
Vol.:(0123456789)

Pharmaceutical Research (2024) 41:1787–1795 
https://doi.org/10.1007/s11095-024-03752-9

ORIGINAL RESEARCH ARTICLE

Formulation and Validation of an Extended Sigmoid Emax Model 
in Pharmacodynamics

Jong Hyuk Byun1 

Received: 29 May 2024 / Accepted: 20 July 2024 / Published online: 14 August 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Purpose or Objective  Drug concentration–response curves (DRCs) are crucial in pharmacology for assessing the drug effects on  
biological systems. The widely used sigmoid Emax model, which accounts for response saturation, relies heavily on the effective drug  
concentration ( ED50 ). This reliance can lead to validation errors and inaccuracies in model fitting. The Emax model cannot 
generate multiple DRCs, raising concerns about whether the dataset is fully utilized.
Methods  This study formulates an extended Emax (eEmax) model designed to overcome these limitations. The eEmax 
model generates multiple DRCs from a single dataset by using various estimated ��s ∈ [0,100] , while keeping ED

�
 fixed, 

rather than estimating an ED50 value as in the Emax model.
Results  This model effectively captures a broader range of concentration–response behavior, including non-sigmoidal patterns, 
thus providing greater flexibility and accuracy compared to the Emax model. Validation using various drug-response data and 
PKPD frameworks demonstrates the eEmax model’s improved accuracy and versatility in handling concentration–response data.
Conclusions  The eEmax model provides a robust and flexible method for drug concentration–response analysis, facilitating  
the generation of multiple DRCs from a single dataset and reducing the possibility of validation errors. This model is particularly 
valuable for its ease of use and its capability to fully utilize datasets, providing its potential in PKPD modeling and drug discovery.

Keywords  drug concentration–response curve · mathematical modeling · drug effect · Emax model · pharmacokinetics-
pharmacodynamics (PKPD)

Introduction

A concentration-response curve (DRC) represents an organ-
ism's response to a specific stimulus, typically a chemical, 
over a designated exposure time [1]. In pharmacology, the 
DRC illustrates the organism's response to a drug at various 
doses, indicating drug efficacy. The response rate corresponds 
to the drug dose, with drug concentration on the x-axis and 
response on the y-axis, commonly forming a sigmoid shape 
due to saturation effects at high concentrations [2–4].

The sigmoid Emax model, derived from receptor occu-
pancy theory, is particularly effective in capturing these sig-
moidal patterns [5]. This model is used to elucidate drug con-
centration–response relationships, with key parameters 

including ED50 , which represents the concentration causing 
50% of the maximum response. ED50 contains EC50 for 50% 
of the maximum effect, and IC50 for 50% inhibition of the 
desired activity [6]. The Hill coefficient ( n ) determines the 
curve's steepness at ED50 [7]. This model accurately charac-
terizes concentration–response relationships by exhibiting a 
sigmoidal shape, and the model is as follows [8]:

where Emax denotes the maximum response (effect) of the 
drug concentration C . However, accurately determining 
ED50 can be an inefficient and expensive way due to the need 
for repeated experiments [9, 10]. Additionally, n depends 
on the drug-target binding ratio but is often used for model 
fitting purposes, particularly in the context of chemothera-
pies [11, 12]. Another limitation is that the Emax model 
generates only one DRC prediction per dataset, which may 
be unreliable for validation and does not fully utilize the 
available data.

E(C) =
EmaxC

n

EDn
50
+ Cn

,
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To address these challenges, we propose an extended Emax 
(eEmax) model. This model can generate multiple DRCs from 
a single dataset by utilizing the response data. Instead of esti-
mating ED50 and n in the Emax model, the eEmax model esti-
mates the response � and n while keeping ED

�
 unchanged, as 

obtained from dataset. Here, ED
�
 , � ∈ [0,100], represents the 

drug concentration that elicits a response of �% of maximal 
effect Emax . The eEmax model can provide several benefits: (i) 
It generates multiple DRCs by utilizing data points; (ii) It elim-
inates the need to determine a specific concentration ED50 ; 
(iii) While the equation appears more complex than the Emax 
model, the number of parameters to be estimated remains the 
same; (iv) It captures a broader range of shapes, including 
sigmoid shapes, making it broadly applicable to pharmacoki-
netics/pharmacodynamics (PKPD) areas [11, 13–21].

Our study is supported by several published and experi-
mental data, including a PKPD study on antibiotic agents. The 
study is organized as follows: In the Materials and Methods 
section, we provide the development of the eEmax model. In 
the Results section, we demonstrate the process for estimating 
parameters and comparing them with the Emax model. Addi-
tionally, we present the method to generate multiple DRCs. We 
next examine a case where the Emax model fails to fit the data, 
but the eEmax model accurately captures the data. We also 
provide an ensemble mean and confidence interval utilizing 
these DRCs. We show that this model can be incorporated into 
PKPD modeling in place of the Emax model, demonstrating 
reliable data fit quality. In the Discussion section, we high-
light the differences between the Emax and eEmax models for 
parameter estimation. We emphasize the improvement of our 
study and compare it with other studies, demonstrating how 
the eEmax model addresses the limitations of the Emax model.

Materials and Methods

Model Derivation

Let E = E(C) be the effect (or response) over a drug con-
centration C. Consider first a generalized logistic differential 
equation:

where � is a shape parameter with a positive value, n is the 
Hill coefficient, and Emax is the maximum effect. s is a contin-
uous latent variable implicitly depending on C , i.e., s = f (C) . 
We can find an analytic solution of Eq. (1), by defining F 
as F =

(
E∕Emax

)
� . Then, the rate of change in E is given 

by E� =
1

�

F
1

�

−1
Emax ⋅ F

� . Substituting E′ into Eq.  (1), we 
get F� = n�F(1 − F). This differential equation can be eas-
ily calculated and the solution is of F = en�s+k∕(1 + en�s+k) . 
Notably, k is a constant value. Inclusion of E results in

To formulate the eEmax model, let C be the drug concen-
tration such that s = ln(C) and ED

�
 be equal to ED

�
= e

−
k

n� . 
Substitution of s and k into Eq. (2) gives

The eEmax model is then presented as follows:

Particularly, � determines the curvature of the 
growth curve. If E is equal to (1∕2)

1

� Emax, we have 
(1∕2)

1

�

(
EDn�

�
+ Cn�

) 1

� = Cn from Eq.  (4). Then we get 
C = ED

�
 . This shows that ED

�
 can be understood as the 

drug concentration that gives a response of (1∕2)
1

� ⋅ Emax , 
and so � represents (1∕2)

1

� ⋅ 100 , a positive real value. From 
Eq. (4), we can readily deduce the followings:

1)	 When the value of � is set to 1, the model is reduced to 
the Emax model.

2)	 If � is known, then � can be found as 1∕log2(100∕�) from 
� = (1∕2)

1

� ⋅ 100 (eg., if � = 25 , then � = 1∕2).
3)	 As � approaches zero and n = o

(
1

�

)
, we observe that the 

derivative of E with respect to s can be expressed as:

(1)
dE

ds
= nE

(
1 −

(
E

Emax

)
�
)
,

(2)E� =
en�sE�

max

e−k + en�s
.

(3)E� =
E�

max
Cn�

EDn�
�
+ Cn�

.

(4)E =
EmaxC

n

(
EDn�

�
+ Cn�

) 1

�

.

E�(s) = nE

(
1 −

(
E

Emax

)
�
)

= �nE ⋅

1 − e
���

(
E

Emax

)

�

→ �E ⋅ ln

(
Emax

E

)
, where � = �n.

	   This approximation leads to the Gompertz model, 
which is characterized by exponential growth in the ini-
tial phase, followed by decelerating growth.

4)	 When the condition C is much larger than the ED
�
 , 

i.e., C ≫ ED
𝛼
 , E approximates Emax . Conversely, when 

ED
𝛼
≫ C , E is approximately proportional to Cn.
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The Process Using eEmax Model

A primary benefit of this approach is that it can generate 
multiple DRCs. The following steps outline how to predict 
the drug concentration–response relationship using the 
eEmax model:

(i)	 Select drug concentrations EDα’s  and correspond-
ing  response α’s from the dataset and calculate 
v’s using � = (1∕2)1∕� ⋅ 100 . If response is not given in 
the range [0, 100] , use a scale transformation to find �
’s.

(ii)	 Choose additional drug concentrations and determine 
the corresponding �’s.

(iii)	 Estimate the parameters n ’s and � ’s values to fit data. 
The key difference here is the estimation of � ’s while 
keeping the concentration ED

�
 ’s fixed, instead of esti-

mating ED50 as in the Emax model.
(iv)	 Using the equation � = (1∕2)

1

� ⋅ 100, find the values �
’s.

(v)	 Generate DRCs using the estimated values of n ’s and 
� ’s in the Eq. (4), while keeping ED

�
 ’s unchanged.

Results

Parameter estimation was performed using ‘lsqnonlin’, 
MATLAB 2022b, solving for nonlinear least-square data fit. 
Data fit quality was assessed by the relative error with L2 
norm, defined as ‖uapprox − Data‖

2
∕‖Data‖2 , where uapprox 

represents model predictions. Data was obtained from the 
published studies (see detailed below).

Model Prediction and Improvement of the eEmax 
Model Compared to the Emax Model

DRC predictions using the eEmax model were performed 
with published data from the study [22]. EC

�
 was used in 

place of ED
�
 in the Eq. (4). The ratio Effect/Emax over con-

centrations from data were obtained shown in Fig. 1(a). 
Among the various responses Effect/Emax , we selected three 
� values 19, 45, and 70. Corresponding drug concentrations 
were EC19(20nM),EC45(50nM), and EC70(70nM) . Using 
� = (1∕2)1∕� ⋅ 100 , we obtained � as 0.4174, 0.8681, and 
1.9434 , respectively. We then estimated n ’s as 3, 1.5, and 1.3, 
respectively. Using these values, the DRCs are predicted, as 
shown in Fig. 1(a). All DRCs were within range of standard 
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Fig. 1   (a) Model prediction without data estimation of � . The Hill coefficients n ’s are estimated by 3, 1.5, and 1.3 , respectively. � ’s are calculated 
using (1∕2)1∕� ⋅ 100 . (b) Sensitivity analysis for n . n ’s are variated from 1.3 to 3. Drug concentrations are variated from 0 to 2000 nM. (c) Sensi-
tivity analysis for � . � ’s are variated from 0.4174 to 1.9434. (d) Sensitivity analysis for n and � . n and � values are simultaneously variated from 
1.3 to 3 and from 0.4174 to 1.9434, respectively, showing positive correlation with Effect/Emax . (e) Model fit conducted by the Emax and eEmax 
model with various data points. Two parameters EC50 and n are estimated for the Emax model, while � and n are estimated for the eEmax model. 
Unlike the eEmax model, the Emax model shows poor to fit (relative error greater than 0.1).
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deviation with small relative errors (Rel.err) as 0.05 for EC19 , 
0.033 for EC45 and 0.064 for EC70 . Corresponding Akaike 
and Bayesian Information Criterion (AIC and BIC, respec-
tively) were calculated and showed a positive correlation with 
the relative errors (Fig. 1(a)). This process demonstrated how 
the eEmax model fits the data and generates DRCs by utiliz-
ing n and � . We obtained different DRCs using fixed EC

�
 ’s 

obtained from a single data set. Sensitivity analysis plot for 
the two parameters were also investigated: for n (Fig. 1(b)), 
for � (Fig. 1(c)) and for both n and � (Fig. 1(d)). The param-
eter ranges of n and � were from 1.3 to 3 and from 0.4174 to 
1.9434, respectively. Both parameters were positively cor-
related with Effect/Emax.

We next considered an in-silico dataset to show that DRC 
from the eEmax model closely reflected the dataset better 
than those from the Emax model. We again used Eq. (4) and 
EC

�
 was used as follows. Drug concentrations were given by 

EC
�
= [0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100] (nM) 

and corresponding responses were � =[0.1, 1, 5, 25, 45, 60, 
70, 85, 90, 92, 95, 99], as shown in Fig. 1(e). The data shape 
is a steeper at the beginning phase and a skewed at the end 
phase (not sigmoid pattern). Emax is set 100 (fixed) and we 
choose EC

�
 ’s are 30, 40, 50, 60, and 70 nM for the test. 

Corresponding � values are chosen as 45, 60, 70, 85 and 90. 
� values were obtained using the above equation and set as 
initial guesses. In the model fit process, for the Emax model, 
we estimated n and EC50 , but for the eEmax model, n and 
� were estimated. Notably, because of the relation between 
� and � , � values are changed while the values of EC

�
 are 

unchanged. This process revealed the difference between the 
Emax and eEmax model estimation. In the Emax model, we 
estimated n and drug concentration EC50 , but in the eEmax 
model, n and � (due to v ) were estimated while drug con-
centrations, EC

�
’s, remained unchanged. Estimated values 

are shown in Fig. 1(e). We observed that drug concentra-
tions remained unchanged, but � values changed comparing 
to the data after estimation. In Fig. 1(e), the eEmax model 
compared to the Emax model better captures data, but the 
Emax model exhibited poor DRC prediction, with Rel.err 
> 0.1 . This is because EC50 should belong between the value 
30 and 40 based on data, but the estimated EC50 was 40. In 
contrast, DRC’s conducted by the eEmax model accurately 
predict the data, supported by the relative error less than 
0.06 . The failure of the Emax model to fit the data occurs 
because the data shape does not follow a sigmoid shape, 
indicating that the eEmax model applies to more general 
cases.

Application to EGFR Inhibitor‑Resistant NSCLC 
Tumors: Which Data Points can be Used?

Using published data [23], we compared the Emax and 
eEmax models for four inhibitory drugs. The IC20 values 
for Gefitinib (0.007 µM), LY3009120 (0.25 µM), Trametinib 
(0.008 µM), and SCH772984 (0.25 µM) presented in Table I 
are known and were applied to the eEmax model, modified 
from the Emax model as follows:

Table I   Dose–Response Data 
of Gefitinib, LY3009120, 
Trametinib and SCH772984

Drug Concentration, μM Unit Drug Concentration, μM Unit

Gefitinib 0.001499998 97.76 LY3009120 0.0499995 98.54
0.002749993 95.63 0.077498803 97.23
0.004749977 89.8 0.118747167 92.55
0.008499927 75.74 0.183743231 81.62
0.015249766 50.98 0.274984354 71.67
0.027499246 22.22 0.449960459 60.37
0.04999755 11.68 0.674908401 40.46
0.089992117 4.23 1.049779951 21.37
0.154975729 2.91 1.624474094 15.82
0.279921622 2.85 2.498750625 11.22

Trametinib 0.001499996 98.85 SCH772984 0.0499995 95.16
0.002749985 94.27 0.077498803 97.14
0.004999951 85.99 0.118747167 92.86
0.008999839 73.89 0.183743231 83.44
0.016249471 48.09 0.274984354 74.78
0.029998229 25.46 0.449960459 66.84
0.052494377 10.89 0.674908401 46.63
0.097481053 5.79 1.049779951 18.14
0.177437419 3.71 1.624474094 5.28
0.319795331 2.91 2.498750625 2.29
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with E0 = 100 and Imax = 100 . To generate DRC’s, (n, IC50) 
and (n, � ) were estimated using the Emax and eEmax mod-
els (Eq. (5)), respectively. After estimation, we obtained � ’s 
from estimated �’s so that we get IC18.33 = 0.007(Gefitinib), 
IC21.06 = 0.25(LY3009120), IC24.74 = 0.008(Trametinib), 
and IC18.48 = 0.25(SCH772984). We predicted IC50 val-
ues using Eq.  (5): 0.015(Gefitinib), 0531(LY3009120), 
0.015(Trametinib) and 0.526(SCH772984), compared to the 
IC20 and IC50 values with the Emax model (Fig. 2(a)). While 

(5)E = E0 − Imax ⋅
Cn

(
ICn⋅�

�
+ Cn⋅�

) 1

�

,
a specific data point was used, the eEmax model accurately 
captured the data with the small relative errors.

To determine whether accurate DRCs can be generated 
from all data points, we investigated the Gefitinib dataset 
(10 points). We again estimated n ’s and � ’s (Fig. 2(b)). DRC 
dynamics obtained from the first nine data points were plot-
ted, with the relative error to assess the model fit quality. 
The eEmax model is valid with the relative error less than 
0.1 when IC

𝛼
< 0.05nM , suggesting that DRCs obtained 

from the first six data points provide accurate prediction, 
but not the others. This indicates that a condition to apply 
the eEmax model is to choose data points which reflect the 
shape of curves.
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Fig. 2   (a) A comparison of dose–response curves (DRCs) of the Emax and eEmax models. (n, IC50) and (n, �) are estimated for the Emax and 
eEmax models, respectively. Estimated parameters are shown in the subtitle. Corresponding � values are also given. From estimated values, IC20 
for the Emax model and IC50 for the eEmax model are predicted. Four drugs are considered with the relative errors shown in legends. (b) Tests 
for selected IC

�
 ’s from all data in Gefitinib. Two parameters ( n, � ) are estimated, and DRC prediction is worse when IC

�
≥ 0.05�M . The relative 

error is greater than 0.1 when � ≥ 90.05 (last 3 data points). (c) Tests for Lapatinib. The DRC predictions of lapatinib are presented and a similar 
pattern is observed. Particularly, data fit is poor when the relative error is greater than or equal to 0.1 when � ≥ 86.36 (last 2 data points).
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Similarly, we tested the eEmax model using lapa-
tinib (LPT) data from the previous study [24], exclud-
ing the first two concentrations ( 0 nM and 1 nM) . The 
dose–response relationship was presented in Table  II. 
With E0 = 100 and Imax = 80 , parameter estimation pre-
sented: [n, IC50] = [0.7364, 34.8953] for the Emax model, 
and for the eEmax model, we obtain various [n, �] , with the 
relative errors in Fig. 2(c). The eEmax model’s predictions 
were consistent with previous findings, remaining valid for 
concentrations up to IC76.49 = 200 . This again supports the 
necessity of choosing proper data points. Thus, once suit-
able m data points are chosen, we may generate m DRCs.

Ensemble Generation from the eEmax Model: 
Response Transformation

A published study [25] investigated an inhibition response 
using the inhibition model presented as follows:

where, ���10 E0(cfu∕mL) = 1.6,Emax = −6.3,EC50 = 48.9, 
and n = 4.953 are provided. The minimum response 
was −4.8 . The concentration–response data is presented 
in Table III. We estimate EC50 using the Eq. (6) and find 
EC50 = 48 , which is close to the given value EC50 = 48.9 . 
Next, the eEmax model can be defined as:

(6)���10E = ���10E0 +
EmaxT

n

ECn
50
+ Tn

,

 Using the relationship between Emax  and ini-
t i a l  response  (  ���10E0  ) ,  a  s imple  equa t ion , 
� = −

100

6.3
(x − 1.6), x ∈ [−4.8, 1.6] , representing x as true 

response (given by ���10) , can be utilized to get scaled 
response �’s. That is, response can be transformed into � 
from 0 to 100 . Thus, for example, � = 0 and 50 can be rep-
resented as 0% and 50%, from 100% response, respectively. 
Using the linear equation, we can find true response −1.55 
when � = 50 , which approximately agrees with EC50 = 48 . 
We now choose four data set (red circles in Fig. 3) to estimate 
n and � . That is, we find � = 18.10, 42.54, 69.52 and 83.97 
and then corresponding concentrations are EC18.10 = 34.83 , 
EC42.54 = 44.89,EC69.52 = 59.76 and EC83.97 = 69.96.

After estimation, n and � values are shown in Fig. 3. 
The DRC’s from the eEmax model predict data well, 
with a small relative error (less than 0.1), similar to the 
Emax model. Compared to the Emax model, the eEmax 
model generates multiple DRCs and can provide confi-
dence interval and ensemble mean curve. This extension 
to the Emax model highlights the usefulness of the eEmax 
model. In addition, from various DRCs, we may conduct 
statistical analysis and reflects variations in DRCs.

Application to PKPD Framework

Utilizing published data from studies [26, 27], we inves-
tigated the antibacterial effect of two drugs on two types 
of strains using the eEmax model integrated into the 
PKPD framework. The schematic diagram of the model 
is shown in Supplementary Information (S1 Fig), and 
the mathematical model is provided in (S2 text). Model 
analysis and simulation were performed with SimBiol-
ogy. The parameters were presented in Table IV. The data 
fit from PK data is shown in Fig. 4(a). The obtained PK 
drug concentrations were applied to the eEmax model. 
The parameter values are also provided in Table IV. The 
eEmax model is applied to the tumor model in place of 
the Emax model.

The eEmax model accurately predicts bacteria inhibi-
tion data (Fig. 4(b)). We also tested other ICα values, with 
similar results (not shown in the figures). The eEmax model 

���10E = ���10E0 +
EmaxT

n

(
ECn�

�
+ Tn�

)1∕� .
Table II   Lapatinib Dose–Response Data. LPT Concentration and 
Mean Response with Standard Deviation. Four Trials were Con-
ducted and Standard Deviations were Measured

LPT concentration(nM) Response (mean) SD

0 100.00 5.33
1 85.97 3.68
2.5 93.66 8.30
5 83.02 4.23
10 81.63 2.38
25 60.93 1.13
50 52.82 3.76
100 43.86 2.92
250 35.81 1.04
500 33.10 0.62
1000 29.44 0.68

Table III   Dose–Response Data 
Set in the Study [25] Drug Conc 1.84 4.96 14.96 34.83 44.89 59.76 69.96 74.8 79.8 84.8 99.8

Response 1.38 1.72 1.51 0.46 -1.08 -2.78 -3.69 -4.23 -4.21 -4.22 -4.22
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supports effectiveness for PKPD modeling, providing accu-
rate predictions.

Discussion

The drug concentration–response relationship is crucial 
because it helps determine the optimal dosage of a drug that 
maximizes therapeutic effects while minimizing adverse 
effects. The sigmoid Emax model is commonly utilized to 
determine this. The Emax model uses ED50 , which should be 
estimated unless found through accurate experiments. Studies 
utilize this step to predict a concentration–response curve for 
providing an optimal strategy for treatment [28, 29]. One of 

the limitations of the Emax model is that it does not use all 
data information. Specifically, from a dataset, data to find the 
drug concentration ED50 is only used. Other drug concentra-
tions can be predicted after estimating ED50 . To address this, 
we have formulated the extended Emax model (eEmax). At 
first glance, the eEmax model seems complex because it has 
an additional parameter � compared to the Emax model. How-
ever, we utilize data points to reduce the number of param-
eters that need to be estimated, resulted in the same number 
of parameters as the Emax model. A unique characteristic of 
the eEmax model is that ED

�
 values remain unchanged, but 

� is estimated, unlike ED50 in the Emax model. This model 
uses scaled responses � ’s (0 to 100%) from dataset, instead of 
finding ED50 . After choosing these values, the shape param-
eter � is estimated for data fit. Then, we can find estimated 
� ’s using the equation � = (1∕2)1∕� ⋅ 100 , while ED

�
 values 

remain unchanged.
The eEmax model addresses the limitations of the 

Emax model by offering a more flexible representation of 
dose–response relationships. The inclusion of a new param-
eter, � , provides a comprehensive measure of drug potency, 
allowing the model to capture diverse concentration–response 
data, including sigmoidal datasets. This model can generate 
multiple DRCs because it utilizes all data points. The eEmax 
model is particularly useful when one wants to verify the 
robustness of the model fit and to provide statistics such as 
mean, variances, and confidence intervals.

Mathematical models have positively impacted PKPD 
research by enabling precise predictions of drug behavior 
and effects in the body, thereby optimizing dosing regi-
mens and improving therapeutic outcomes [30–33]. The 
sigmoid dose–response curve is widely used in PKPD 
and other studies [34–38], highlighting the importance of 
dose–response relationship in accurately assessing opti-
mal treatments. The eEmax model provides significant 
advantages over the Emax model, such as the use of arbi-
trary drug concentrations and the generation of multiple 
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eEmax: (n, )=(9,95,0.38), EC16.51=34.83, Rel.err=0.06
eEmax: (n, )=(5.39,0.8), EC42.08=44.87, Rel.err=0.05

eEmax: (n, )=(2.90,2.00), EC70.66=59.76, Rel.err=0.05
eEmax: (n, )=(2.11,3.93), EC83.83=69.96, Rel.err=0.07
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Unued data
Used Data

Fig. 3   The minimal inhibitory concentration (MIC) and the percent-
age of drug concentration above the MIC (T% ˃ MIC) are presented. 
The EC50 is provided by the study, and DRC using the Emax model is 
represented by a blue solid curve. The four data points, given by red 
colors, are chosen to generate DRCs for applying to the eEmax model 
from the antimycoplasmal effect ( E ) over T% ˃ MIC. Estimated val-
ues (n, �) are presented in the legend. The ensemble mean, and confi-
dence interval (shaded blue) over T% ˃ MIC are plotted.

Table IV   The Values of 
Parameters. � and n are 
Estimated Values, While 
the Others are Fixed Values. 
kgrowth: Growth Rate of 
Growing Cell. kdeath: Death 
Rate of Tumors. ICalpha: IC

�
 , 

Imax: Maximal Inhibition, 
ka: Elimination Rate of Drug, 
MIC: Minimum Inhibitory 
Concentration, Bmax: 
Maximum Tumor Number

Name Parameters Units

Drug1/Strain1 Drug1/Strain2 Drug2/Strain1 Drug2/Strain2

kgrowth 1.46 1.46 2.01 2.01 1/hour
kdeath 0.187 0.187 0.234 0.234 1/hour
IC

�
 (ICalpha) 0.0455 0.0184 0.0949 0.1023 milligram/liter

Imax 3.9529 4.6113 2.083 3.3962 1/hour
CL (clearance) 2.37 2.37 0.346 0.346 liter/hour
Central (volume) 1.29 1.29 0.129 0.129 liter
ka 0.5 0.5 0.266 0.266 1/hour
MIC 0.012 0.0509 0.15 0.1116 milligram/liter
� (estimated) 2 1.0168 0.872 2 dimensionless
n (estimated) 0.0483 0.8365 1.21E-06 0.0069 dimensionless
Bmax 500000000 500000000 467000000 467000000 number
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DRCs from a single dataset, evaluated through statisti-
cal analyses. This model is applicable to PKPD models 
requiring concentration–response relationships, such as 
tumor dynamics after drug administration, and can be 
used in direct link and indirect response models [28, 29, 
39–41]. Also, the Emax model is applied to cooperative 
binding to understand molecular interactions in biological 
system, influencing drug design, enzyme regulation, and 
gene expression [42].

Despite its advantages, the eEmax model has a limita-
tion in that suitable data points should be chosen to avoid 
wrong predictions. Not all drug concentrations are used 
as ED

�
 values. Some concentrations with very small or 

large α values could lead to poor fit. Response transforma-
tion to find � is easy but requires additional work. While 
these limitations exist, the eEmax model provides various 
benefits over the Emax model. The eEmax model provides 
a reliable method for analyzing dose–response data and 
generating multiple DRCs from a dataset. Additionally, 
this model can handle diverse data types rather than the 
Emax model, making it a valuable tool in PKPD modeling.
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tary material available at https://​doi.​org/​10.​1007/​s11095-​024-​03752-9.
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