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Abstract

Purpose Serotonin (5-HT) is important for gastrointestinal functions, but its role in drug absorption remains to be clarified.
Therefore, the pharmacokinetics and oral absorption of cephalexin (CEX) were examined under 5-HT-excessive condition
to understand the role of 5-HT.

Methods 5-HT-excessive rats were prepared by multiple intraperitoneal dosing of 5-HT and clorgyline, an inhibitor for 5-HT
metabolism, and utilized to examine the pharmacokinetics, absorption behavior and the intestinal permeability for CEX.
Results Higher levels of 5-HT in brain, plasma and small intestines were recognized in 5-HT-excessive rats, where the oral
bioavailability of CEX was significantly enhanced. The intestinal mucosal transport via passive diffusion of CEX was sig-
nificantly increased, while its transport via PEPT1 was markedly decreased specifically in the jejunal segment, which was
supported by the decrease in PEPT1 expression on brush border membrane (BBM) of intestinal epithelial cells. Since no
change in antipyrine permeability and significant increase in FITC dextran-4 permeability were observed in 5-HT-excessive
rats, the enhanced permeability for CEX would be attributed to the opening of tight junction, which was supported by the
significant decrease in transmucosal electrical resistance. In 5-HT-excessive rats, furthermore, total body clearance of CEX
tended to be larger and the decrease in PEPT2 expression on BBM in kidneys was suggested to be one of the reasons for it.
Conclusions 5-HT-excessive condition enhanced the oral bioavailability of CEX in rats, which would be attributed to the
enhanced permeability across the intestinal mucosa via passive diffusion through the paracellular route even though the
transport via PEPT1 was decreased.
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Movements and functions of the small intestine are well
known to be regulated by intrinsic neurons of the enteric
nervous system (ENS) and by extrinsic sympathetic, para-
sympathetic and sensory neurons derived from the central
nervous system (CNS) [1]. ENS is recognized as an inde-
pendent integrative system with structural and functional
properties similar to those of CNS and functions indepen-
dently without extrinsic neuronal influences [2]. It has been
intensively examined how ENS is involved in the regulation
of the smooth muscle [3-8] and the transport of water and/
or electrolytes [7, 9-14]. Specifically, serotonin (5-hydroxy-
triptamine, 5-HT), of which over 95% found in the body is
mainly contained in the enterochromaffin cells of intestinal
epithelium and also in neurons of myenteric plexus [15],
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has recently drawn much attention on its importance in the
gastrointestinal functions as a paracrine messenger and neu-
rotransmitter [16—18]. However, the role of 5-HT in gastro-
intestinal physiology, pathophysiology and/or ENS remains
to be fully understood because 5-HT exerts the diverse
effects on a wide range of physiological functions through
an imposing number of 5-HT receptors [19]. The interaction
between ENS and intestinal epithelium including the role of
5-HT, which is important for the intestinal function, was not
fully understood yet [20].

Furthermore, it has recently been considered that several
serious bowel diseases such as inflammatory bowel disease
(IBD) and irritable bowel syndrome (IBS) have been associ-
ated with ENS disorders [16, 21-23] and the clarification of
the relationship between these diseases and ENS dysfunction
has also been expected from both pathological and phar-
macological aspects [23]. Specifically, it has recently been
suggested that 5-HT would be related with several serious
bowel diseases such as IBS and celiac diseases [24]. 5-HT
levels in the inflamed mucosa were markedly decreased in
human IBD such as ulcerative colitis (UC) and Crohn’s dis-
ease (CD) [25]. To the contrary, it has been suggested that
the 5-HT is elevated in IBS and celiac disease [15, 26]. Fur-
thermore, IBD is associated with the functional depletion
of ENS [23] and the abnormalities of ENS including 5-HT
levels should be deeply involved in these gastrointestinal
diseases [22, 23, 25], although the causal association has
not been fully clarified yet.

On the other hand, it remains to be clarified how drug
absorption from small intestine is regulated by ENS and/or
how drug absorption is affected under gastrointestinal dis-
eases related with ENS disorders, since studies for the neural
effect on drug absorption from small intestine are still very
limited [7, 13, 27]. Thus, it is very important to find out the
changes in intestinal functions, specifically in the absorptive
function for drugs, under varied physiological conditions
related with ENS disorder for the efficient oral medication.

Although it is very difficult technically to clarify the
interaction between ENS and intestinal mucosa [20], we
have already performed several studies to figure out the
neural regulation of drug absorption from the small intes-
tine, [28-31]. The effects of adrenergic stimulation on the
intestinal absorption and transport of a small molecular
organic anion, phenol red [28] and cation, rhodamine-123
[31] were examined by utilizing a vascular-luminal per-
fused preparation and an isolated jejunal sheet. Although
its effect on small molecule transport via passive diffusion
is still controversial [28, 30, 31], the adrenergic stimula-
tion suppressed the transport of a large molecular compound
across Caco-2 cells monolayer [30]. The luminal secretion
of rhodamine-123 was also suppressed via the decrease in
the expression level of P-glycoprotein (P-gp), a well-known
ATP-dependent transporter extruding so many clinically
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important drugs [32], on brush border membrane by the adr-
energic stimulation [31]. As for 5-HT, considering its levels
in UC and CD [25], chronic depletion of 5-HT significantly
enhanced P-gp activity of the rat small intestine due to the
enhanced expression of P-gp on brush border membrane and
the passive transport via paracellular pathway [29].

In the current study, to obtain some information on drug
absorption under the condition where 5-HT is elevated such
as IBS and celiac disease [15, 26], we tried to prepare 5-HT-
excessive model rats. Although we referred to several reports
on the preparation of 5-HT-excessive rats [33, 34], all the
rats intraperitoneally injected with 5-hydroxy-L-tryptophan
(5-HTP, 100 mg/kg) and clorgyline (2 mg/kg) [33] died from
75 to 90 min after the injection, revealing that the 5-HT-
excessive condition should be too severe to exert any in vivo
studies to investigate the effect of excessive 5-HT on drug
absorption. Furthermore, 5-HTP is a precursor of 5-HT and
the generation of 5-HT should be changeable dependent on
the activities of tryptophan hydroxylase 1 and 2 [35]. Since
we would like to exclude a possible effect of fluctuation of
biosynthesis of 5-HT, we selected the way of the direct injec-
tion of 5-HT and the inhibition of its metabolism to make
a 5-HT excessive condition in the current study. After sev-
eral preliminary experiments, we prepared 5-HT-excessive
model rats, which allows us to exert both in vivo and in vitro
studies to examine drug absorption from the small intestine.
Then, we tried to estimate the effect of excessive 5-HT on
the pharmacokinetics of cephalexin, which is absorbed via
PEPT1 and passive diffusion from the small intestine [36],
after oral administration.

Materials and Methods
Materials

Cephalexin anhydrate (CEX), glycyl-sarcosine (Gly-Sar),
serotonin hydrochloride (5-HT), clorgyline (N-methyl-N-
propargyl-3-(2,4-dichlorophenoxy) propylamine hydro-chlo-
ride), antipyrine, 4-dimethylamino-antypyrine, 5-methoxy-
DL-tryptophan and FITC-dextran 4 (FD-4) were purchased
from Sigma Chemical Co. (St. Louis, MO). All other
chemicals and reagents were analytical grade commercial
products.

Animals

Male Wistar rats (7-9 weeks, Charles River Laboratories
Japan, Yokohama, Japan), maintained at 25°C and 55%
humidity under 12-h lighting condition (8:00-20:00),
were allowed free access to standard laboratory chow
(Clea Japan, Tokyo, Japan) and water. Rats were ran-
domly assigned to each experimental group. Every animal
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experiment was started around 14:00 to avoid the effect of
diurnal change in PEPT1 activity [37-39]. Our investiga-
tions were performed after approval by our local ethical
committee at Okayama University and in accordance with
“Principal of Laboratory Animal Care (NIH publication
#85-23)”.

Preparation of 5-HT-Excessive Model Rats

5-HT-excessive model rats were prepared by intraperito-
neally injecting 5-HT (5 mg/kg) and clorgyline, a mono-
amine oxidase-A (MAO-A) inhibitor, (2 mg/kg) dissolved
in saline for 4 days. All the experiments were performed
around 24 h after the last injection of 5-HT and clorgyline
unless otherwise specified. For control rats, saline was
intraperitoneally injected instead of 5-HT and clorgyline
solutions. 5-HT levels in the small intestine and brain
were determined by the method reported by Lakshmana
and Raju [40] with minor modification. At fixed period
times after final intraperitoneal injection of 5-HT and clor-
gyline, the ileum and whole brain were removed, minced
and homogenized in a 7-fold volume of 7.14% ascorbic
acid containing isoproterenol as an internal standard.
The resulting mixture was, moreover, homogenized with
the equivalent volume of 30% HCIO,. All the processes
described above were performed on ice. After centrifuga-
tion at 9000xg for 15 min, the supernatant was filtered
through a millipore filter (0.22 pm, Millex-HV; Millipore
Corporation, Billerica, MA). As for plasma concentra-
tions, blood sampled at fixed period times were centri-
fuged at 8000xg for 10 min to obtain plasma samples,
which were deprotenized by methanol containing 100 pM
5-methoxy-DL-tryptophan as an internal standard. Then,
aliquots of the resulting supernatant were injected onto
the HPLC system.

In Vivo Oral and Intravenous Administration Studies

One day before drug administration, the jugular vein of a
rat was cannulated with vinyl tubing (ca 20 cm) (SV-45, i.d.
0.58 mm, o.d. 1.0 mm, Natsume, Tokyo) connected with SR
tube (1.5 cm) (i.d. 0.5 mm, o.d. 1.0 mm, Shin-Etsu Poly-
mer Co., Ltd., Tokyo) under anesthesia. In the case of oral
administration, CEX dissolved in saline was intragastrically
administered at a dose of 5 mg/5 ml/kg, corresponding to a
standard therapeutic dose. For intravenous administration,
CEX dissolved in saline was administered from the tail vein
at the dose of 5 mg/ml/kg. Blood samples were periodically
taken from the cannulated jugular vein. Plasma obtained by
centrifugation was deproteinized by methanol and the result-
ing supernatant was used for HPLC analysis.

In Vitro Intestinal Transport Study

The jejunal segment 30 cm below the ligament of Treitz
and the ileal segment 30 cm above ileocecal junction were
removed under anesthesia and rinsed in ice-cold saline.
After the segments were opened along the mesenteric
border, intestinal contents were washed out with ice-cold
saline. Immediately, the muscularis propria was stripped
off, and three to four jejunal or ileal sheets approximately
5 cm in length without Peyer’s patches were prepared [29].
The intestinal sheet prepared above was mounted in a diffu-
sion chamber (Corning Coaster Japan, Tokyo) with a 1.25-
cm? exposed area. Ringer’s solution, containing 1.2 mM
NaH,PO,, 125 mM NaCl, 5 mM KClI, 1.4 mM CaCl,,
10 mM NaHCOj;, and 2 mg/ml D-glucose was gassed with
95% O, and 5% CO, for 15 min and adjusted to pH 6.5,
7.0 or 7.4 with a few drops of 1 N HCI or NaOH. Then
Ringer’s solution (pH 6.5 for jejunum; pH 7.0 for ileum)
was placed into the apical compartment and pH 7.4 Ringer’s
solution was placed into the basal compartment [36]. During
the entire experiment, Ringer’s solution in both sides was
gassed with 95% O, and 5% CO, and maintained at 37°C.
It was confirmed that the pH value of Ringer’s solution was
kept around 6.5, 7.0 or 7.4 throughout the transport studies.
The transmucosal electrical resistance (TER) was calculated
following Ohm’s law. After preincubation for 25 min to sta-
bilize the electrical condition of tissues, the solution in the
apical side was exchanged with the drug solution (500 pg/
mL CEX, 0.5 pmol/mL antipyrine or 0.2 pmol/mL FD-4).
Once the transport experiments started, the solutions in both
sides were circulated by gas lift with 95% O, and 5% CO,
throughout the transport studies. Aliquots of the solution in
the basal side were sampled at 10-min intervals for 90 min.
An equal volume of Ringer’s solution was immediately
added to the basal side after each sampling. In the case of
inhibition studies for CEX, Gly-Sar (50 pmol/mL), a typi-
cal substrate for PEPT1 [37], was added with CEX (500 pg/
mL=1.37 pmol/mL) to the apical side. Drug concentrations
in the basal side were determined by HPLC.

Western Blot Analysis

Western blot analysis was performed utilizing brush border
membrane fraction of rat small intestinal mucosa or kidney.
Brush border membrane vesicles (BBMVs) were prepared
by the method reported by Kessler et al. [41] with minor
modification [29] or the method reported by Wilfong and
Neville, Jr. [42] for the small intestine or kidney, respec-
tively. Final BBMVs were enriched in the activity of alka-
line phosphatase compared with the corresponding tissue
homogenate (Jejunum: control, 13.8 +3.2; 5-HT-excessive,
ca 13.3+3.0. Ileum: control, 7.3 +2.1; 5-HT-excessive,
6.8 +2.8. Kidney: control, 8.0+ 0.4; 5-HT-excessive,
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8.3+0.7). All the equipment and chemicals used in the
Western blot analysis were obtained from Bio-Rad (Hercu-
les, CA) unless otherwise specified. BBM Vs resuspended in
the sample buffer were separated by SDS-PAGE using 7.5%
Mini-Protean TGX gel (Bio-Rad) according to the method of
Laemmli [43], and transferred to nitrocellulose membranes.
The blots were blocked with phosphate-buffered saline con-
taining 5% nonfat milk by 1.5-h incubation at room tempera-
ture, and incubated with the PEPT1 polyclonal antibody,
H-235 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA),
PEPT?2 polyclonal antibody (Bioss, Inc., Woburn, MA), or
villin polyclonal antibody, C-19 (Santa Cruz Biotechnol-
ogy, Inc.). The blots were then incubated with anti-rabbit
HRP antibody (Thermo Fisher Scientific, Waltham, MA) or
anti-goat HRP antibody (Santa Cruz Biotechnology, Inc.).
The blots were developed with an CL kit (GE healthcare life
sciences Japan, Tokyo) and bands were detected by Image-
Quant LAS 4000 (GE healthcare life sciences). The quanti-
fication of bands was performed by densitometric analysis
using the Scion image (Scion Co., Frederick, MD).

Estimation of Gastrointestinal (Gl) Transit

To estimate the possible change in GI transit under 5-HT-
excessive condition, GI transit of glass beads (GB-0.07,
sp.gr. 2.5 g/cm?; 0.d. 63-88 um, Kenis Ltd., Osaka, Japan),
an unabsorbable marker, was estimated for each segment of
small intestine after oral administration, since the intestinal
transit is well known not to be affected by physical state of
drugs (ex. solution or powder) [44], food [45-48], size [49]
nor density [49, 50]. For the stomach, however, since gastric
emptying is faster for liquid than solid [44, 51, 52], phenol
red solution was employed as an unabsorbable marker for
estimating gastric emptying rate constant. At appropriate
time periods after oral dosing of markers, whole GI tract
was removed and the remaining glass beads and/or phenol
red were carefully recovered by washing out with saline
for stomach (s), duodenum (d), upper jejunum (uj), lower
jejunum (1j), upper ileum (ui), lower ileum (li). After cen-
trifuging the washings collected, the supernatant obtained
were used for the determination of phenol red, which was
performed colorimetrically at 560 nm after alkalinized. In
the case of glass beads, the washings were placed into the
tube where 200 pL of 3 N KOH (sp.gr. 1.168) and 800 pL
of silicon oil (sp.gr. 1.05, Sigma Chemical Co.) were placed
in advance. After centrifuging the tube at 47xg for 15 min,
removing the oil phase and washing out KOH with distilled
water, the tube was lyophilized and weighed. The remain-
ing amount of glass beads were estimated as the difference
in tube weight between before- and after-experiments [44].
Except for stomach, GI transit time was calculated as a recip-
rocal of GI transit clearance (CLgi) reflecting GI transit rate
constant calculated by the following equation [44, 53, 54]:
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where AUC means the area under the recovery% of dose of
glass beads — time curve and was calculated by following
the trapezoidal rule.

In the case of stomach, the retention time in the
stomach was calculated by a reciprocal of gastric emp-
tying rate constant which was calculated by assuming
the first-order kinetics for gastric emptying of phenol
red [55].

Analytical Method

For detection of 5-HT, antipyrine and CEX, HPLC,
which consists of a model LC-20A HPLC pump (Shi-
madzu, Kyoto, Japan), a model of SIL-9A system con-
troller (Shimadzu), was used at room temperature. For
5-HT, Inertsil ODS-3 column (250 X 4.6 mm i.d., GL
Sciences, Inc. Tokyo, Japan) was used and the mobile
phase, 20 mM sodium acetate (pH 3.9), methanol, and
heptane sulfonic acid, 800:200:0.1 (v/v) was delivered at
1.0 mL/min. 5-HT was detected by a model RF-10AxL
fluorescence detector (Shimadzu) set at 349 nm (excita-
tion) and 444 nm (emission). The standard curves from
0.1 to 10 nmol/mL gave the coefficients of variation
(CV) ranged from 0.07% to 32.9%. The correlation coef-
ficients were over 0.9968.

For antipyrine, CAPCELL PAK UGI120A (150x 4.6 mm,
i.d., Shiseido Co. Ltd., Tokyo) was used and the mobile phase,
20 mM phosphate buffer (pH 7.4):methanol=65:35 (v/v) was
delivered at 1.0 mL/min. Antipyrine was detected by a model
SPD-20A UV detector (Shimadzu) set at 254 nm. Standard
curves from 0.5 to 50 nmol/ml provided CV values ranged from
0.26 to 4.77%. The correlation coefficients was over 0.997.

For CEX, Inertsil ODS-3 column or Chromolith
(50%x4.6 mm, i.d., MSD K.K., Tokyo) was used for in-
vivo sample or in-vitro sample, respectively. The mobile
phase for plasma sample was 10 mM acetate buffer
(pH 6.0):methanol (70:30; v/v for in-vivo sample, 85:15;
v/v for in-vitro sample) delivered at 1.0 mL/min. CEX was
detected by a model SPD-20A UV detector set at 260 nm.
Standard curves from 0.5 to 20 mg/mL gave CV values
ranged from 5.35 to 8.48%. The correlation coefficients
were over 0.9982.

FD-4 were determined fluorospectrophotometrically at
485 nm for excitation and at 515 nm for emission (F4500
fluorescence spectrophotometer, Hitachi, Tokyo).
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Pharmacokinetic Analysis

For in vivo intravenous administration study, pharma-
cokinetic parameters describing the plasma concentra-
tion—time profile of CEX after intravenous administration
were obtained based on a two-compartment model by the
non-linear least-squares regression program MULTI [56].
The following equation was utilized to express the plasma
concentration-time profile of CEX:

C,=A-e“'+B- ! 3)

where o and f are rate constants for the distribution phase
and elimination phase, respectively. A and B are hybrid con-
stants shown as D-(a—k ,,)/Vc/(o— ) and D-(k ,, — B)/Vc/
(o —P), respectively. D, k ,; and Vc mean the dose, first-
order rate constant from peripheral to central compartment
and distribution volume in central compartment, respec-
tively. AUC and CL,, were calculated by the following
equations:

A B
AUC =—+ -
2t @)
D
CLtatal = m (5)

For in vivo oral administration study, the maximum
concentration, C,,,, was the highest concentration
observed and the time to reach C,,, was defined as T,,,.
Area under the plasma concentration — time curve, AUC,
from O to 6 h was calculated following the trapezoidal rule.
Mean residence time after oral administration, MRTpo,
and mean absorption time, MAT, were calculated based
on the statistical moment theory. F values were calcu-
lated by utilizing AUC values obtained after intravenous
administration.

For in vitro intestinal transport study, the cumulative
amounts of drugs transported to the basal side was calcu-
lated by the following equation:

o(t) = ZZ=1C(‘k—1) +V-C(t) (6)

where Q(t,) and C(t,) mean the cumulative amount trans-
ported to the basal side and drug concentration in the basal
side at time t,, respectively. V reveals the volume of solution
in the basal side. Then, the apparent permeability coefficient,
P,,p» Was calculated by the following equation:

ag 1

app — E ’ A-C, @)

where dQ/dt, A and C; mean the permeation rate, exposing
surface area and initial drug concentration in the apical side,
respectively.

Statistical Analysis

Results are expressed as the mean with S.E. Analysis of
variance (ANOVA) was used to test the statistical signifi-
cance of difference among groups. Statistical significance
in the difference of the means was determined with Tukey’s
test or Student’s ¢ test for multiple or single comparison of
experimental groups, respectively.

Results and Discussion
5-HT Level in 5-HT-Excessive Rat

In the rats where 5-HT and clorgyline were intraperitoneally
injected single or four times, 5-HT levels in the small intes-
tine, brain and plasma were determined (Fig. 1). In the small
intestine, very high levels of 5-HT were observed just after
injection, but the higher levels were kept for a few hours
after 4th injection (Fig. 1(A)). Since serotonin transporter
(SERT) is expressed on both apical and basal membranes
of intestinal epithelial cells [57], we had thought that 5-HT
taken up into the epithelial cells would be accumulated by
the inhibition of its metabolism by clorgyline. However, it
was found that the effect did not last for a long time. On
the other hand, the higher levels of 5-HT were kept for
longer time in the brain (Fig. 1(B)) and plasma (Fig. 1(C)),
although the increase in 5-HT level in brain was unexpected
because blood brain barrier usually prevents 5-HT from pen-
etrating the brain from the systemic circulation and SERT
effluxes 5-HT from the brain [58]. Since SERT is known to
be expressed in the luminal side of endothelial cells of brain
microvasculature [59], the SERT might have functioned for
the uptake of 5-HT; and/or clorgyline might have been effec-
tively taken up into the brain where clorgyline might also
have inhibited the metabolism of 5-HT effectively, leading
to the saturation of efflux via SERT and the accumulation of
5-HT. Results shown in Fig. 1 indicate that the long-lasting
higher levels of 5-HT were not acquired in the small intes-
tine, but the relatively long-lasting higher levels were done
in plasma, indicating that organs and tissues including the
small intestine were continuously exposed by higher levels
of 5-HT from the blood circulation. The administration of
5-HT and clorgyline caused the high levels of 5-HT in the
brain, plasma and small intestine, but the pattern of enhance-
ment was dependent on each organ and plasma. The differ-
ence among the two organs and plasma is very interesting
and worth studying the mechanisms behind this phenom-
enon. However, since the current study is focusing on the
effect of excessive 5-HT on the pharmacokinetics and oral
absorption behavior of CEX, we will, next, try to evaluate
them utilizing the 5-HT-excessive rats.
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Fig.1 Small intestine (A), brain (B) and plasma (C) levels of 5-HT in 5-HT- excessive model rats. Results are expressed as the mean with
S.E. bar of 3 to 8 experiments. **, p<0.01 compared with control. 1, p<0.01; ¥, p <0.05 compared with single dose of 5-HT and clorgyline.
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In Vivo Pharmacokinetics of CEX in 5-HT-Excessive
Rats

Plasma concentration — time profiles of CEX after intrave-
nous administration indicate that the elimination of CEX
at p phase was significantly faster in 5-HT excessive rat
(Fig. 2(A)). Table 1 also reveals that f and MRT;, were sig-
nificantly larger and smaller, respectively, and CL, and k
tended to be larger in 5-HT-excessive rats than control rats.
On the other hand, no difference in distribution volumes
including Vd, was observed.

After oral administration of CEX, C,,,, tended to be
higher and plasma concentrations at 1.5, 2 and 4 hr. were
significantly higher in 5-HT-excessive rats than those in
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, four doses of 5-HT and clorgyline.

control rats (Fig. 2(B) and Table 2). AUC was also signifi-
cantly larger and the bioavailability was calculated to be as
high as 96% in 5-HT-excessive rats (Table 2). These results
clearly indicate that the oral absorption of CEX was sig-
nificantly enhanced in 5-HT-excessive rats. Even though
MRT;, was significantly shorter for 5-HT-excessive rats
(Table 1), MRT,,, was significantly increased, resulting in
the significant prolongation of MAT (Table 2). Usually, the
larger value of MAT means the low value of ka, the first
order absorption rate constant, because MAT is a reciprocal
of ka in correspondence with the compartment model. How-
ever, in the case of CEX absorption in the 5-HT-excessive
rats, the larger value of MAT would just reflect the pro-
longation of absorption, but do not the slowdown of CEX
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absorption. According to finite absorption time (FAT) con-
cept [60], which has recently been proposed, T,,,, would be
coincided with the time when the absorption is terminated,
although T, ,, would usually be the time when absorption
(input) rate has been equal to the elimination rate. FAT con-
cept also suggests that the larger values of k, or p would
indicate smaller values of FAT [60]. Since T,,,, of CEX for
5-HT excessive rats (1.00 hr., Table 2) tended to be delayed
compared with control rats (0.83 hr., Table 2), the termina-
tion of absorption would be delayed based on FAT concept,
which would have led to the increase in CEX absorption for
5-HT excessive rats. Furthermore, the large value of f§ for
CEX (0.85-1.17 hr.™!, Table 1) suggests that T, or FAT
for CEX would be less than 1.5 hr., reflecting our observed
values (Fig. 2b and Table 2). Considering that the substantial
absorption of CEX should occur from the ileal segment and
GI transit times [36], the absorption of CEX might have been
terminated at some time point of the descending limb of the
plasma concentration — time curve [60], but the increase in
T ax value would reflect the prolongation of absorption time.

In Vitro Transport Study across Isolated Intestinal
Sheet

To find out the reasons why oral absorption of CEX was
enhanced in 5-HT-excessive rats, the in vitro transmu-
cosal studies were performed by utilizing the jejunal and
ileal sheets isolated from 5-HT excessive rats (Fig. 3). In
jejunum, no change was found in P, of CEX (Fig. 3(A)
and (B)), but the permeability of CEX across the ileal sheet

O, control rat;.,

was significantly enhanced under 5-HT excessive condition
(Fig. 3(C) and (D)).

Since CEX is partly absorbed via PEPT1 [36], the contri-
bution of PEPTI to the changes in P,,, of CEX was exam-
ined by utilizing Gly-Sar as a competitive inhibitor for CEX
absorption via PEPTI. In the control rats, the contribution
of PEPT1 to CEX transport was very large in the jejunum
(60.45 +4.50%), although its contribution was so small in the
ileum (15.30+5.86%) because of lower H* gradient, supporting
our previous findings [36]. The effect of 5-HT-excessive condi-
tion would be a little bit complicated. In the jejunum, although
the permeability was not changed, the contribution of PEPT1 to
it was significantly decreased (26.93+5.79, p <0.01 vs control
rat) (Fig. 3(A) and (B)) , meaning the possible enhancement of
CEX transport via passive diffusion. In the ileum, on the other
hand, P,,, was significantly increased, but the contribution
of PEPT1 was still so small under 5-HT-excessive condition
(20.94+5.52, N.S. vs control rat) (Fig. 3(C) and (D)). Although
it apparently seems like 5-HT-excessive condition exerted the
different effects for the jejunum and ileum, the transport via
passive diffusion was clearly enhanced in common. As for the
transport via PEPT], the effect was not clearly observed in the
ileum because the contribution of PEPT1 was so small under
the physiological condition.

Then, the membrane permeability via passive diffusion
was examined by utilizing antipyrine and FD-4 as a trans-
cellular marker and paracellular marker, respectively. Fig-
ure 4 clearly indicates that 5-HT excessive condition did not
affect the drug transport via transcellular route in both the
jejunal and ileal segments. As for the paracellular route, the
transmucosal transport of FD-4 was significantly increased in
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the both segments under 5-HT-excessive condition (Fig. 5).
TER values were significantly decreased, clearly indicating
that the paracellular route was expanded in both intestinal
segments (Fig. 6). These results suggest that the enhance-
ment of CEX transport via passive diffusion shown in Fig. 3
would be attributed to the increased passive transport through
the paracellular route but not through the transcellular route.
Although the mechanisms behind the expansion of paracel-
lular route remain to be elucidated, the tight junction open-
ing due to the condensation of actin-myosin II rings would
be one of probable reasons [61, 62]. It is known that 5-HT),
5-HT,, 5-HTj;, 5-HT, [63] and 5-HT, [63, 64] are localized to
intestinal epithelial cells and that 5-HT increases intracellular
Ca** level via these receptors [65], specifically, 5-HT, [66],
5-HTj; [63, 66] and 5-HT, [63, 67]. Since the elevation of
intracellular Ca** level would lead to the activation of myosin
light-chain kinase (MLCK), the activated enzyme would have
condensed the actin-myosin II rings [61, 62].

MRTiv (hr)
+0.05

0.70%*

+0.03

0.99

Vd,, (mL/kg)
+19.6

+42.4

528.6
459.2

Vd, (mL/kg)

+25.1

243.2
171.8
+2.8

Vd, (mL/kg)
+19.5

+25.8

285.4
287.4

PEPT1 Expression on Brush Border Membrane
of Small Intestine

kel (hr™")
+0.18

1.98
+0.25

2.31

Since the contribution of PEPT1 to the intestinal transport
of CEX was significantly decreased in the jejunum under
5-HT-excessive condition, the expression level of PEPTI
was examined by Western blot analysis (Fig. 7). Although
no change in the expression was observed in whole mucosal
homogenate for both the segments, the expression levels on
brush border membrane were significantly decreased for both
the segments under 5-HT-excessive condition. This observa-
tion clearly explains the reason for the significant decrease
in CEX transport via PEPT1 in the jejunal segment under
5-HT-excessive condition (Fig. 3(A) and (B)). The mecha-
nisms behind the decrease in PEPT1 expression on brush
border membrane remains to be clarified, but the decrease
in the trafficking of PEPT1 from an intracellular pool to
the brush border membrane would be at least involved in it,
considering no change in the expression level in the whole
mucosal homogenate (Fig. 7). It was reported that traffick-
ing of PEPT1 to the apical membrane was suppressed by the
elevation of intracellular Ca>* [68] and the activation of PKC
[68, 69]. As described above, 5-HT increases the intracel-
lular Ca* via several 5-HT receptors [63, 65-67]. Since the
elevation of intracellular Ca>* leads to the activation of PKC
[65, 68], 5-HT-excessive condition would have caused the
decrease in PEPT1 trafficking to the brush border membrane.

It is also well known that 5-HT increases cAMP level
and the elevation of cAMP is also one of the reasons for
the increase in intracellular Ca** [66]. a,-Adrenergic stim-
ulation, which decreases cAMP [30, 31], increased the
translocation of PEPT1 to the apical membrane [70]. This
opposite way of PEPT1 trafficking to the apical membrane
would also suggest that intracellular Ca>*, cAMP and/or

CLtotal
(mL/hr./kg)
+33.3

+40.8

542.6
651.7

AUC (pg/mL-hr)
79
+ 047

9.38
+0.53

7.

1.17%*
+0.05

B (hr™)
+0.05

0.85

B (pg/mL)
6.43
+0.83

7.0

+0.87

a (hr™)
0
+ 1.57

+1.24

7.6
6.65

Pharmacokinetic parameters

A (pg/mL)
11.50
+1.48

10.90

+1.26

Table 1 Pharmacokinetic parameters of cephalexin after intravenous administration to control and 5-HT-excessive rats

Results are expressed as the mean + S.E. of 5-6 experiments. **, p <0.01, compared with Control

5-HT excessive

Rats
Control
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Table 2 Pharmacokinetic parameter of cephalexin after oral administration into control and 5-HT-excessive rats

Rats Pharmacokinetic parameters

Tmax (hr) Cmax (pg/mL) MRTpo (hr) MAT (hr) AUC (pg/mL-hr) F (%)
Control 0.83 +0.05 2.39+0.14 1.77+0.14 0.79 £ 0.14 5.24+£0.70 55.8+7.41
5-HT excessive 1.00 + 0.08 273 +0.19 2.12 + 0.08* 1.42 + 0.08%* 7.51 +0.48* 96.4 + 6.34**

F, meaning the absolute bioavailability, was calculated by utilizing the results of intravenous administration study shown in Fig. 2(A) and
Table 1. Results are expressed as the mean + S.E. of 6-8 experiments. **, p <0.01: *, p <0.05, compared with Control
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Fig.3 Effect of 5-HT-excessive condition on intestinal transport of cephalexin. Cumulative transported amounts (A, jejunum; C, ileum) and
apparent permeability (P,,,) (B, jejunum; D, ileum) are shown as the mean with S.E. bar of 7 to 14 experiments. **, p<0.01; *, p<0.05 com-

pared with control rat. {1, p<0.01; ¥, p<0.05 compared with corresponding group without Gly-Sar. Keys: (A) (C)
, 5-HT-excessive rat with Gly-Sar. (B) (D)D N,

rat with Gly-Sar;., 5-HT-excessive rat;

PKC would play a key role for the functional changes in
PEPT1 by decreasing the expression level of PEPT1 on
brush border membrane under 5-HT-excessive condition.
Furthermore, in the in vivo condition, the suppression of
Na*/H* exchanger (NHE3) function by 5-HT via 5-HT, [71,
72] would decrease the activity of PEPT1 by reducing the
driving force for PEPT1.

, control rat; , control

, without Gly-Sar with Gly-Sar.

Although much of the focus of 5-HT signaling in the
small intestine has been related in the role in the motility
and inflammation of small intestine [73, 74], a group of
RA Cowles have recently reported that the enhanced 5-HT
signaling increased the mucosal growth [75] and the small
intestinal absorption of glucose and peptide [75] and of car-
bohydrate and lipid [76]. Since they did not refer to any
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Fig.4 No change in intestinal transport of antipyrine under 5-HT-excessive condition. Cumulative transported amounts (A, jejunum; C, ileum)

and apparent permeability (Papp) (B, jejunum; D, ileum) are shown as the mean with S.E. bar of 4 to 7 experiments. Keys: (A) (C)
, 5-HT-excessive rat.

rat;., 5-HT-excessive rat; (B) (D)] |, control rat;|

transporters and/or possible change in membrane property
such as permeability, the details for their findings remain to
be clarified, but it should be very interesting reports suggest-
ing that 5-HT could play an important role in the absorptive
function of small intestine.

Estimation of Gastrointestinal Transit

Figure 3 clearly indicated that the transport of CEX was
significantly enhanced in the ileal segment, but not in the
jejunum. Since we have already reported that around 50%
of CEX absorbed after oral administration would be attrib-
uted to the ileal segment [36], the enhanced in vivo absorp-
tion of CEX after oral administration shown in Fig. 2(B)
could be derived from the absorption from the ileal seg-
ment. On the other hand, we have also reported that the
change in gastric emptying and GI transit could lead to the
change in the segment contributing to the drug absorption

@ Springer

(8)

6.0

4.0

Paap(10-4 cm/min)

2.0

0.0 L
Control

5-HT excessive

(D)

16.0

-
N
o

Paap(10-4 cm/min)
o)
=)

»
o

o
o

Control 5-HT excessive

O, control

after oral administration and, thereby, the change in the
extent of bioavailability due to the permeability varied
dependent on each segment [77]. Since it is well known
that 5-HT plays an important role in GI motility [66], GI
transit was evaluated as the mean residence time under
5-HT-excessive condition (Fig. 8). Figure 8 indicated that
GI transit time tended to be shorten for the upper regions
including the stomach, duodenum and upper jejunum, but
the prolonging tendency was observed for the lower seg-
ments including the lower jejunum, the upper and lower
ileum, meaning that the residence time of CEX was pro-
longed in the ileum, where the permeability was enhanced.
Therefore, the results obtained here also support the larger
contribution of ileal segment to the oral absorption of CEX
after oral administration under 5-HT-excessive condition.

The shortening GI transit time in the upper segments
means the activation of GI motility, which would be via
5-HT; and/or 5-HT, [66], but the current results also
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Fig.5 Enhancement of (A) (B)
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indicated that the activated motility in the upper segments
was not propagated to the lower segments (Fig. 8). Under the
fasted state, usually, the contraction pattern which begins in
the stomach aborally migrates from the duodenum through
the ileum, which is called as the migrating motor complex
(MMC) [4]. However, the destruction of serotonergic neuron
caused the disruption of MMC [66, 78] and it was, further-
more, speculated that the continuous exposure of the mucosa
to 5-HT might eventually result in the desensitization of
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<
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o n ] n n n n n ] n ']
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5-HT receptors and, thereby, decrease the reflex activ-
ity [79]. The current result might be also the case with it,
although the actual mechanisms still remain to be clarified.

PEPT2 Expression on Brush Border Membrane
of Kidney

Finally, we tried to figure out the reason why CEX was
eliminated significantly faster in the elimination phase in
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Fig.6 Decrease in transmucosal electrical resistance under 5-HT-excessive condition. (A) jejunum (B) ileum. Results are expressed as the mean

with S.E. bar of 4 to 15 experiments. **, p <0.01; *, p <0.05 compared with control. Keys:é, control rat;‘

, 5-HT- excessive rat.
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Fig.7 Decrease in PEPTI level on brush border membrane of small intestinal epithelial cells by 5-HT-excessive. Upper panel; typical images
of Western blot of PEPT1 and villin. Lower panel; Results are expressed as the mean with S.E. bar of 5 experiments. *, p <0.05 compared with
control rat. Keys:D, control rat;., 5-HT-excessive rat.

Fig.8 Changes in gastrointes- 0.60
tinal transit for 5-HT-excessive
rats. Mean residence time was
calculated as a reciprocal of - 0.50
transit rate constant obtained £
based on the study of gastroin- ;
testinal transit studies of phenol E 0.40
red and/or glass beads. Keys: ;
. HT- ]
, control rat,., 5-HT-excessive 2 0.30
rat. ©
5
0.20 |
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0 L m L m L L
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5-HT-excessive rats. Since f-lactam antibiotics such as CEX  blot analysis clearly indicated that the expression level in
are reabsorbed via PEPT1/PEPT2 from the renal proximal =~ BBM fraction was significantly decreased in 5-HT-exces-
tubules, where PEPT2, having the higher affinity for CEX sive rats (Fig. 9(A) and (B)). Furthermore, since the protein
than PEPT]1, is predominantly expressed [80], we focused =~ amount normalized by a wet weight of kidney was statis-
on PEPT?2 and investigated its renal expression. Western  tically decreased in 5-HT-excessive rats (2.10+0.14 mg/g
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Fig.9 5-HT-excessive condition decreases PEPT?2 level on brush border membrane of kidney. (A) Typical images of Western blot of PEPT2 and
villin. (B) (C) Results are expressed as the mean with S.E. bar of 6 to 8 experiments. **, p<0.01; *, p<0.05 compared with control rat. Keys:D

, control rat;i, 5-HT-excessive rat.

kidney; p <0.01: control rats, 3.27+0.17 mg/g kidney), the
expression level normalized by a tissue weight went down
to around 46% of control (Fig. 9(C)) and therefore the reab-
sorptive function of whole kidneys would be even lowered
in 5-HT-excessive rats. These results provided that the pos-
sible reduction of CEX reabsorption from the renal proxi-
mal tubule due to the decreased functional PEPT2 would
be a reason for the faster elimination of CEX from plasma
(Fig. 2(A)). Since the activity of PEPT2 was decreased by the
increase in intracellular Ca>* [81], the trafficking of PEPT2
to the apical membrane might be attenuated so was PEPT1
in the small intestine. Considering the lower protein levels
in kidneys observed above, the biosynthesis of PEPT2 itself
might also be suppressed. As for the linkage with 5-HT,
5-HT,, 5-HT, and 5-HT, are expressed in the kidney [82]
and it was reported that PKC was activated through 5-HT,
[83]. Therefore, the activation of PKC through 5-HT, might
have led to the attenuated trafficking of PEPT?2 to the apical
membrane as discussed above for PEPT1 in the small intes-
tine. However, little data is still available on the regulation of
PEPT2 compared with PEPT1 and it was suggested that the
regulatory mechanisms for the peptide transporters differed
between isoforms and tissues [84], the further study should
be needed to clarify the mechanisms behind our findings.

In the current study, we have found the changes in oral
absorption and pharmacokinetics of CEX under the 5-HT-
excessive condition and tried to figure out the mechanisms
behind our findings. Since the level of 5-HT in the brain was
also significantly enhanced in the 5-HT-excessive rats we pre-
pared (Fig. 1(B)), some CNS-derived effects might be involved
in our findings. It is too complicated to refer to the effects via

CNS and we have, thereby, discussed the results obtained in
the current study only from the peripheral aspect. Although
it is very difficult to differentiate CNS-derived effects from
peripheral effects in vivo situation, it has been very important
and desired to figure out what would be a peripheral effect or
would be derived from CNS in order to understand the effects
and/or roles of 5-HT on the function of small intestine as a
whole. Furthermore, to evaluate more precisely the intestinal
transport of poorly absorbable small molecular drugs via pas-
sive diffusion and the possible contribution of putative peptide
transporters on basolateral membrane of intestinal epithelial
and renal proximal epithelial cells [85] to the intestinal trans-
port and renal excretion, respectively, further studies employ-
ing some non-substrates for PEPT1 or PEPT2, i.e., cefotiam
(CTM) and cefazolin (CEZ) [86], would be valuable. As it has
been reported that CEX is a substrate for multidrug and toxin
extrusion proteins (MATES) [87], the studies with CTM and/or
CEZ, which would not be a substrate for MATESs, would also
be helpful to clarify the mechanisms of changes in pharma-
cokinetics of CEX under 5-HT-excessive condition.

In conclusions, higher levels of 5-HT in the small
intestine, brain and blood were found in 5-HT-excessive
rats, where the oral bioavailability of CEX was signifi-
cantly increased via the passive diffusion through the
expanded paracellular route, but CEX absorption via
PEPT1 was attenuated due to the decreased expression
of PEPT1 on brush border membrane of small intestinal
epithelial cells.
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