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Abstract: Dissolution testing is a major tool used to assess a drug product’s performance and as a
quality control test for solid oral dosage forms. However, compendial equipment and methods may
lack discriminatory power and the ability to simulate aspects of in vivo dissolution. Using low buffer
capacity media combined with an absorptive phase (biphasic dissolution) increases the physiologic
relevance of in vitro testing. The purpose of this study was to use non-compendial and compendial
dissolution test conditions to evaluate the in vitro performance of different formulations. The United
States Pharmacopeia (USP)-recommended dissolution method greatly lacked discriminatory power,
whereas low buffer capacity media discriminated between manufacturing methods. The use of
an absorptive phase in the biphasic dissolution test assisted in controlling the medium pH due to
the drug removal from the aqueous medium. Hence, the applied non-compendial methods were
more discriminative to drug formulation differences and manufacturing methods than conventional
dissolution conditions. In this study, it was demonstrated how biphasic dissolution and a low buffer
capacity can be used to assess in vitro drug product performance differences. This can be a valuable
approach during the early stages of drug product development for investigating in vitro drug release
with improved physiological relevance.

Keywords: biphasic dissolution; drug product development; buffer capacity; physiologically
relevant; ibuprofen

1. Introduction

In the modern drug development process, a major tool used to asses a drug product’s performance
is dissolution testing. The test was developed in the late 1950s/early 1960s and accepted by the United
States Pharmacopeia (USP) convention in 1970 [1]. Ever since, in vitro dissolution testing has been used
as a quality control (QC) test for solid oral dosage forms and it plays a critical role in enhanced product
understanding [2]. The different compendial dissolution equipment includes the basket (USP apparatus
1), the paddle (USP apparatus 2), the reciprocating cylinder (USP apparatus 3), and the flow-through
cell (USP apparatus 4). The latter two are used for extended-release products, whereas apparatus 2 is
the most widely applied method [1]. However, compendial equipment and methods use conditions
that may limit both the method’s discriminatory power and its ability to emulate aspects of in vivo
dissolution. Thus, the quality control aspects of the dissolution methodologies are mostly meaningful
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in a commercial environment of finished drug product release. Nevertheless, during the drug product
development process, in vivo predictive methods are needed for the creation of products of predictable
quality [2]. In this realm, dissolution testing is a major tool used to asses a drug product’s performance.

When testing poorly soluble drugs, conditions in which the medium is not saturated should
be maintained to ensure the method robustness. These are later used to test the finished product to
comply with regulatory guidance [3,4]. Different strategies are often adopted to obtain such conditions
throughout the dissolution test, such as the addition of solubility modifiers (e.g., surfactants) and the
use of large volumes of dissolution medium among other strategies [5] that result in conditions with
little physiologic resemblance. Within this context, the matter of buffer strength stands out [6].

In vivo studies demonstrate that the buffer capacity of gastrointestinal fluids is much lower than
that of compendial buffers [6,7]. Not only that, but the buffer species also differ; bicarbonate is the
predominant buffer species in the human small intestine [8]. This finding was linked to slower drug
dissolution rates in vivo, which has important implications for the oral drug delivery of both acidic
and basic drugs, and it should be considered in the in vitro dissolution studies during the drug product
development process [6]. Although the intestines are buffered by bicarbonate, when possible the use of
simpler buffer systems, such as phosphate, is preferred for pragmatic reasons. According to Krieg et al.,
the phosphate buffer concentration range needed to match ibuprofen dissolution in physiologically
relevant bicarbonate buffers is 4–8 mM [9].

Furthermore, while the drug dissolves in the intestinal fluids, it is also absorbed through the
gut wall. Biphasic dissolution is one of the possible approaches to assess the concurrent in vivo drug
absorption process. It is composed of a two-phase system in which the simultaneous evaluation of drug
dissolution and partitioning into an organic phase is studied, and it can be used as a non-compendial
exploratory dissolution method. This approach was first described in the early 60s and its use has
gained much attention in recent years [3,5,10–18].

The information obtained from the physiologically based dissolution test is used to identify what
aspects of the drug substance, formulation composition, and process are most important to achieve
the desired target release profile. In this way, variables that are likely to impact the drug dissolution
can be identified early on in the development, allowing the ranking of formulation prototypes under
physiologic-like conditions.

As suggested by Azarmi et al., two different dissolution methods might be needed, one for
formulation predictive dissolution and the other for QC purposes, which is the current practice in
pharmaceutical companies [2,19]. The information obtained from early stage dissolution methods
(exploratory and physiologically based) can be then used to establish appropriate discrimination of the
QC method to be applied in the late development stage to critical dosage form attributes and other
parameters (Figure 1).

In this exploratory study, the hypothesis was two-fold in order to evaluate both the influence
of manufacturing methods and the excipient composition on the dissolution behavior of the tablets.
Regarding the manufacturing process, we hypothesized that direct compression vs. wet granulation
would result in different dissolution behavior, whereas excipients would create with the model drug a
microclimate, also resulting in different profiles. Therefore, we screened the different tablets using
compendial and physiologically based methods to identify which performance test method had the
highest discriminatory power. Considering that the majority of molecules in the discovery pipeline are
poorly water-soluble [20], ibuprofen (BCS IIa) was used as a model drug.
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Figure 1. Simplified approach for dissolution method development for immediate release (IR) 
formulations containing acidic and basic drugs (BCS I–IV). FaSSIF: Fasted State Simulated Intestinal 
Fluid; FeSSIF: Fed State Simulated Intestinal Fluid; BCS: Biopharmaceutics Classification System. 

2. Materials and Methods 

2.1. Materials 

The ibuprofen (USP grade) was purchased from Medisca (QC, Canada); the microcrystalline 
cellulose (Avicel® PH-102 NF) was purchased from FMC Biopolymer (Philadelphia, PA, USA); the 
dicalcium phosphate dihydrate and calcium sulfate NF were purchased from PCCA Canada 
(London, ON, Canada). The dextrose NF was purchased from Mallinckrodt chemical (USA); the 
croscarmellose sodium NF was from JRS Pharma (Rosenberg, Germany); the magnesium stearate 
was purchased from H.L. Blachford Ltd. (Mississauga, ON, Canada); and Starch 1500 was from 
Colorcon (Indianapolis, IN, USA). The 1-octanol 99% pure was purchased from Acros Organics (New 
Jersey, USA). The buffer solutions were prepared with purified water (Elgastat Maxima UF and an 
Elgastat Option 3B water purifier by ELGA Laboratories Ltd. (Mississauga, ON, Canada)). 

2.2. Methods 

2.2.1. Ibuprofen Immediate Release Formulations 

The formulations used in this study differed in their excipient composition and manufacturing 
process (Table 1). The selection of excipient was based on their chemical characteristics in terms of 
basicity and acidity. Granulating BCS IIa drugs (such as ibuprofen) with acidic excipients could create 
a microclimate with a lower pH, reducing the drug dissolution. On the other hand, basic excipients 
could create a higher microclimate pH, increasing the dissolution, whereas neutral excipients would 
not impact the microclimate pH. Dextrose was chosen as the acidic excipient, CaSO4 and CaHPO4 as 
basic excipients, and microcrystalline cellulose as neutral. 

In order to analyze the manufacturing method, the tablets were prepared by direct compression 
and wet granulation. 

The direct compressed tablets (D) were prepared by mixing all the ingredients (except for the 
lubricant) for 6 min using a mortar and pestle until a homogenous mixture was obtained. The 
lubricant (magnesium stearate) was added last and mixed in for another minute to avoid the coating 
of the active pharmaceutical ingredient (API). 

Figure 1. Simplified approach for dissolution method development for immediate release (IR)
formulations containing acidic and basic drugs (BCS I–IV). FaSSIF: Fasted State Simulated Intestinal
Fluid; FeSSIF: Fed State Simulated Intestinal Fluid; BCS: Biopharmaceutics Classification System.

2. Materials and Methods

2.1. Materials

The ibuprofen (USP grade) was purchased from Medisca (Montreal, QC, Canada); the microcrystalline
cellulose (Avicel® PH-102 NF) was purchased from FMC Biopolymer (Philadelphia, PA, USA);
the dicalcium phosphate dihydrate and calcium sulfate NF were purchased from PCCA Canada (London,
ON, Canada). The dextrose NF was purchased from Mallinckrodt chemical (USA); the croscarmellose
sodium NF was from JRS Pharma (Rosenberg, Germany); the magnesium stearate was purchased from
H.L. Blachford Ltd. (Mississauga, ON, Canada); and Starch 1500 was from Colorcon (Indianapolis, IN,
USA). The 1-octanol 99% pure was purchased from Acros Organics (Fair Lawn, NJ, USA). The buffer
solutions were prepared with purified water (Elgastat Maxima UF and an Elgastat Option 3B water
purifier by ELGA Laboratories Ltd. (Mississauga, ON, Canada)).

2.2. Methods

2.2.1. Ibuprofen Immediate Release Formulations

The formulations used in this study differed in their excipient composition and manufacturing
process (Table 1). The selection of excipient was based on their chemical characteristics in terms of
basicity and acidity. Granulating BCS IIa drugs (such as ibuprofen) with acidic excipients could create
a microclimate with a lower pH, reducing the drug dissolution. On the other hand, basic excipients
could create a higher microclimate pH, increasing the dissolution, whereas neutral excipients would
not impact the microclimate pH. Dextrose was chosen as the acidic excipient, CaSO4 and CaHPO4 as
basic excipients, and microcrystalline cellulose as neutral.
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Table 1. Excipient composition of IR ibuprofen tablets prepared in-house. Formulations were named
according to the diluent mixture used.

MCC D MCC G CaHPO4 D CaHPO4 G Dex D Dex G1 Dex G2 CaSO4 D CaSO4 G

Avicel
PH102

(800 mg)

Avicel
PH102

(800 mg)

Avicel
PH102

(400 mg)

Avicel
PH102

(400 mg)

Avicel
PH102

(400 mg)

Avicel
PH102

(400 mg)

Avicel
PH102

(460 mg)

Avicel
PH102

(400 mg)

Avicel
PH102

(400 mg)

Ibuprofen
(400 mg)

Ibuprofen
(400 mg)

Ibuprofen
(400 mg)

Ibuprofen
(400 mg)

Ibuprofen
(400 mg)

Ibuprofen
(400 mg)

Ibuprofen
(400 mg)

Ibuprofen
(400 mg)

Ibuprofen
(400 mg)

CS (3%) CS (5%) CS (3%) CS (5%) CS (3%) CS (5%) CS (5%) CS (3%) CS (5%)

Mg Stearate
(1%)

Mg Stearate
(1%)

Mg Stearate
(1%)

Mg Stearate
(1%)

Mg Stearate
(1%)

Mg Stearate
(1%)

Mg Stearate
(1%)

Mg Stearate
(1%)

Mg Stearate
(1%)

CaHPO4
(400 mg)

CaHPO4
(400 mg)

Dextrose
(400 mg)

Dextrose
(400 mg)

Dextrose
(400 mg)

CaSO4
(400 mg)

CaSO4
(400 mg)

Starch 1500
(210 mg)

Starch 1500
(210 mg)

Starch 1500
(210 mg)

Starch 1500
(210 mg)

Expected microclimate effect

- ↑ ↓ ↓↓ ↑↑

MCC: microcrystalline cellulose (Avicel PH102); Dex: Dextrose; CaHPO4: dicalcium phosphate dihydrate; CaSO4:
calcium sulfate; D: direct compression; G: wet granulation; CS: croscarmellose sodium; (↑ and ↑↑): increased dissolution;
(↓ and ↓↓): deceased dissolution; (-): no effect.

In order to analyze the manufacturing method, the tablets were prepared by direct compression
and wet granulation.

The direct compressed tablets (D) were prepared by mixing all the ingredients (except for the
lubricant) for 6 min using a mortar and pestle until a homogenous mixture was obtained. The lubricant
(magnesium stearate) was added last and mixed in for another minute to avoid the coating of the
active pharmaceutical ingredient (API).

The tablets obtained by wet granulation (G) were prepared by mixing all the ingredients in the
same manner as D. Ethanol 70% was used as the granulation solution and the wet powder mixture
was granulated through a N60 sieve. The granules were dried for one hour in a 37 ◦C oven and sieved
again through a N60 sieve. The lubricant (magnesium stearate) was then added into the mixture
(extragranular) and blended for another minute.

All the tablets were pressed with a Carver Laboratory Press by Fred S Carver Inc. Hydraulic Equipment
(Manomonee Falls, WI, USA) for 30 s at 1 metric ton.

2.2.2. Dissolution Tests

All the dissolution tests were performed in triplicate using a USP apparatus II (ERWEKA, GmbH,
Langen, Germany) with a 75 rpm rotation speed at 37 ◦C. All buffer media were filtered by vacuum
and degassed in an ultrasonic bath.

Compendial Dissolution Method

The USP-recommended method for ibuprofen immediate release (IR) tablets is 900 mL of phosphate
buffer with a pH of 7.2 (50 mM) with not less than 80% of the labeled amount dissolved in 60 min [21].

Non-Compendial Dissolution Methods—Physiologically Based Exploratory Methods

1. Monophasic Dissolution with a Low Buffer Capacity Medium

The literature reports that a phosphate buffer with a pH of 6.5 at concentrations between 4–8 mM
matches the ibuprofen dissolution in physiologically relevant bicarbonate buffer [9]. Hence, 5 mM
of phosphate buffer with a pH of 6.5 (900 mL) was used as a non-compendial and physiologically
relevant dissolution medium for comparison reasons.

Samples (5 mL) were collected at specific time points (5, 10, 15, 20, 30, 45, 60 min) with
media replacement after each sampling time. The amount of dissolved drug was determined by a
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UV-spectrophotometer at 221 nm. Since a low buffer capacity medium was being used, the pH was
monitored throughout the dissolution test.

2. Biphasic Dissolution with Low Buffer Capacity Medium

Biphasic dissolution tests were performed in a 5 mM phosphate buffer with a pH of 6.5 with
100 mL of n-octanol on top. The aqueous layer mimicked the intestinal fluids and the organic layer
mimicked the absorption compartment. A mini-paddle (kindly donated by Sotax AG) was mounted
on the regular compendial paddle to obtain sufficient hydrodynamics in both phases.

The aqueous layer volume was also taken into consideration in order to increase the physiologic
relevance. Considering the reported intestinal fluid volume of 77 mL (77 +/− 15 mL) [22], a lower volume
of 200 mL was used in an attempt to better approximate that of the intestinal fluids. For comparison
reasons, the dissolution experiments were also conducted at 900 mL.

Samples from the aqueous phase (5 mL) and the organic phase (1 mL) were collected at specific time
points (5, 10, 15, 20, 30, 45, 60 min). The amount of the drug was determined by a UV-spectrophotometer
at 221 nm for the aqueous phase and 272 nm for the organic phase. The pH of the aqueous phase was
monitored throughout the dissolution test.

2.2.3. Statistical Analysis

The difference between the mean dissolution values at early exposure was measured through the
90% confidence interval (CI) of difference method using the Excel Add-In DDSolver [23,24]. In order
to compare the manufacturing methods, the % release at 15 min in the 5mM phosphate buffer was
compared between the G and D formulations of the same composition. Furthermore, in order to
compare the differences in the excipient composition, we analyzed both the early exposure (5 min)
between the G formulations and at 15 min between the D formulations. The 5 min selection was
based on the fact that, even though the granular disintegration/deaggregation was still happening,
the microclimate effect was most meaningful and expected to be strongest at this time point. The 15 min
time point was selected to be able to analyze the early exposure, but was later than disintegration time.

3. Results

3.1. Compendial Dissolution Tests

All the profiles were similar in the compendial buffer, as >85% dissolved in 15 min (Figure 2).
This method presented a low discriminatory power in differentiating between manufacturing methods
as well as excipient compositions.Pharmaceutics 2020, 12, 420 6 of 17 
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3.2. Non-Compendial Dissolution Tests—Physiologically Based Exploratory Methods

3.2.1. Monophasic Dissolution with Low Buffer Capacity Medium

Overall, the dissolution rate of ibuprofen was much slower in the low buffer capacity medium
compared to in the USP buffer (this observation is discussed in more detail in Section 4). The release
pattern among the direct compressed formulations was very similar, which points out to a
dissolution controlled by the API properties rather than a formulation-driven dissolution (Figure 3E).
Interestingly enough, the G formulations presented a higher rate and extent of release compared to the
D formulations (Figure 3A–D), which might have been due to a reduction in the drug particle size
as a consequence of the granulating process itself. The higher level of disintegrant (crosscarmellose
sodium) in the granulated formulations could also have contributed to the higher release. However,
it is worth noticing that a higher level of disintegrant would primarily impact the dissolution rate
(especially at early time points) rather than the extent. An additional factor was that the soluble fraction
of Starch1500 could have enhanced the wettability of the ibuprofen particles.Pharmaceutics 2020, 12, 420 7 of 17 
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Figure 3. Dissolution profiles in the 5 mM phosphate buffer (900 mL). (A) MCC formulations,
(B) CaHPO4 formulations, (C) CaSO4 formulations, (D) Dextrose formulations, (E) D formulations,
(F) G formulations. Error bars represent the standard deviation.
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The manufacturing methods were evaluated by granulating ibuprofen, with excipients that could
modulate the drug dissolution in terms of a microclimate pH (Table 1). A pronounced effect was
observed at early exposure (5–10 min), particularly for the DexG2 formulation, which presented a
lower release compared to the other formulations (Figure 3F).

As expected, given that ibuprofen is a weak acid dissolving in a low buffer capacity medium,
a drop in pH was observed (Section 3.2.3).

3.2.2. Biphasic Dissolution Test with Low Buffer Capacity Medium

Biphasic Dissolution with 200 mL of Aqueous Phase

With a low aqueous volume, a high interfacial area to volume ratio was obtained and, as a
consequence, a rapid drug partitioning into the organic phase was observed.

Manufacturing method and formulation composition differences were captured in the partition
profiles of the drug to the organic phase (Figure 4A,B). A lower partitioning for dextrose containing
G formulations was observed at early exposure (5–15 min). An overall lower partitioning for
CaHPO4-containing formulations (both D and G) was observed (Figure 4A,B).Pharmaceutics 2020, 12, 420 8 of 17 
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Biphasic Dissolution with 900 mL of Aqueous Phase

Similarly to the monophasic dissolution (Section 3.2.1), the G formulations presented a higher
rate and extent of release compared to the D formulations (Figure 5A–D). However, the higher release
was not accompanied by an increased partitioning into the organic phase. Actually, the partitioning
profiles of the organic phase were similar for all formulations (different excipients and manufacturing
processes) (Figure 4C). Thus, in this setup, the organic phase didn’t seem suitable for formulation
differentiation purposes. Instead, the organic phase added a sink to the system through the removal
of the dissolved drug from the aqueous phase, reducing the pH shift observed in the monophasic
dissolution (Section 3.2.3).Pharmaceutics 2020, 12, 420 9 of 17 
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Figure 5. Aqueous phase dissolution profiles in a biphasic dissolution with 900 mL of aqueous
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3.2.3. Dissolution Medium pH Recovery

The use of an organic layer on top of the aqueous layer assisted in the medium pH maintenance
by the removal the dissolved drug from the aqueous medium. In the case of an acid, such as ibuprofen,
the proton transfers to the organic phase with the drug. Hence, the pH changes that are expected when
a low buffer capacity medium is used were reduced (Figure 6).Pharmaceutics 2020, 12, 420 10 of 17 

 

 

Figure 6. pH measurements for dissolution tests in a low buffer capacity medium. Dashed line: 
monophasic setup. Solid black line: biphasic setup with an aqueous layer at 900 mL. Solid blue line: 
biphasic setup with an aqueous layer at 200 mL. 

3.3. Statistical Analysis 

The higher percentage released for the granulated tablets compared to the direct compressed 
ones (Figure 3A–D) was statistically relevant, as the similarity between G and D using the 90% CI 
was rejected for all the formulations in the 5 mM phosphate buffer. 

The consistent lower release for formulations containing calcium phosphate was statistically 
relevant, as shown in Table 2, pointing to a possible API-excipient interaction. The suspected 
microclimate effect for formulations containing dextrose was also statistically significant (Table 2). 
  

Figure 6. pH measurements for dissolution tests in a low buffer capacity medium. Dashed line:
monophasic setup. Solid black line: biphasic setup with an aqueous layer at 900 mL. Solid blue line:
biphasic setup with an aqueous layer at 200 mL.

3.3. Statistical Analysis

The higher percentage released for the granulated tablets compared to the direct compressed
ones (Figure 3A–D) was statistically relevant, as the similarity between G and D using the 90% CI was
rejected for all the formulations in the 5 mM phosphate buffer.

The consistent lower release for formulations containing calcium phosphate was statistically
relevant, as shown in Table 2, pointing to a possible API-excipient interaction. The suspected
microclimate effect for formulations containing dextrose was also statistically significant (Table 2).
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Table 2. Statistical evaluation for the 90% confidence interval between different formulation compositions.

D formulations

Dextrose MCC CaSO4
Org 200 Aq 900 Org 200 Aq 900 Org 200 Aq 900

Dextrose NA NA Fail Pass Pass Pass
MCC Fail Pass NA NA Fail Pass

CaHPO4 Fail Fail Fail Fail Fail Fail

G formulations

CaHPO4 MCC CaSO4
Org 200 Aq 900 Org 200 Aq 900 Org 200 Aq 900

Dex G1 Pass Fail Pass Fail Pass Fail
Dex G2 Fail - Fail - Fail -
MCC Pass Pass NA NA Fail Pass

CaHPO4 NA NA Pass Pass Pass Pass

Org 200: organic phase at 200 mL of aqueous phase; Aq 900: aqueous phase of biphasic test at 900 mL.

4. Discussion

A discriminating dissolution test is a method that can detect variations in the manufacturing
process as well critical API or dosage from attributes that may have an impact on the in vivo performance
of the final drug product. Physiologically based exploratory dissolution methods used in early product
development often follow a generic approach [25]. Thus, in the absence of a link to in vivo drug product
performance, the degree of discriminating power is often unknown. In such cases, risk assessments
and prior knowledge, as well as modeling and simulation, may be helpful to guide the necessary
adjustments to increase the method’s sensitivity towards certain critical API attributes, manufacturing
method, and/or formulation composition [2,25].

In contrast, the pharmacopoeial experimental conditions applied in a QC setting aim at the whole
amount of drug being released from the dosage form. For such purposes, a high buffer concentration
(50 mM) and capacity are used. Such conditions prevent pH shifts caused by the API dissolution
that could hinder or increase the dissolution, resulting in a biased data interpretation caused by the
dissolution method rather than due to poor drug product performance. In the compendial conditions
used in this study, a similar release was obtained for the different ibuprofen formulations, achieving the
“expected release” in a QC manner (Figure 2). Nevertheless, it showed a poor discriminatory power in
identifying the possible effect of critical API attributes and manufacturing methods on drug dissolution.

Accordingly, Cristofoletti and Dressman have demonstrated that in the case of ionizable
compounds, the pH at the solid–liquid interface is as a key parameter in predicting the dissolution
rate. The authors showed that the in vitro dissolution of ibuprofen (weak acid) in phosphate buffer
is a function of the pH in the diffusion layer, which is, in turn, affected by the properties of both
the drug and the medium [26]. The reported pH at the surface of the dissolving drug (ibuprofen)
in a physiologically relevant bicarbonate buffer can be achieved by reducing the phosphate buffer
concentration to 5 mM. Hence, using the appropriate buffer concentration for in vitro experiments
would likely increase the physiological relevance of this important biopharmaceutics performance test
method [26].

A rapid in vitro dissolution rate cannot be translated to the in vivo dissolution rate of ibuprofen.
An in vivo study, in which the gastrointestinal (GI) drug dissolution and systemic absorption of
ibuprofen was evaluated, demonstrated that the drug could still be found in the GI tract fluids even
after 7 h of aspiration, pointing out that BCS II drugs may undergo a slower dissolution in the GI tract
due to their low water solubility [5,6,15]. This slow dissolution rate was linked to the very low buffer
capacity of luminal fluids.

This observation reflects what is going on in the drug particle diffusion layer. In highly concentrated
buffer systems, the drug particle is surrounded by an abundance of the buffer’s conjugate base species.
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This leads to a ready neutralization in the diffusion layer around the particle, that is, the H+ ions
formed on the dissolving drug surface are readily consumed by a buffer species. This causes the pH
in the diffusion layer to be similar to the bulk solution pH, yielding a higher dissolution [9,26–28].
However, in a less concentrated buffer (as in the human GI tract) the neutralization is slower, which is
an important physiological aspect that should be taken into account in the drug development process.
Selecting the right buffer system is, therefore, of primary importance [6], since the in vitro buffer system
largely affects the surface pH of the drug particle, which in turn affects its dissolution [29,30].

As previously highlighted, it has been reported that a phosphate buffer pH of 6.5 at 5 mM
matches ibuprofen dissolution in physiologically relevant bicarbonate buffer [9]. The observed slower
dissolution in 5 mM phosphate buffer (900 mL) compared to a USP-strength buffer (50 mM) (Figure 2
vs. Figure 3) is in line with the aforementioned in vivo findings [6]. Thus, using a low buffer capacity is
an alternative approach to bring physiologically relevant components into the early stage exploratory
dissolution tests. Clinically relevant specifications were not required at the time that ibuprofen was
introduced to the market (late 60s/early 70s) and the developed dissolution method was a suitable test
at the time.

On the other hand, as ibuprofen dissolves, the medium pH tends to decrease due to the acidic
characteristics of the API (Figure 6). The pH drop observed in a low buffer capacity medium is unlikely
to occur in the intestinal lumen due to neutralization mechanisms in the gut as well as the concurrent
drug absorption [31]. Attempts to maintain the pH by titrating the medium with NaOH have been
made [26], however it can be experimentally difficult and impractical. In cases of dissolution methods
based on other buffers systems, such as bicarbonate buffer, the medium pH can be regulated by
sparging the medium [8].

Combining the low buffer capacity medium with an absorptive phase adds another aspect of the
in vivo gastrointestinal environment, that is, drug absorption as it dissolves in the intraluminal fluids
(and in the case of an acid, such as ibuprofen, the proton transfers to the organic phase with the drug).
Thus, the organic phase serves as an additional sink for the pH recovery (Figure 6).

Ibuprofen dissolution in 5 mM phosphate buffer was characterized through the D formulations,
since they presented an API-controlled dissolution (Figures 3E and 5E), as described by Uebbing [32].
Considering that ibuprofen is a class II drug, a reduction in particle size may increase the drug
dissolution, which could be the reason for the statistically relevant higher release observed in the G
formulations (Figure 3A–D and Figure 5A–D). The overall slower dissolution rate in 5 mM buffer
enabled the characterization of a critical API attribute that affects in vitro dissolution.

The manufacturing method can also impact the dosage form performance. During a wet
granulation process, the API and excipients come in close contact in such a way that the excipients can
influence the API dissolution. After the tablet disintegrates, the drug dissolution depends also on the
granules disintegration/deaggregation [33,34]. As a result, a microclimate can be created around the
granulate particle, which was seen in the dextrose formulations. Since dextrose is acidic [35], the pH
around the dissolving drug particle could be lower than the bulk pH, impacting the API dissolution.
This effect was observed primarily at early exposure, when the granules were being deaggregated
(Table 2). A lower dissolution was observed during the first time points in both the 50 mM and
5 mM phosphate buffer, and the drug partitioning into the organic phase was also affected (Figure 2,
Figure 3D, Figure 4D, and Figure 5D). Early exposure is important and should be further explored in
future studies. This is in accordance with Valizadeh et al., who described the impact of the microclimate
on the dissolution of solid dispersions of indomethacin with different excipients, such as PEG 6000,
Myrj 52, Lactose, Sorbitol, Dextrin, and Eudragit1 E100 [33].

Overall, formulations containing calcium phosphate presented a statistically relevant lower
release, regardless of the manufacturing process used. In this case, another excipient-API interaction
might have occurred. Even though it behaves neutrally (pH 7.4), the surface of CaHPO4 is alkaline [35].
Since ibuprofen is a weak acid, drug particles could have adsorbed onto the CaHPO4 particles due to
their alkaline surface, resulting in the observed lower dissolution. It has been reported that various
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ions and molecules can be adsorbed onto the CaHPO4 surface. Furthermore, ibuprofen adsorption
onto calcium phosphate beads for bone substitutes in targeted drug delivery applications has been
described [36]. Incompatibilities between CaHPO4 and other acidic drugs, such as indomethacin and
aspirin, have also been reported [35,37].

In the exploratory method used in the study, the sensitivity in discriminating dosage forms
was seen in the octanol phase when applying 200 mL of the aqueous phase, whereas at 900 mL the
differences were more pronounced in the aqueous phase. The low surface area to volume ratio at 900 mL
and the hydrodynamics in the vessel with a paddle dissolution apparatus resulted in slower drug
partitioning (drug removal) compared to at 200 mL (Figure 4A,B vs. Figure 4C) [38–40]. Consequently,
in 900 mL partitioning is the rate-limiting step for the overall process of mass transfer between the
solid, the aqueous and the octanol phases.

On the other hand, using a lower aqueous phase volume at the same rotational speed resulted in
the aqueous phase experiencing a higher overall magnitude of shear stress. This might be a contributing
factor to the 200 mL tending to be less discriminatory in comparing G vs. D formulations when
compared on the basis of total dissolution (i.e., aqueous + organic).

Mudie et al. described the drug transport phenomenon associated with the biphasic dissolution
method, assuming first-order absorption kinetics [18]. The in vitro partitioning rate coefficient (kp)
represents the drug partitioning rate into the organic phase. The physiological relevance of this is that
the in vitro kp approximates the in vivo absorption rate coefficient (ka), as shown in Equation (1).

Kp =
(AI

Va
PI
)

in vitro
= Ka =

(A
V

Peff
)

in vivo
(1)

PI: drug interfacial permeation rate across the aqueous and organic diffusion layers; AI: surface area of
the aqueous–organic interface; Va: total volume of aqueous medium; Peff: permeation rate in vivo;
A/V: area to volume ratio in vivo.

When ka and PI are known (or can be estimated), AI/Va can be adjusted so that kp and ka
become similar or equal when possible. For ibuprofen, the theoretical PI reported in the literature is
23.6 × 10−4 cm/s [18]. Hence, the calculated kps for 900 mL (kp900) and 200 mL (kp200) are 2.1 × 10−4 s−1

and 9.35 × 10−4 s−1, respectively. In a recent human in vivo study, Hofmann and coworkers determined
the real intestinal ka for ibuprofen of 2.6 × 10−3 s−1 [41]. Thus, the 900 mL underestimates the ka by a
factor of 12.3, whereas the 200 mL underestimates it only by a factor of 2.8, making it much closer to
the in vivo scenario. Not only that, but the pH recovery was much faster and better controlled in the
200 mL than in the 900 mL (Figure 6).

An effective drug development process aligns the best formulation strategies to obtain a suitable
pharmaceutical dosage form with an adequate biopharmaceutical performance [42]. Based on this
study, for an ibuprofen IR dosage form, a granulation process would be chosen over direct compression
and excipients such as dextrose and CaHPO4 would be avoided.

The discriminatory power of biphasic dissolution is well acknowledged in the literature. Deng et al.
(2017) observed a high discriminatory power in the organic phase for minor formulation changes
using racecadotril as a BCS II model drug [15]. Three granule formulations of the lipophilic drug were
prepared with equivalent compositions but using different manufacturing processes. The compendial
tests lacked discrimination, whereas a remarkable discrimination between the granule formulations
was observed in the octanol phase of the biphasic dissolution system. The test was performed in a
USP II apparatus with 400 mL of phosphate buffer (50 mM, pH 6.8) as the aqueous layer and 100 mL
of 1-octanol as the upper organic phase. The authors also correlated the organic phase profiles to
in vivo pharmacokinetics data, which resulted in a good in vitro-in vivo correlation (IVIVC), and they
concluded that “the release profiles from the organic phase could serve as an indicator for in vivo drug
absorption” [15].

Several studies utilizing the biphasic system have reported its ability to obtain good IVIVCs and
to be more discriminative than compendial methods [5,12,14,15,43–48]. Vangani et al. investigated
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the formulation changes of several compounds using the flow through apparatus (USP IV) coupled
with the USP paddle apparatus in a biphasic system. An excellent rank order correlation was obtained
between the in vitro release and the in vivo absorption of the drugs [43]. Al Durdunji et al. used a
similar dissolution test method, i.e., USP IV coupled with USP II in a biphasic dissolution medium
for a BCS II compound (Deferasirox). Similarly, the authors were able to differentiate between the
formulations and establish an IVIVC [46].

Gao and coworkers reported the evaluation of several poorly soluble drugs also using a biphasic
system combining USP apparatus IV (flow cell) with USP apparatus II [12,13,16,43,44,49]. Using the
biphasic dissolution-partition test method, an excellent IVIVC and IVIVR (in vitro–in vivo relationship)
were obtained for a number of poorly soluble drugs, such as fenofibrate, celecoxib, and ritonavir.
The authors also reported little relevance of the QC dissolution test results to pharmacokinetic
observations in pre-clinical and clinical studies of the prototype formulations [49]. This showcases
how biphasic dissolution has the potential to reflect the in vivo environment, linking the in vitro
performance to clinical relevance.

5. Conclusions

In light of the up-to-date mechanistic understanding of in vivo dissolution, there is a current
need to rethink how product specifications and performance can be linked through physiologically
relevant parameters. This study revisited the rationale of using lower buffer capacity media to increase
the physiological relevance of in vitro testing. This system was demonstrated to have a superior
discriminatory power regarding the manufacturing method and excipient effects. The use of an
absorptive phase added a sink to the low buffer capacity media, which decreased pH shifts while the
test was performed.

Hence, biphasic dissolution systems using low buffer capacity dissolution media have the potential
to be used as early stage discriminatory methods to investigate the impact of excipient effects and the
manufacturing method on the in vitro drug release with improved physiological relevance.

6. Limitations of the Study

The authors recognize that whether the difference between formulations identified by the biphasic
dissolution systems with a low buffering capacity translates to in vivo difference has yet to be assessed
through IVIVC. However, the biphasic dissolution tests were clearly able to discriminate between
the excipient and manufacturing method, while the USP-recommended method did not discriminate
between the formulations and methods.
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