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ABSTRACT
Purpose Unveil the properties of a two-stage design (TSD) for
bioequivalence (BE) studies.
Methods A TSD with an upper sample size limit (UL) is
described and analyzed under different conditions using Monte
Carlo simulations. TSD was split into three branches: A, B1,
and B2. The first stage included branches A and B1, while stage
two referred to branch B2. Sample size re-estimation at B2
relies on the observed GMR and variability of stage 1. The
properties studied were % BE acceptance, % uses and %
efficiency of each branch, as well as the reason of BE failure.
Results No inflation of type I error was observed. Each TSD
branch exhibits different performance. Stage two exhibits the
greatest % BE acceptances when highly variable drugs are
assessed with a low starting number of subjects (N1) or when
formulations differ significantly. Branch A is more frequently
used when variability is low, drug products are similar,
and a large N1 is included. BE assessment at branch A is
very efficient.
Conclusions The overall acceptance profile of TSD resembles
the typical pattern observed in single-stage studies, but it is
actually different. Inclusion of a UL is necessary to avoid inflation
of type I error.

KEY WORDS adaptive design . bioequivalence .MonteCarlo
simulations . sample size . two-stage design

ABBREVIATIONS
A Branch of the two-stage design selected for bioequiv-

alence assessment when ‘power’ of the study using the
starting population is higher or equal to 80%.

ANOVA Analysis of variance
AUC Area under the concentration-time curve
B Branch of the two-stage design selected for bio-

equivalence assessment when ‘power’ of the study
using the starting population is less than 80%

B1 First segment of branch B which belongs to stage 1
of the design

B2 The second segment of branch B which belongs to
stage 2 of the design and where sample re-
estimation takes place

BE Bioequivalence
CI Confidence interval
Cmax Maximum plasma concentration value
CVw Within-subject coefficient of variation
EMA European Medicines Agency
FA Type of failure because the 90% confidence interval

around GMR of branch A lies outside the BE limits
FB1 Type of failure because the 94.12% confidence

interval around GMR of branch B1 lies outside the
BE limits

FB2 Type of failure because the 94.12% confidence
interval around GMR of branch B2 lies outside the
BE limits

FDA The US Food and Drug Administration
FN Type of failure because the required number of

subjects, after sample size re-estimation, leads to a
total sample size that is greater than the pre-set
maximum allowable level

GMR Geometric mean ratio
N Total number of subjects participating in the study
N1 Starting number of subjects enrolled in the study
N2 Additional number of subjects recruited at the sec-

ond stage
PK Pharmacokinetic
R Reference formulation
T Test formulation
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TSD The two-stage design introduced and studied
UL Upper sample size limit
α Type I error of the nominal statistical hypothesis

INTRODUCTION

The aim of bioequivalence (BE) studies is to assess the in vivo
equivalence between two drug products (1,2). Classically, if
no other reason for biowaiver can be granted, BE can be
proved through specifically designed clinical studies. BE
studies are actually clinical trials and their planning follows
the same principles as in clinical studies. Therefore, among
others, estimating sample size requires a prior knowledge of
the variability, of the active moiety under investigation, as
well as an estimate for the difference in the mean values of the
BE measures (e.g., AUC, Cmax) between the two products,
i.e., test (T) and reference (R). Since, BE studies are usually
conducted using crossover designs, the estimate of variabil-
ity, actually, refers to within-subject variability of the drug.
The mean difference between the pharmacokinetic (PK)
measures of the two products is expressed by their geometric
mean ratio (GMR). Thus, if an estimate for within-subject
coefficient of variation (CVw) and/or GMR cannot be pre-
established accurately, the study might be underpowered if
few subjects are included or overpowered when the assumed
sample size is higher than actually required. Both situations
lead to severe risks such as aimless costs and unnecessary
human exposure to drugs. Therefore, in order to face these
problems, alternate designs can be considered instead of a
typical single-stage study.

Alternate design methods may refer to a wide variety of
approaches, such as add-on, group sequential, and adaptive
designs. These methods are not new in clinical research, and
introduced since the 1970s (3–11). Even though alternate
methods offer many advantages in clinical research, some
difficulties are also present (12,13). These problems arise
from the fact that many adaptations of the study may lead
to a significantly different trial, while the type I error (i.e.,
the significance level α) of the statistical hypothesis may be
inflated. The greater the number of interim analyses carried
out, the greater the chance of Type I errors. Thus, a major
concern is to preserve the overall type I error rate at a
specific level (e.g., 5%) for the pharmacokinetic endpoint
(e.g. AUC, Cmax) (14,15). In order to resolve this problem,
several methods have been proposed such as Bonferroni
correction and the approaches introduced by Pocock,
O’Brien–Fleming, and Lan–DeMets (15–19).

Alternate design methods have also attracted attention in
BE assessment (20–24). In addition, regulatory authorities
like World Health Organization and the Japanese Pharma-
ceuticals and Medical Devices Evaluation Agency allow the
use of add-on designs in BE assessment (25,26). In case of

Health Canada, the latest guidance on BE studies posted in
2012 allows the application of group-sequential and
adaptive designs (27). The Korean Food and Drug
Administration currently allows the conduction of an
additional trial (28). Besides, according to the Australian
regulatory guidelines add-on or sequential designs are
not addressed at this time, but it is anticipated that
group sequential BE studies using the Bonferroni method
will be accepted (29). Finally, the US Food and Drug
Administration (FDA) also recommends the use of two-stage
group-sequential design approaches (30,31).

The European Medicines Agency (EMA) suggested the
use of two-stage designs for BE purposes (1). According to
EMA’s approach, an initial group of subjects can be treated
and their data analyzed; if BE is not demonstrated then an
additional group can be included and the results of both
studies should be combined in final analysis. The EMA
2010 guideline generally mentions that appropriate steps
should be followed to preserve the overall type I error at
the nominal level of 5%. The latter can be accomplished
using 94.12% confidence intervals (CI) for the analysis of
both the first stage as well as of the entire set of data after
completing the second stage of the study (1). However,
specific criteria and stopping rules explaining how to
perform a two-stage BE study are not defined in the
guideline.

In this context, Potvin et al. (32) and Montague et al. (33)
published two very interesting studies towards the validation
of methods on two-stage cross-over BE studies. The authors
evaluated four methods for sample size re-estimation in BE
trials: a simple naive approach and three variations of adap-
tive methods assuming GMR values equal to 0.95 or 0.90
(32,33). Finally, the authors ended-up with recommenda-
tions, for the regulatory agencies or the sponsors, on the
appropriateness of each method regarding their application
at specific conditions (e.g., an assumed population GMR
value equal to 0.90 or 0.95).

The aim of this study is to present a two-stage design
(TSD) for BE studies and to unveil its underlying properties.
The TSD approach used in this analysis originates from the
‘C’ method quoted in the Potvin/Montague articles (32,33),
but differs in the following two points: a) sample size re-
estimation in our TSD is based on the actual GMR and
CVw observed at stage 1 and b) in the presented TSD an
upper sample size limit is introduced. The entire task was
accomplished by using Monte Carlo simulations. The
performance of the entire design as well as the individual
contribution of each branch of the TSD were investigated.
For this reason, several, already established or newly proposed
in this study, methodological tools were used. The properties
examined for each one of the branches was the % BE
acceptance, % uses, % efficiency, and the % individual
branch failure.
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MATERIALS AND METHODS

Two-Stage Design

In this analysis, a two-stage design for BE studies is intro-
duced, which originates from the so quoted ‘C’ adaptive
sample size sequential method by Potvin et al. and Monta-
gue et al. (32,33). A schematic representation of this TSD is
depicted in Fig. 1. Each stage of this TSD consists of a two-
sequence, two-period (2×2) crossover design.

The first step of the analysis is the evaluation of the power
at stage 1 using the estimated CVw, GMR, and α=5%. If
this power estimate is higher than or equal to 80%, then BE
should be assessed at the 5% level of significance (branch A
in Fig. 1). Irrespectively of the outcome of BE assessment,
BE or failure, the analysis should be ended afterwards. A
common feature of this TSD, which is also noted in the
Potvin/Montague C method, is that the predefined signifi-
cance level at the first stage is 5%, namely, equal to the one
applied to a typical single-stage BE study.

If the power estimate of the study is lower than 80%,
branch B of the TSD method should be followed (Fig. 1). In
this case, BE should be assessed by setting type I error equal
to 2.94%. Again, if BE is proved then assessment should be

stopped (branch B1 in Fig. 1). Otherwise, the TSD method
will proceed into branch B2 (i.e., the second stage of TSD)
where sample size re-estimation takes place. The latter will be
based on the variability and the GMR estimates derived from
stage 1 and setting α=2.94%. Finally, assessment of BE will be
made using the entire data set, from both stages 1 and 2, on
the basis of a stringent type I error equal to 2.94%.

It should be highlighted that in this study sample size re-
estimation is based on the actual CVw and the GMR estimat-
ed of stage 1 rather than an assumed population GMR of 0.90
or 0.95. In addition, an upper limit (UL) to the total sample
size (for both stages) is introduced. The inclusion of UL was
found to be necessary in order to avoid inflation of type I
error. It has been reported that sample size increases, based on
interim results of the treatments difference, may inflate type I
error (34). The value of 150 was arbitrarily chosen, as it refers
to a rational maximum sample size value for a BE study.

Bioequivalence Assessment

Wherever BE assessment was made, it was based on the
concept of average BE (1,2). According to this approach,
two drug products are declared bioequivalent if the calcu-
lated confidence interval (typically, 90% CI for single-stage
studies) around the difference of the mean measures of
bioavailability (in the ln-transformed scale) lies within
predefined limits imposed by the regulatory authorities
(1,2,35). These BE limits are usually set equal to 80.00%
and 125.00%. Alternatively, this approach is equivalent to
the two one-sided test procedure (36).

In this study, a general linear model (ANOVA) was
applied to the ln-transformed values of the PK metric. For
stage 1, the terms used in the ANOVA model were Se-
quence, Period, Treatment, and Subject-within-Sequence
(1). In case of the analysis using the combined data, from
stages 1 and 2, the factors considered for the model were
Sequence, Treatment, Stage, as well as the nested terms
Period-within-Stage and Subject-within-(Sequence × Stage)
(1,32,33). All these effects were treated as ‘fixed’ factors (1).
Since, cross-over design is used, the residual variability
derived from the linear models was considered to reflect
the within-subject variability of the drug under study.

The so derived within-subject variability was used to
construct (1-2α)% confidence intervals around the GMR
(T/R) of the PK parameter. In particular, for the determination
of BE at branch A it was used a 90% CI, while a 94.12% CI
was applied to branch B1 or to the combined dataset from
stages 1 and 2.

Construction of the Design Matrix

For the purposes of this study, only a single PK endpoint (e.g.,
AUC or Cmax) was assumed. Simulated values for the PK

Fig. 1 Schematic representation of the two-stage design (TSD) investigat-
ed in this study. Based on the power estimate of the starting sample the
entire TSD is initially divided into two main branches A and B. Passage
through sub-branch B1 is a premise for the assessment of bioequivalence at
B2 of the second stage. Key: N1, starting sample size; N2, additional
number of subjects recruited at the second stage; 150, the maximum
allowed number of subjects from stage 1 and 2; α, type I error of
the nominal hypothesis of bio-in-equivalence; [BE], bioequivalence
assessment. The terms FA, FB1, FB2, and FN refer to the possible
types of failure (see Table I).
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parameter were generated assuming log-normal distribution.
In case of the reference formulation the value of the PK
endpoint was assumed to be equal to 100 units These PK
values for each product (T or R) were appropriately assigned
to the two Sequences and the two Periods of stage 1 of the
study in a way that ensured randomness and balance with
respect to sequence, period, and treatment.

If BE assessment proceeded into sample size re-
estimation, then the simulated data at stage 2 were added
to the previously created design matrix in order to construct
the entire data matrix of the study. Data for stage 2 were
generated similarly, so as to ensure balance with respect to
sequence, period, and treatment. No tests or criteria for the
poolability of the data from stages 1 and 2 were applied.

Sample Size Re-estimation

The basic advantage of two-stage designs in BE studies is the
possibility for sample size re-estimation if BE was not proved
at stage 1. In case of the TSD investigated in this study, an
initial number of subjects (N1) are assumed at stage 1, while
sample size re-estimation takes place at branch B2 (Fig. 1).
The additionally required number of subjects (N2) is calcu-
lated based on the within-subject variability and the GMR
estimate obtained at stage 1 assuming power equal to 80%
and α=2.94%.

In our case, sample size re-estimation was achieved
through an automated iterative algorithm developed for
the purposes of this study. In more details, this algorithm
was composed from two main elements:

a) Firstly, an approximate method was used to obtain an
initial rough estimate of the required sample size. The
mathematical formula included also a ‘correction term’
in order to account for the cases of low number of
subjects (37).

b) After an initial estimate of N2 was obtained, the iterative
method was applied to calculate accurately the number
of subjects. Based on the degrees of freedom of the
initially estimated N2, the inverse of Student’s t cumu-
lative distribution function was computed, which was
inserted again in mathematical formulas to re-estimate
N2. Convergence to the final N2 value was considered
when either the difference in the N2 values between two
consecutive estimations was less than 0.5, or the maximum
number of iterations (set equal to 100) was exceeded.
Depending on the observed GMR, the algorithm was able
to select between different formulas regarding difference or
no treatment difference.

The value of N2 obtained from the above-mentioned
algorithm was then rounded to the nearest integer. If the
so-derived number was odd, it was converted to even by
adding 1.

In addition, a UL was set to the highest value of N1+N2

at stage 2. In order to be realistic, no more than a total
number of N=N1+N2=150 subjects could be enrolled in the
BE study. Thus, the number of N2 could range between 2
and 150 – N1. It should be mentioned that N2 is estimated
whether or not BE is going to be declared at the final step of
BE assessment (i.e., B2).

After the construction of the final matrix, BE was assessed
using the entire set of data as described earlier (e.g., ANOVA
on the ln-transformed values etc.). It is worth mentioning that
BE assessment was based on Pocock’s method (15) even
though the sample sizes N1 and N2 might be different.

Simulations

In order to study the properties of TSD, two levels of
theoretical CVw values of the initial population (Fig. 1) were
considered in the simulations: 20% and 40%. These CVw
values were selected to reflect the conditions of medium and
high within-subject variability. In addition, three levels of
starting values of sample size (i.e., N1) were considered: 18,
30, and 60 subjects, which refer to low, medium, and
relatively high number of subjects, respectively. It is admit-
ted that some combinations of CVw and N1 (e.g., CVw=
20% and N1=60) may not be realistic. Nevertheless, these
extreme cases were included in the simulations not only for
reasons of completeness, but as an effort to unveil any
possible trends in the performance of the two-stage BE
design that might have not been identified otherwise. The
theoretical GMR value was gradually changed, from 1.00 to
1.25 using a step of 0.025. Under each condition, a number
of 100,000 studies according to the TSD scheme (Fig. 1)
were simulated. In each study, BE was declared if the (1-2α)
% confidence interval around point GMR for the two T and
R products was between the BE limits (36).

In case of the estimation of the type I error rate values
1,000,000 studies were simulated. When a UL of 150 was
assumed, six levels of CVw (10%, 20%, 30%, 40%, 50%,
and 60%) and seven different starting sample sizes (12, 18,
24, 30, 48, 60, and 96) were considered. For UL of 100 and
1,000 subjects, two CVw (20%, 40%) and four different N1

(18, 30, 60, 96) values were assumed.
The entire programming work was implemented by

developing all necessary functions in MATLAB® (The
MathWorks, Inc). All functions were validated prior to
their use, while the Monte Carlo simulation approach
was in agreement with other published studies and our
previous works (38–41).

Investigational Methods

In order to assess the performance and the underlying
properties of the two-stage design of Fig. 1, several
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methodological tools were applied. In all cases, the calculat-
ed metric was plotted versus the theoretical GMR of the
study.

Percentage of Acceptance: Total and Relative Contribution
of Each Branch

The percentage of simulated studies showing BE was
recorded and allowed the construction of power curves by
plotting the % acceptance values as a function of GMR.
For the purposes of this study, not only the total power (%)
was recorded, but also the individual % BE acceptances of
each branch of TSD (Fig. 1). The % BE acceptance values
at each GMR value refer to:

% Acceptance ¼ 100 � Number of studies showing bioequivalence
Total number of simulated studies

ð1Þ
Percent Uses of Each Branch

It would be informative to know how many times BE was
assessed (successfully or not) at each segment of TSD. To
answer this demand, a new type of plots was constructed
where the percentage of usage of each branch was recorded
versus the GMR of the study, Eq. 2:

% Uses ¼ 100 � Number of branch accesses
Total number of simulated studies

ð2Þ

Efficiency of Each Branch

The % relative “efficiency” of each TSD branch expresses
the number of studies declared bioequivalent by each
branch divided by the number of times this branch was
utilized, Eq. 3:

% Efficiency ¼ 100 � % Acceptance
% Uses

¼ 100 � Number of studies showing BE
Number of branch accesses

ð3Þ
Origin of Failure to Demonstrate Bioequivalence

In addition, the origin of “failure”, namely, the inability to
declare BE was explored. This task was undertaken since the
reason of rejecting BE (i.e., failure) in the TSD can be a
result of the inability to demonstrate BE at branches A, B1,
and B2, as well as due to the fact that the total sample size
(i.e., N1+N2) after sample size re-estimation at B2, is greater
than the pre-set maximum allowable level (UL=150 in this
study). These failures were termed as FA, FB1, FB2, and FN,
respectively (Table I). Alternatively, the FN type of failure

could have been considered as belonging to FB2; however,
FN is evaluated separately from FB2 in order to provide a
better insight into the properties of the TSD.

The total number of failures at each GMR step of the
study can easily be computed by summarizing all separate
failures. The latter further allows the estimation of the %
frequency of each failure by dividing the number of failures
due to any reason by the total number of failures at each
GMR.

% Frequency of failure i ¼ 100 � Number of failures i
Total number of failures

ð4Þ

where the symbol “i” refers to the specific type of failure of
the TSD.

RESULTS

Table II lists the type I error values for the TSD used in this
study. In all cases, the estimated values are lower than 5%
and therefore no inflation of type I error beyond 5%
becomes apparent. In contrast to the Potvin/Montague
methods, where estimation of N2 is based on a pre-defined
population GMR of 0.90 or 0.95, the TSD under study uses
the observedGMR of the stage 1 study. In the past, it has been
shown that sample size increases, based on interim results of
the treatments difference, may inflate type I error (34).
However, the presented TSD approach further includes
an upper limit of 150 and only two stages. If our design
either included more than one interim analyses (apart
from the final analysis), or allowed the recruitment of
any number of subjects then possibly type I error would
be inflated. Nevertheless, it should not be disregarded
that this TSD applies to BE studies where only two
stages are allowed (1) and in most of the cases less than
150 subjects are enrolled.

In order to verify this postulation, further results for type
I error rate are listed in Table III. In this case, two different
UL values were considered: a) a low UL equal to 100 and b)
a high total number of subjects (up to 1,000) is allowed to be
recruited in the BE study. The results quoted in Table III
are in accordance with our theoretical expectations. As UL
decreases, the TSD approach becomes rather conservative,
whereas the expansion of UL leads to an increase of the type
I error. For a UL equal to 1,000, type I error values do not
exceed 5% for the conditions studied. Nevertheless, if no UL
was considered, the increase would probably exceed 5%. In
actual practice it is very rare for a BE study to enroll more
than 150 subjects and for this reason a UL of 150 was
considered as a rational limit.
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Percentage of Bioequivalence Acceptance

Figure 2 depicts the percentage of simulated studies in
which BE is accepted versus the GMR of the study. As it
anticipated, the increase of variability, from 20% to
40%, leads to lower total and individual % acceptance
values. In the same vein, as the number of subjects
increases, the total % acceptance level is raised. In case
of low variability values (Fig. 2a, c, and e), branch A
exerts a predominant role. This behavior becomes more
evident as sample size increases (Fig. 2c and e). As
GMR rises, the % acceptances of B1 and B2 increase,

but up to a maximum GMR value, after which both B1
and B2 lose their ability to declare BE In these cases,
the relative contribution of B2 is more prominent at low
sample sizes (Fig. 2a), while branch B1 dominates when
a high number of subjects is used (Fig. 2e).

A quite different performance, for the individual role of
each branch, is observed when the drug exerts high within-
subject variability (right column of Fig. 2). Branch B2 ap-
pears to be the sole reason for success when a highly variable
drug is assessed in a BE study with few subjects (Fig. 2b).
However, as the number of subjects recruited in the BE
study increases, the importance of both A and B1 becomes
more potent (Fig. 2d). A further enlargement of sample size,
makes BE assessment at branch A the most prominent
method for addressing BE (Fig. 2f).

Percent Uses of Each Branch

Passage through a branch of TSD simply reflects the num-
ber of times BE was assessed (positively or negatively) within
this branch. In order to accomplish this task Fig. 3 was
constructed which shows the % uses of each of the three
TSD branches versus the GMR of the study. In all cases, BE
assessment at segment A becomes less frequently visited as

Table I Origin of Possible Failure to Declare Bioequivalence (BE) in the Proposed Two-Stage Design

Symbol Description Branch

FA The 90% confidence interval (CI), assessed at branch A, lies outside the BE limits 80.00–125.00%. A

FB1 The 94.12% CI, assessed at branch B1, lies outside the BE limits 80.00–125.00%. B1

FB2 The 94.12% CI, assessed at branch B2, lies outside the BE limits 80.00–125.00%. B2

FN The required number of subjects, after sample size re-estimation, leads to a total sample size that is greater than the pre-set maximum
allowable level (150 in this study).

B2

Table II Type I Error Rate for the Two-Stage Design Under Study

CVw N1 Type I error rate
(%)

CVw N1 Type I error rate
(%)

10 12 4.49 40 12 1.86

18 4.20 18 2.35

24 4.06 24 2.99

30 3.88 30 3.46

48 3.47 48 3.46

60 3.18 60 3.18

96 2.95 96 2.95

20 12 4.46 50 12 1.07

18 4.20 18 1.29

24 4.06 24 1.60

30 3.88 30 2.03

48 3.47 48 3.19

60 3.18 60 3.12

96 2.95 96 2.95

30 12 3.31 60 12 0.60

18 3.86 18 0.76

24 4.03 24 0.86

30 3.87 30 1.00

48 3.47 48 1.96

60 3.18 60 2.57

96 2.95 96 2.93

Six levels of within-subject variability (CVw) and seven levels of starting
sample (N1) size are quoted. An upper sample size limit of 150 is assumed

Table III Type I Error Rate for the Two-Stage Design Under Study if the
Upper Limit (UL) is Set Equal to 100 or 1,000

CVw N1 Type I error rate (%)

UL=100 UL=1000

20 18 3.98 4.95

30 3.50 4.78

60 2.95 4.52

96 2.95 4.26

40 18 2.05 3.13

30 3.06 4.38

60 2.95 4.52

96 2.95 4.26

Two levels of within-subject variability (CVw) and four levels of starting
sample (N1) size are quoted
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GMR differentiates from unity. The latter, in turn, results in
a more frequent use of branch B (either B1, or B2). This
attribute becomes more apparent as CVw increases and N1

diminishes (Fig. 3).
An increase of within-subject variability makes the role of

branch B more important. On the contrary, as the starting
sample size gets larger the necessity of branch B fades and
becomes only essential for two drugs much different to each
other. In other words, as the CVw/N1 ratio increases the role
of sample size re-estimation at stage 2 becomes absolutely
necessary in BE assessment.

Efficiency of Each Branch

The performances depicted in Figs. 2 and 3 represent the %
acceptances and the % uses of each branch of the two-stage
method examined. Combining these two properties into one

criterion allows us to investigate the % efficiency of each
branch. The term % efficiency expresses the relative ability of
the A, B1, and B2 segments of the TSD to declare BE (Fig. 4).

Percent efficiency values for all three branches (A, B1,
and B2) decline as GMR increases. In particular, branch A
exerts almost excellent % efficiency at low variabilities
(Fig. 4a, c, and e). The enlargement of the starting sample
size further improves A’s efficiency, while it drops to very
low levels as within-subject variability increases. However,
the inclusion of more subjects at stage 1 counterbalances the
effect of high CVw (Fig. 4f). The % efficiency of branch A
starts to diminish abruptly when the two drug products
differ enough in their mean PK values. The % efficiency
of branch B is relatively high at GMR values close to unity,
but it is vanishing as GMR and/or within-subject variability
increase (Fig. 4). Besides, as N1 increases the % efficiency of
B2 becomes worse, whereas it improves for branch B1.

Fig. 2 Percentage of
bioequivalence (BE) studies
accepted versus GMR. The
individual performance of each of
the three branches (A, B1, B2) of
the two-stage design are shown.
The coefficient of variation of the
within-subject variability (CVw)
was equal to 20% (left column)
and 40% (right column) for the
initial population. Three different
starting sample sizes, N1, were
assumed: 18, 30, and 60.
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Percentage of Frequency of Each Failure

In Fig. 5 six different scenarios are shown which refer
to the cases when medium and highly variable drugs
are assessed with a low, moderate or a relatively high
starting number of subjects. Visual inspection of Fig. 5
reveals that the causes of BE failure obey the following
general ranking in terms of decreasing frequency of
occurrence: FB1 > FN > FB2 > FA. In other words, FA
represents the least common reason of failure, whereas
BE failure at B1 represents the most possible outcome
at all GMR values. The existence of a too large sample
size at stage 2 is a reason that turns out to be more
important, as primarily N1, and, to a lesser extent, CVw
increase.

DISCUSSION

The aim of this analysis was to explore the underlying
properties of the proposed two-stage design (Fig. 1). The
TSD explored in this study was found to result in no inflation
of type I error beyond 5% (Tables II and III). The underlying
reason for this attribute is considered to be two-fold:
firstly, the presented TSD includes only two stages and
secondly, a UL of 150 was set. The latter apart from rational
for use in BE studies was also found as capable of restricting
inflation of type I error.

The percentage of simulated studies where BE is accept-
ed versus the GMR of the study is shown in Fig. 2. Each
branch of the TSD exhibits a different ability to declare BE,
which further changes according to variability and sample

Fig. 3 Percentage of use of each
branch (A, B1, B2) of the two-
stage design versus GMR. The
coefficient of variation of the
within-subject variability (CVw)
was equal to 20% (left column)
and 40% (right column) for the
initial population. Three different
starting sample sizes, N1, were
assumed: 18, 30, and 60.
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size (Fig. 2). Among the three parts of TSD, branch A exerts
the highest % BE acceptance values either when variability
is low or moderate, or an adequately high number of subjects
is recruited. The usefulness of branch B2 becomes mainly
apparent when highly variable drugs are assessed with a low
number of subjects and when the two drug products differ
significantly. These two reasons partially reflect the basis for
using two-stage designs, namely, in cases when the prior
estimates for variability and GMR lead to sample size
under-estimation.

An attribute strongly related to the percentages of acceptance
is the% uses of each branch of TSD. The visit at each branch of
TSD depends on the three key parameters: CVw, N1, and
GMR. Generally speaking, branch A is more frequently
accessed in cases where the following factors co-exist: a) variabil-
ity is low, b) the two drug preparations do not differ significantly,
and c) an initial large number of subjects are used. However,

when the difference between the two drug products increases or
the drug exerts high variability, second stage is used more often
(Fig. 3b and d).

Visual inspection and comparison of Figs. 2, 3, and 4
reveals that branch A exhibits a high % efficiency of
declaring BE either when is assessed many, or few
times. Plausibly, the underlying reason of this behavior
relies on the design of the TSD (Fig. 1). According to
this design, BE assessment at stage 1 is only allowed
when the power of the study is greater than 80%. Thus,
only adequately powered studies are assessed at A,
which subsequently lead to high % efficiencies. However,
as variability increases, the % acceptances of branch A fall to
very low levels. Therefore, it appears that the initial 80% power
criterion actually imposes the use of branch B when there is a
priori low probability of declaring BE using the initial group of
subjects.

Fig. 4 Percentage of efficiency of
each branch (A, B1, B2) of the
two-stage design versus GMR.
The coefficient of variation of the
within-subject variability (CVw)
was equal to 20% (left column)
and 40% (right column) for the
initial population. Three different
starting sample sizes, N1, were
assumed: 18, 30, and 60.
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It is anticipated that if no UL was set to the re-
estimated sample size value, N2, then the % acceptances
and therefore the % efficiency of branch B2 would have
been increased. Nevertheless, the absence of a UL
seems to be an unrealistic condition, since nobody
would plan a BE study allowing the addition of a very
large number of subjects at the second stage. In this
study, the allowable N2 number could range from 90 to
132 (namely, N2=N-N1 which results in 150−18=132
subjects and 150−60=90, for N1=18 and N1=60, re-
spectively). Since these N2 values refer to the second
stage of a BE study and not to a phase III clinical trial,
they were considered sufficient for our purposes.

Four types of failures were identified for the two-
stage design and were further investigated (Fig. 5).

The most common origin of BE failure is encountered
at B1. This is a logical finding and refers to the inher-
ent properties of the two-stage approach under study. It
should not be disregarded that branch B1 is accessed
when the power of the study at stage 1 is less than
80%. In fact, this power estimate is calculated assuming
a higher value of type I error than the one applied to
branch B1 (5% versus 2.94%). Therefore, the high %
frequency of FB1 failure results from the stricter confi-
dence interval criterion applied to B1 compared to the
precedent “power” condition. The second more fre-
quent type of failure is due to the fact that the required
number of subjects, after sample size re-estimation,
leads to a total sample size that is greater than UL.
As more subjects are recruited in the initial phase of the

Fig. 5 Frequency (in % values)
of each failure to declare
bioequivalence versus GMR of the
study. The coefficient of variation
of the within-subject variability
(CVw) was equal to 20% (left
column) and 40% (right column)
for the initial population. Three
different starting sample sizes, N1,
were assumed: 18, 30, and 60.
The terms referring to types of
failure are listed in Table I.
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study, the frequency of this failure increases. This finding is
actually expected since a UL value was set to the total
sample size value.

Finally, it should be mentioned that this analysis also
included conditions where CVw was higher than 30%,
namely, BE assessment of highly variable drugs. In our
case, these studies were only treated in the light of two-
stage approaches. Another possibility, for BE assessment,
would be the use of reference-scaled BE limits, as it is
currently recommended by regulatory authorities (1,42).
However, the latter would require a replicate or a semi-
replicate design in order to estimate CVw of the refer-
ence product. Nevertheless, this type of analysis exceeds
the scope of the current study.

CONCLUSION

The aim of this study was to present a two-stage design for
BE studies and unveil its properties under several condi-
tions. Basic conclusions derived from our analysis include
the following:

a) The TSD under study leads to no inflation of type I
error rate beyond 5%. The underlying reason could be
ascribed to the inclusion of an upper sample size limit
and the fact that only two stages are considered.

b) Each branch of the TSD exhibits different % BE ac-
ceptances which are dependent on CVw and N1. In
particular:

b1) Branch A exerts the highest ability to declare BE
either when variability is low to moderate, or an
adequately high number of subjects is recruited.

b2) Second stage becomes mainly useful when highly
variable drugs are assessed with a low number of
subjects and/or the two drug products differ
significantly.

c) BE assessment at branch A is more frequently encoun-
tered when: variability is low, the two drugs do not differ
significantly, and a large starting number of subjects are
used.

d) The % uses of the second stage increases when the two
drug products are significantly different or they exert
high within-subject variability.

e) BE assessment at branch A exhibits high efficiency to
declare BE. On the contrary, branches B1 and B2 are
usually less efficient in declaring BE.

f) The initial power criterion of 80% imposes the use
of a second stage when there is an a priori low
probability to conclude BE using the starting group
of subjects.
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