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Abstract 
The aim of this study was to draw attention and apply the geometric mean functional relationship 
(GMFR) approach to the analysis of data which are currently analysed with the ordinary least-squares 
method, in spite of the fact that both variables are subject to error. 

The method was applied to drug-protein binding data using erroneous simulated data, generated from 
the Scatchard model with one class of binding sites. For the present study, a computer programme in 
BASIC was constructed to perform linear regression analysis by means of the “least-triangles” (LT) 
approach to GMFR and the ordinary least-squares (LS) method. 

The least-triangles approach for linear regression analysis was proven to be superior to the ordinary 
least-squares method when applied to contaminated simulated binding data. The method requires 
minimum computation and it can be applied to many other types of pharmaceutical studies where linear 
regression is applied and both variables are subject to error. 

In various fields of pharmaceutical sciences it is not un- 
common to encounter problems associated with linear re- 
gression analysis where both the dependent, y, and the 
independent variable, x, are accompanied by an ex- 
perimental error. Some typical examples include the linear 
form of Scatchard equation in binding studies (Jun et a1 
1975; Loscher 1979; Matsushita et a1 1986), the log-log 
relationships between particle size and the initial rate of 
dissolution (Kaneniwa & Watari 1974; Watari & Kaneniwa 
1976; Farin & Avnir 1987; Avnir 1994), the various forms 
of in-vitro-in-vitro, in-vitro-in-vivo or in-vitro-in-situ cor- 
relations, such as dissolution data and blood level data (El- 
Yazigi & Sawchuk 1985), log P measurements (Kim et a1 
1993) or log P-membrane permeability data (Tayar et a1 
1991). All these studies are analysed with the ordinary least- 
squares method assuming that the values of the independent 
variable x are not subject to error. However, the estimates 
for the slope and the intercept of the regression line cannot 
be considered valid since both variables, x and y are subject 
to error. 

In statistics literature the geometric mean functional re- 
lationship (GMFR) approach to linear regression has been 
widely applied in fishery studies (Jolicoeur 1975; Sprent & 
Dolby 1980) for the estimation of growth rates, where both 
variables (x, y) are subject to error. The slope estimate, b, 
of the GMFR approach is: 

b = [sign ~ x y l J ~ ~ y y ~ ~ x x ~  (1) 

where: S,, = Z(x, - Q2, S,, = Z(x, -n)(yi - y), S,, = Z(yi -Y)~,  
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FIG. 1. Schematic representation of the least-triangles approach to 
GMFR. 

the summation being over all observations (xi, y,), i.e. it is 
the geometric mean of the least-squares regression coefficient 
for the regression of y on x and x on y. According to Barker 
et a1 (1988) this approach does not require any assumptions 
concerning the absence of error in either of the variables. 
The GMFR approach can be interpreted (Barker et a1 1988) 
as the estimate that minimizes an error cost functional based 
on the sum of the triangular areas formed by connecting 
the experimental data points to the regression line with lines 
parallel to the co-ordinate axes (Fig. 1). 

This study was undertaken to draw attention and apply 
the GMFR approach to the analysis of data which are 
currently analysed with the ordinary least-squares method 
in spite of the fact that both variables are subject to error. 
To this end, the method was applied to drug-protein binding 
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data using erroneous simulated data, generated from the 
Scatchard model with one class of binding sites (Scatchard 
1949). For the needs of the present study, a computer 
programme in BASIC was constructed to perform linear 
regression analysis by means of the “least-triangles” (LT) 
approach to GMFR and the ordinary least-squares (LS) 
met hod. 

Theoretical Section 

Since the GMFR approach has not been discussed in the 
pharmaceutical literature, a brief description of the LT 
approach (Barker et a1 1988) is presented below. 

The fitting of the model y=a+bx to the data is based 
on the minimization of the sum of the areas of the right- 
angled triangles formed by the regression line and the lines 
passing through the data points parallel to the axes as 
shown in Fig. 1 i.e.: 

Z:=,Ai=f[sign (b)][Z:=,(yi-bxi-a)(xi-xyi-a))] = min (2) 

where [sign b] = - 1 if b<O and [sign b] = 1 if b>O. 
This line passes through the mean, (R, 7); equation 2 

takes the form of equation 3 after substitution for, a, from 
equation, a = 7 - bx: 

(3) 
%,Ai = -$sign (b)][ZC:,,[(y, -9) - b(xi-x)] 

[(xi - X) -xyi  - y)]] = min 

The value of b, denoted as bo, which minimizes the value 
of ZAi in equation 3, can be obtained by differentiating 
equation 3 with respect to b and equating the resulting 
equation with zero, i.e.: 

1 
db b _- d F  - -;[sign (b)][Z:=,-i(~~-y)~-(x~-X)~]= 0 (4) 

and 

This slope, if drawn through the mean (2, y), gives the same 
line whether y is regressed on x or vice versa. 

A measure of the extent to which the observations are 
not explained by the model can be obtained by substituting 
bo from equation 5 into equation 3: 

(6) 
AL=[si 1 n Z ( xi-R )(yi-y)]z(xi-x)(yi-y) 

+ Z(Xi - x)2Z(yi - y)2 

the summation being for all observations. 

Simulation Studies 

Simulated data were generated according to the Scatchard 
equation for a single class of binding sites: 

r/F =nk- kr (7) 

where r = BP, is the number of moles of the drug bound 
per mole of protein, B and F are the bound and free molar 
concentrations of the drug, respectively, P, is the total 

protein molar concentration, n is the number of binding 
sites, and k is the binding constant for the association of 
the drug with the protein. Error-free simulated values for r 
were calculated according to the equation r =nkF/(I + kF), 
the nonlinearized form of equation 7, using a BASIC 
program. The free drug concentration range was assigned, 
as well as values for the parameters n, and k, and r/F 
values were calculated for each pair of data F, r. Erroneous 
simulated data were generated by adding to each pair of 
error-free values, a pseudorandom normal variate of mean 
zero and relative standard deviation equal to 1-10% of the 
error-free value. Finally, equation 7 was fitted to the data 
by means of both the LT and the LS methods using a 
BASIC program. The program requires the number of data 
points and the r, rlF values, and undertakes the calculation 
of both the GMFR and LS slope and intercept estimators. 
The results are presented arithmetically and graphically. 

Results and Discussion 

The estimates for the intercept and the slope of equation 7 
using both methods, are shown in Table 1. In all cases 
examined the GMFR approach to linear regression gave 
better parameter estimates than the ordinary LS method. 
For low noise levels (1-2%) added on both x and y variables 
the two methods were almost equivalent. Using the GMFR 
approach the YO error of the calculated intercept (nk) and 
slope (k) values ranged from 1.1 to 17.6 and from 0.6 to 
17.4, respectively. The corresponding ranges of ‘YO error 
observed when the LS method was applied were 1.7 to 29.3 
for the intercept (nk) and from 1.4 to 31.0 for the slope (k). 
Overall, both methods exhibited the lowest % error when 
a 2% noise was added on both x and y variables, while the 
highest YO error was observed when a 2% noise was added 
on the x variable and a 10% noise on the y variable. 

The plots shown in Fig. 2A correspond to a data set with 
2% noise added on the x variable and a 5% noise added on 
the y variable. Even at this low level of noise in the x 
variable, the GMFR approach describes the binding 
phenomenon more validly if one compares the two 
regression lines with the theoretical line (solid line in Fig. 
2A). Quite often in drug-protein binding studies, 
experimental data points with high r/F values are missing 
due to analytical limitations. The lower free drug 
concentrations cannot be measured when the drug is 
extensively bound to proteins. To mimic this situation the 
initial four data points of the simulated contaminated data 
used in Fig. 2A were excluded from the regression and the 
results obtained are shown in Fig. 2B. The superiority of 
the LT to LS approach in the analysis of the limited data 
is apparent. The overall performance of the two methods 
in the analysis of limited data with various levels of noise 
on x and y variables is presented in Table 1. As can be seen, 
in all cases studied, the estimates derived from the LT 
approach were found to be remarkably superior to those 
derived from the LS approach. 

In conclusion, the LT approach for linear regression 
analysis was proven to be superior to the ordinary least- 
squares method when applied to contaminated simulated 
binding data. The method requires minimum computation 
and it can also be applied to many other types of 
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Table 1. Estimates for k (slope) and nk (intercept) calculated with the GMFR and the LS methods using 
contaminated dataa,b,c. 

Noise (YO) GMFR LS 

X Y nk x lo4 k x lo4 nk x lo4 k x lo4 

2 

2 

5 

7.5 

10 

5 

7.5 

10 

14.76 
15.03 
14.84 
15.04 
14.07 
13.31 
13.25 
11.44 
12.36 
9.77 

14.30 
13.37 
13.46 
11.47 
12.54 
9.78 

(98.4) 4.94 

(98.9) 4.97 
100.3) 5.04 

(88.7) 4.44 
(88.3) 4.44 
(76.0) 3.78 
(82.4) 4.13 
(65.1) 3.19 
(95.3) 4.80 
(89.1) 4.46 
(89.7) 4.51 

(83.6) 4.19 
(65.2) 3.19 

100.2) 5.03 

(93.8) 4.72 

(76.5) 3.79 

(98.8) 
100.6) 
(99.4) 
100.8) 
(94.4) 
(88.8) 
(88.8) 
(75.6) 
(82.6) 
(63.8) 
(96.0) 
(89.2) 
(90.2) 
(75.8) 
(83.8) 
(63.8) 

14.66 (97.7) 
14.30 (95.3) 
14.75 (98.3) 
14.37 (98.3) 
13.51 (90.1) 
10.66 (71.1) 
12.1 1 (80.7) 
7.30 (48.7) 

10.61 (70.7) 
4.88 (32.5) 

13.80 (92.0) 
10.97 (73.1) 
12.40 (80.7) 
7.61 (50.7) 

10.88 (72.5) 
5.16 (34.4) 

4.90 (98.0) 
4.77 (95.4) 
4.93 (98.6) 
4.79 (95.8) 
4.50 (90.0) 
3.48 (69.6) 
4.00 (80.0) 
2.26 (45.2) 
3.45 (69.0) 
1.39 (27.8) 
4.61 (92.2) 
3.59 (71.8) 
4.11 (82.2) 
2.38 (47.6) 
3.55 (71.0) 
1.49 (29.8) 

"True values of the parameters: k=5.0 x lo4, nk= 15.0 x lo4, n=3.0. bParameter estimates in the second row 
for each x, y data set have been calculated from limited data; the four data points with the higher r/F values have 
been excluded (see also Fig. 2B). 'Numbers in parentheses are percentages of true values. 
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FIG. 2. Scatchard plots of a simulated data set with 2 and 5% noise added on x and y variable, respectively. Dotted 
lines are fitted lines obtained with the GMFR and LS regression methods (A) using all data points and (B) excluding 
the encircled data points. The solid line corresponds to the theoretical equation r/F= 15.0 x 104-5.0r. 

pharmaceutical studies where linear regression is applied 
and both variables are subject to error. 
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