = 2). The initial values for α and r were given as 0. The initial value

https://coronavirus.jhu.edu/
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Fig. 2. Mean squared error for simulated data against the iteration.

Fig. 3. Values of the estimated parameters against iterations (α = 0.6 and r = 0.5).

f c was given as the first observation of the generated sample. Fig. 2 shows the mean squared errors (MSEs) against
he iteration number. The plot indicates that the proposed approach rapidly reaches a stationary distribution. When the
umber of iterations (m) exceeded 13, the MSE was about 3.86; when there was no sequential updating (m = 1), the
SE was 462.29. Thus, the MSE of the proposed approach was approximately 120 (≈ 462.29/3.86) times lower than the
SE of the approach that did not update the estimates (i.e., estimating the parameters based on m = 1). Fig. 3 shows the
stimated parameters when we employed our proposed approach. As the iteration proceeded, the estimated parameters
ecame closer to the true parameters. The dashed line indicates the true parameters. For example, after iteration 10,
e obtained estimated parameters of 0.59 and 0.49 for α and r , respectively. When m = 1, the estimated parameters

or α and r were 2.11 and 0.18, respectively. Through this analysis, it was found that the method of the least-squares
itting of the curve was highly affected by the initial value of c . Thus, we believe that the proposed approach is always
esirable when c is not known. For additional clarity, we have provided the source code that was used to test the proposed
pproach (in the R statistical environment) as an Appendix A alongside the full text of the manuscript. We hope to spark
discipline-wide discussion of the merits of advanced and flexible matching methods in a contemporary organizational
etting.
Before estimating the parameters, we set the initial value for α, r , and c. The initial values for α and r were given as 0.

or the US, the UK, and Japan, the initial value of c was given as 2. For China, Spain, Germany, and the Netherlands, the
nitial value of c was given as 3. For South Korea and Italy, the initial value of c was given as 4.2 After setting the initial
alue, the parameters α and r were jointly estimated after 100 times iteration. Once α and r were jointly estimated, the

2 Different initial values of c needed to be considered for different countries for two reasons: (1) COVID-19 was identified at different times in
ifferent countries; (2) Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE; https://coronavirus.jhu.edu/), which provided
he left-censored data, was not collecting data before January 22, 2020. Notably, COVID-19 was first identified in Wuhan, China in December 2019.
hus, with the exception of China, most countries reported first observations (the number of deaths by January 22, 2020) to JHU CSSE as one or

https://coronavirus.jhu.edu/
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Table 3
COVID-19, growth model in the presence of control intervention, and BL test.
Johns Hopkins Coronavirus Resource Centera Growth model in the presence of control intervention BL test

Country The early ascending phase
(Dates in 2020)

T c Growth rate, α (95% C.I) Deceleration of growth parameter,
r (95% C.I)

χ2
stat p-value

US 02/29 ∼04/06 38 1 0.364
(0.355, 0.371)

0.921
(0.917, 0.924)

1.388 0.990

China 01/22 ∼02/11 21 17 1.485
(1.453, 1.515)

0.612
(0.609, 0.614)

2.691 0.952

South Korea 02/20 ∼03/02 12 1 0.590
(0.521, 0.657)

0.549
(0.535, 0.562)

8.698 0.368

Japan 02/13 ∼04/04 52 1 0.140
(0.136, 0.144)

0.773
(0.761, 0.783)

25.166 0.001

UK 03/05 ∼04/04 30 1 0.369
(0.363, 0.374)

0.929
(0.926, 0.931)

5.674 0.684

Spain 03/03 ∼04/02 31 1 1.021
(1.005, 1.036)

0.774
(0.772, 0.776)

7.101 0.526

Italy 02/21 ∼03/26 35 1 0.722
(0.704, 0.739)

0.802
(0.799, 0.805)

3.499 0.899

Germany 03/09 ∼04/08 31 2 0.525
(0.515, 0.534)

0.819
(0.815, 0.822)

4.594 0.800

Netherlands 03/06 ∼04/07 33 1 0.672
(0.660, 0.682)

0.761
(0.757, 0.764)

5.288 0.726

Sweden 03/11 ∼03/27 17 1 0.271
(0.257, 0.286)

0.999
(0.982, 1.018)

7.375 0.497

Note: The early ascending phase is the period between the day when the first death was observed after January 22, 2020 and the day when the
number of deaths peaked after January 22, 2020; we used the number of deaths observed in these periods to estimate α and r and conduct the BL
test. T denotes the length of the data points. χ2

stat is reduced a chi-squared statistic.
aData source: https://coronavirus.jhu.edu/.

value of c was updated as the initial value of c1/r. Given the estimated α, r , and c, the mean squared error was calculated
using the fitted growth model and the original data. After we obtained the mean squared error, the next iteration started,
and α and r were updated as those from the previous iteration were. Once the iteration ended, we chose the estimated
α and r , which could minimize the mean squared error.

We constructed a 95% confidence interval for the α and r estimates using the parametric bootstrapping method
[36–39]; based on the 1000 estimates (by fitting the least-squares method 1000 times), we calculated the variance
(standard errors) of the estimated parameters, as prior studies have [36–38]. More precisely, the bootstrapping error was
estimated by simulating 1000 realizations of the best-fit curve using the parametric bootstrap with a negative binomial
error structure. Using the bootstrapping error, we then obtained the nominal 95% confidence intervals. In particular, we
generated M (in this study, M = 1000) sets of boosted cumulative numbers of cases (Bm(t), where m = 1, 2, . . . ,M)
based on the observed data (P(t), where t = 1, 2, . . . , T ) in the following manner. For t = 1, simply let bm (1) = P(1). For
t ≥ 2, bm(t) was sampled from a negative binomial (NB) distribution with mean P (t)−P(t−1), which is the daily change
in observed samples between day t and t − 1. In each M , the total number of bootstrapped values is T . In this study, T
indicates the length of the data points. For example, if t = 2, P (1) = 1, and p (2) = 5, we generated M samples from the
NB distribution with mean 4. In this study, we used a NB instead of a Poisson distribution because of the overdispersion
problem and chose the dispersion parameter range 0.001–0.9.3 Overdispersion refers to the presence of a greater variance
of observed data than would be expected in a given parametric model. Notably, an overdispersion problem often occurred
when fitting a Poisson distribution to the data. The Poisson distribution had only one parameter. Thus, the variance of the
distribution was equal to the mean. The corresponding realization of the cumulative number of deaths due to COVID-19
was given by Bm (t) =

∑t
j=1 bm(j). The α and r were then estimated from each of the 1000 simulated epidemic growths.

The empirical distribution of the estimated parameters was used to construct 95% confidence intervals. The estimated
parameters and confidence intervals are reported in Table 3.

5.3. Results

It is possible to fit the data for the number of coronavirus deaths into the growth model in the presence of control
interventions, as reported in Fig. 4. The predicted value of the number of deaths can be computed based on the estimated

two. For that reason, c is 1 or 2 in most countries, except for China. Given the data from JHU CSSE, we had to estimate the initial value for China.
The estimated value of c for China was 17, which yielded the lowest prediction errors using least-squares fitting.
3 As the dispersion parameter gets larger, the NB turns into a Poisson distribution.

https://coronavirus.jhu.edu/
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l

Fig. 4. Tracking COVID-19 deaths across countries using epidemic growth model in the presence of control intervention (0 < r < 1): P (t) =(
α
n t + c

)n . Note: The red solid lines indicate the observed number of deaths attributes to COVID-19 reported by the JHU CSSE; the black dashed
ines indicate the predicted value of the number of deaths based on the estimated parameters (α̂ and r̂); the shaded area indicates the 95% confidence
interval of the predicted number of deaths attributes to COVID-19.

parameters (α̂ and r̂) and is consistent with the observed number of deaths attributed to COVID-19 that were reported by

the JHU CSSE. The consistency between the model prediction and the reported data is very close in all 10 countries.
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Fig. 4. (continued).

Overall, our analysis revealed a diversity of profiles across the countries. Estimates of the deceleration of growth
arameter r̂ ranged from 0.549 in South Korea, reflecting a high degree of intervention, to 0.999 in Sweden. Nevertheless,
he epidemic growth in all countries satisfied BL with the exception of Japan.4 These findings are consistent with the
imulation. Based on the simulation, we showed that when α0 ≥ 0.2 in all of the scenarios, the number of detected
enford cases was greater than 89%, regardless of r0. For example, the estimated deceleration of growth in South Korea
as the lowest (r̂ = 0.549) among the 10 countries, but the estimated growth rate was α̂ = 0.590, which was greater
han 0.2. Thus, it followed BL.

The estimated growth rate and deceleration of growth in Japan were 0.140 and 0.773, respectively. Based on the
imulation, this profile’s number of detected Benford cases was between 90.15% (α0 = 0.1 and r0 = 0.7) and 91.05%
α0 = 0.1 and r0 = 0.8), as shown in Table 2. However, the calculated χ2 statistic was 25.166 (p<0.001), indicating the
alues from Japan were significantly different from the theoretical values of BL.
As a robustness check, we performed BL test on the data sets for the dates after the COVID-19 peak. Thus, the data

et in each country contains from the date when the first death was observed after January 22, 2020, to the (fixed) date
f June 18, 2020. Not surprisingly, the empirical findings from all countries were statistically significant at the 0.05 level,
ndicating that the epidemic growth in all countries does not satisfy BL (for more in details, see Appendix B).

. Conclusion

The objective of this study was to (1) introduce an epidemic growth model that could capture the intervention
e.g., flattening the curve) efforts in different countries in order to better understand the growth rate of COVID-19
nfections, (2) establish a link between this epidemic growth model and BL, and (3) propose a sequential updating scheme
or parameter estimates.

We found that the predicted number of deaths from the model was very close to the observed number of COVID-19
eaths across all 10 countries. Mathematically, we also showed that epidemic growths without intervention are likely to
atisfy BL, because epidemic growths naturally follow an exponential family distribution. Thus, BL was applicable to the
pidemic growth model.
Furthermore, it is possible that when the degree of intervention is high, the growth of death or infection rates may

ot obey BL. This theory would mean that ‘‘flattening the curve’’ interventions would not only be able to slow the growth
ate of the outbreak, but also change the characteristics of its nature so that the distribution of first digits followed BL.
s a result, BL testing alone would not be sufficient to detect potential manipulations of the growth of the death rate.
or this reason, it is important to interpret the model’s estimated parameters for the growth rate (α) and deceleration of
rowth (r), because they can provide insight into how likely a given case satisfies BL based on the simulation.
Although all of the countries have aggressively fought the epidemic, our analysis shows that 9 out of 10 countries

atisfied BL, indicating the growth rates of COVID-19 in these 9 countries were close to an exponential trend. This finding
ay be due to the fact that the estimated growth parameters for all were greater than 0.2. Notably, Sweden’s strategy for

ighting COVID-19 depends on the development of herd immunity [40]. Herd immunity occurs when a large portion of the
opulation becomes immune to the pandemic. Thus, Sweden has not imposed a lockdown [41,42]. Based on the BL test
n the data from Sweden, the calculated χ2 statistic was 7.375 (p = 0.497), indicating that the growth of the epidemic
n Sweden has satisfied BL (see Table 3 in the manuscript). This finding means that all countries that used interventions
except for Japan) satisfied BL, indicating that the growth rates of COVID-19 were similar in countries that did not use
ignificant interventions (e.g., Sweden).

4 Following the calculation of the first-digit occurrence in each country, we compared the distribution with the theoretical values of BL.
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However, Sweden has shown the lowest deceleration of growth among the 10 countries considered in this study.
he estimated deceleration of growth in Sweden is 0.999 with a 95% confidence interval (0.982, 1.018). Since the 95%
onfidence interval contains a deceleration of growth parameter of 1.000 (r = 1) regardless of the growth rate (α), the
rowth pattern of COVID-19 in Sweden can be better described by the growth model in the absence of control interventions
Section 3.1).

In the case of Japan, we further investigated the inconsistency between the simulation test (where, given α̂ = 0.140
nd r̂ = 0.773, the number of detected Benford cases was greater than 90.15%, as shown in Table 2) and BL test (where,
iven the estimates, the values from Japan did not satisfy the Benford distribution with a p-value=0.001, as shown in
able 3). We then conducted a BL test based on each of the boosted samples (M = 10,000) that we used for constructing
he 95% confidence intervals (see Section 5.2). Given α̂ = 0.140 and r̂ = 0.773, the result from the bootstrapped sample
howed that the number of detected Benford cases was 88.33%, which was close to the simulation shown in Table 2,
ven though the simulation scheme was different from the parametric bootstrapping method. Thus, we believe the data
enerating process in Japan is distinct from the other 9 countries in this study and does not obey BL. One of the possible
easons of the difference between Japan and the other 9 countries is that although JHU CSSE provides public access to the
lobal cases and trends of COVID-19 and updates their data daily, they must rely on self-reported data from each country
43]. The problem with this type of data is that it is subject to intentional manipulation, thus diminishing its reliability
r suitability for data analysis. Benford’s law has already attracted interest in antifraud analysis [44,45]. For that reason,
esting Benford’s law is particularly attractive for the detection of fraudulent self-reported COVID-19 data [44,45]. Based on
he empirical findings and the simulation Table 2, BL test shows that the data from Japan is incorrect. These inconsistent
esults (between the BL test and the simulation table) are important to note because they can discourage researchers
rom investigating any other self-reported data by Japan further in detail, such as by checking whether the hospitals are
anaging to cope with the number of infected patients admitted in critical care.
In this study, we also found that the method of the least-squares fitting of the curve was highly affected by the initial

alue of c. Thus, we believe that the proposed approach in Section 5.2 is always desirable when c is not known.
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ppendix A. Estimation for α and r

or (i in 1:s){
fp <- function(p, t) {
((p[1]*t)/p[2]+A)^p[2]; # p[1]=alpha, and p[2]= n

}
res<-lsqcurvefit(fp, p0, t, C);
alpha<-res$x[1];
r<-(1-1/res$x[2]);
A<-c1^(1/res$x[2]);

p0<-c(res$x[1], res$x[2]);
res.a<-rbind(res.a, alpha);
res.r<-rbind(res.r, r);
res.e<-rbind(res.e, res$ssq);
m.m<-1/(1-(r));
SSE.m<-ssq(((alpha*t)/m.m+c1^(1/m.m))^m.m, C);
MSE.m <-SSE.m/length(C);
MSE<-rbind(MSE, MSE.m);

ppendix B

See Table B.1.
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Table B.1
BL test on the entire phase of COVID-19.
Johns Hopkins Coronavirus Resource Centera BL test

Country The entire phase (Dates in 2020) T χ2
stat p-value

US 02/29 ∼06/18 111 15.364 0.052
China 01/22 ∼06/18 149 275.420 < 0.001
South Korea 02/20 ∼06/18 120 177.680 < 0.001
Japan 02/13 ∼06/18 127 69.904 < 0.001
UK 03/05 ∼06/18 106 51.742 < 0.001
Spain 03/03 ∼06/18 108 158.54 < 0.001
Italy 02/21 ∼06/18 119 97.019 < 0.001
Germany 03/09 ∼06/18 102 183.750 < 0.001
Netherlands 03/06 ∼06/18 105 135.14 < 0.001
Sweden 03/11 ∼06/18 100 46.633 < 0.001

Note: The entire phase is the period from the date when the first death was observed after January 22,
2020, to the date of June 18, 2020. T denotes the length of the data points.
aData source: https://coronavirus.jhu.edu/.
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