
Multivariate Statistics of Disposition
Pharmacokinetic Parameters for
Structurally Unrelated Drugs Used
in Therapeutics

Vangelis Karalis,1 Anna Tsantili–Kakoulidou,2

and Panos Macheras1, 3

Received May 20, 2002; accepted August 22, 2002

Purpose. To explore the quantitative structure pharmacokinetic re-
lationships of the disposition parameters: clearance (CL), apparent
volume of drug distribution (Vap), fractal clearance (CLf), and fractal
volume (vf) for 272 structurally unrelated drugs used in therapeutics.
Methods. Literature data were used for CL and Vap whereas CLf and
vf were estimated as described previously (Pharm. Res. 18, 1056, 2001
and 19, 697, 2002). A variety of molecular descriptors expressing
lipophilicity, ionization, molecular size and hydrogen bonding capac-
ity were estimated using computer packages. The data were analyzed
using multivariate statistics. For each disposition parameter (CL, Vap,
CLf, vf) PCA (principal component analysis) and PLS (projection to
latent structures) were applied to the total set of data as well as to
subsets of data.
Results. Drugs were divided into two classes (I and II) according to
their vf/Vap ratio. Class I comprises 131 drugs with vf /Vap>1, whereas
class II 141 drugs with vf /Vap < 1. After initial PLS analysis, class I
was subdivided in subclusters Ia (30 drugs) and Ib (101 drugs). It was
found that Ia included mostly acidic drugs with high protein binding,
whereas class II comprises mainly basic, lipophilic compounds. No
correlation was found between CL, Vap, CLf and the used descriptors.
Adequate PLS models were derived for vf considering subclusters Ia,
Ib and class II separately. The low vf values of class Ia drugs were
affected negatively from molecular size descriptors and non-polar
surface area. For class Ib drugs with intermediate vf values, apparent
lipophilicity contributed positively, although molecular size descrip-

tors and polarity were inhibitory factors. The high vf values of class II
drugs were positively dependent on intrinsic lipophilicity and in-
creased basicity, whereas polarity entered with negative contribution.
Conclusions. The parameters Vap, CL, and CLf fail to reflect the
physicochemical properties of drugs. The transformation of Vap val-
ues to vf is the underlying cause for the valid models for vf. These
models allow a global consideration of molecular properties (lipo-
philicity, ionization, molecular size, polar surface area) which govern
the distribution of drugs in the human body. The present study pro-
vides additional evidence for the physiologically sound concept of vf.

KEY WORDS: multivariate statistics; disposition parameters; fractal
volume; apparent volume of distribution; fractal clearance; clearance.

INTRODUCTION

The development of quantitative structure pharmacoki-
netic relationships (QSPR) models focuses on the association
of structural features of chemicals, either to their pharmaco-
kinetic (PK) determinants (e.g., partition coefficient), solubil-
ity or to PK parameters (e.g., volume of distribution), half-life
(1). The utility of the models relies on the fact that they can
be further used to predict the PK properties of new chemical
compounds. Several successful attempts have been reported
to establish QSPR models utilizing a variety of PK param-
eters within congeneric series of drug molecules (2–12). How-
ever, there have been only limited efforts in establishing
QSPR models for structurally unrelated drugs (13–17).

In the field of drug disposition, the quantitative relation-
ships between structural features of drugs and their PK pa-
rameters are complicated by the composite nature of pro-
cesses (i.e., both distribution and elimination processes are
involved). When clearance, CL, is not derived from the quo-
tient Dose/AUC, the fictitious numerical values of the appar-
ent volume of distribution, Vap, can affect the CL estimates,
and make their use questionable in QSPR modeling for struc-
turally unrelated compounds. However, a more physiologi-
cally relevant description of drug distribution and elimination
was published recently (18,19). The new parameters used to
describe distribution and elimination, fractal volume of dis-
tribution, vf, and fractal clearance, CLf, respectively were
found to exhibit better behavior than the conventional pa-
rameters Vap and CL in interspecies PK scaling (18,19). These
observations prompted us to explore in a comparative man-
ner the relationships between each one of the disposition pa-
rameters, Vap, CL, vf, and CLf and relevant molecular de-
scriptors. To this end, a large number of structurally unrelated
drugs, currently used in therapeutics (20), was analyzed. Due
to the diversity and the complexity of the data, the whole task
was performed using multivariate data analysis (MVDA).
MVDA is a powerful statistical tool, widely used, based on
the projection method to extract latent variables from a large
set of descriptors, thus reducing a complicated multidimen-
sional space to a small number of components. It permits the
use of interrelated descriptors, can handle multiple responses
in the same model, and is useful to detect outliers and to
categorize data in different classes (21–24).

METHODS

The drugs used for analysis were obtained from a classic
textbook of pharmacology (20). A total of 314 drugs were
found to be accompanied with the PK parameters under study
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(20). A number of drugs were excluded due to certain mo-
lecular characteristics that might lead to unexpected behavior
and/or do not permit reliable calculations of the molecular
descriptors used in this study. These drugs were: quaternary
ammonium compounds (e.g. pancuronium, atracurium, etc),
molecules with very complicated chemical structures (cyclo-
sporine, vancomycin, aminoglycosides, amphotericin-B, ta-
crolimus, macrolides etc.), drugs that include metal atoms in
their structure (cis-platin, carboplatin, auranofin, gold sodium
thiomalate) or are metals themselves (lithium), and unstable
compounds like nitroglycerin or isosorbide. Thus, the number
of the remaining data for further analysis was equal to 272.

Recently, the physiologically sound concept of fractal
volume of drug distribution, vf, was developed (18). This pa-
rameter takes values smaller or equal to the body mass (ex-
pressed in volume units) of the species and corresponds to the
part of the total volume of the species body in which the drug
is distributed at equilibrium. Eq. (1) (18) was used to calculate
the vf values from the reported Vap values (20):

vf = Vpl + �v − Vpl��1 −
Vpl

Vap
� (1)

where v is the total volume of the species body (equivalent to
the total mass assuming a uniform density 1g/mL), and Vpl is
the plasma volume of the species. In our study, the typical
human values for v and Vpl (i.e., 70 and 3 L), were used
respectively. The clearance analogue of vf, called for reasons
of uniformity fractal clearance. CLf, refers to the portion of vf

that is cleared per unit of time (19). CLf estimates were de-
rived from Eq. (2) (19) using the reported CL, Vap values,
whereas vf values were derived from Eq. (1):

CLf =
vf

Vap
CL (2)

The rational for this transformation relies on the fact that the
quotients CL/Vap and CLf/vf should be equal to the elimina-
tion rate constant (19). Due to the non-linear relationship
between vf and Vap (Eq.1), Eq. (2) also expresses a non-linear
transformation of CL to CLf.

Filtered data (272 drugs) were classified into two classes
according to their volume of drug distribution value. Based
on the physiologic meaning of vf and the relationship between
vf and Vap Eq. (1) (18), the cutoff point of 67 L was assigned.
Thus, drugs of class I have Vap values lower than 67 L and
therefore the quotient vf/Vap is higher than unity (18). For
drugs of class II, vf lies in the range 67–70 L (i.e., vf/Vap <1);
Vap and vf have the same value when Vap is equal to 67 L.
Class I comprises 131 drugs with small Vap values, whereas
class II comprises 141 drugs with higher Vap values. Conse-
quently, class I comprises drugs whose Vap values are dilated
when expressed in terms of vf, whereas class II contains drugs
whose Vap values are shrinked when transformed to their vf

analogues.
A variety of physicochemical and molecular descriptors

(data available upon request) were calculated using Pallas 2.0
(Compudrug Chemistry Ltd.) and Hyperchem v.5.0/
ChemPlus v.1.6 (Hypercube Inc.). The calculated descriptors
express PK relevant fundamental properties including lipo-
philicity, ionization, molecular size and hydrogen bonding ca-
pacity.

Intrinsic lipophilicity was expressed by logP of the neu-

tral species and apparent lipophilicity by logD at pH 7.4. Both
parameters were calculated using the PrologP and PrologD
modules of Pallas 2.0 upon application of two algorithms:
CDR based on modified Rekker’s fragmental procedure (25)
and ATOMIC5 (logPG-C) based on modified Ghose–
Crippen atomic contribution system (26). Moreover the
ChemPlus module implemented in Hyperchem v.5.0 was used
for logP estimation according to the original Ghose–Crippen
systems (logPG) (27). The mean logP and logD values de-
rived from the different calculation procedures are expressed
as meanLP and meanLD, respectively.

Dissociation constants were estimated using the pKalc
module of Pallas 2.0 and expressed as acidic and basic pKa.
Several compounds had more than one acidic or basic center.
In this case, only the pKa for the most potent acidic and/or
basic group was considered. Dissociation constants were used
to categorize the drugs in term of acidic, basic or neutral
function and to calculate the fraction ionized (fi) in pH 7.4 (in
case of basic compounds).

Molecular size was expressed by molecular weight (MW)
and a variety of descriptors: molar refractivity (refr), molecu-
lar polarizability (polrz), solvent accessible surface area
(Ssol) or volume (Vsol), Van der Waals surface area (SVdW)
or volume (VVdW), and molecular polar surface area based
on solvent accessible surface area (PSsol) or Van der Waals
surface area (PSVdW). For this purpose, all O and N atoms
were considered as polar atoms. The corresponding non-polar
surface areas, nPSsol and nPSVdW, were obtained by sub-
tracting PSsol and PSVdW from Ssol and SVdW, respectively.
All molecular size descriptors were calculated using the
ChemPlus v.1.6 module implemented in Hyperchem v.5.0 af-
ter being subjected to 3-D optimization. The geometry of a
given molecule was first optimized at the empirical level using
an MM+ molecular mechanics force field, followed by unre-
stricted geometric optimization at the semi-empirical level
using an SCF calculation with convergence limit set at 0.1
kcal/mol.

Hydrogen bonding capacity was expressed with two dis-
tinct descriptors; the number of hydrogen bond donors
(HDO) and the number of hydrogen bond acceptors (HAC).
HDO considers all O-H and N-H fragments. Hydrogen be-
longing to all kinds of acids and thiols were not counted (28).
Likewise, HAC counts all oxygen and nitrogen atoms. Excep-
tions were the nitrogen in carbamides, sulfonamides, and the
nitrogen atoms that are bound with three alkyl groups.

A multivariate data analysis of the disposition param-
eters described above (CL, Vap, CLf, vf) was performed with
SIMCA-P v.8.0 (Umetri AB, Umea Sweden). PCA was ap-
plied to the total set of literature data as well as to the two
classes (class I, class II), separately. PCA is a multivariate
projection method to extract and highlight the systematic
variables in a data matrix X. Furthermore, PLS (projection to
latent structures) was used to analyze each class of data sepa-
rately. PLS is a regression extension of PCA applied to con-
nect the information in the two blocks of variables X and Y.
In our case, X comprises the descriptor matrix and Y the PK
parameters. This relation is reflected in the u-t plot (see Ab-
breviations); the ideal behavior is a linearity between the u
and t scores. The predictive ability of each model was evalu-
ated using several statistical tools (29–31). First, cross-
validation (CV) was applied, using the default values of
SIMCA-P. The second validation tool was based on the ran-

Karalis, Tsantili–Kakoulidou, and Macheras1828



domization of the responses. Scrambled Y data were the same
with the original data set but were permuted to appear in a
different order. Finally, each parent set of class I and class II
was split into a training and a validation set. PLS models for
each one of the classes were derived based only on the train-
ing sets, which then were used to predict the values of the
validation set.

RESULTS AND DISCUSSION

PCA Models

A PCA was performed using the whole data set (314
drugs). All available descriptors (X variables) were used
along with the four response variables (CL, Vap, CLf, vf). The
goal of this task was to determine strong outliers. Principal
component analysis resulted in a model with two principal
components (according to CV). The cumulative values of re-
gression parameters (R2 and Q2) are presented in Table I.
Data points lying outside the 95% confidence ellipse (Hotel-
ling T2) constitute strong outliers, Fig. 1. Due to their struc-
tural characteristics, these drugs and the compounds lying
marginally in the accepted region were expected to behave
differently. Indeed, these data were found to be almost iden-
tical with the data that had been a priori considered to be
excluded from the analysis. Subsequently, the total data set of
314 drugs was split into 2 classes, according to the vf /Vap ratio
as described in the “Methods” section. PCA models were
built for each class separately. Both data sets were described
by two principal components with R2 and Q2 values listed in
Table I. It is also worthy to mention that the outliers derived
from the separate PCA of the two classes coincide with those
identified when PCA was applied to the aforementioned total
data set. Hence, the rational for the exception for these drugs
was anew justified and the remaining 272 observations com-
prised our data set for further PLS analysis.

PLS Models

Effort was given to develop a model for each PK param-
eter separately. No adequate PLS model for CL, Vap, CLf

could be obtained with the used parameters. The u1 vs. t1
plots, which show the PLS inner relation between responses

and descriptors did not express any correlation or trend, ei-
ther for the whole data set or for each one of the classes. To
improve the statistics, a large portion of data (up to the half
number of the total data) was excluded. The decision that
drugs should be removed was based on visual observation of
the u1 vs. t1 plots. In parallel, the descriptor matrix was re-
duced in terms of variable importance contribution (VIP)
(30), as an effort to get better results. Despite of these alter-
ations, the correlation coefficients were always relatively low.
Using considerably reduced datasets, R2 did not exceed 0.550,
and Q2 0.450.

On the contrary, adequate PLS models for each one of
the two classes I and II were obtained when the parameter vf

was analyzed. The initial PLS analysis for class I resulted in
non-satisfactory statistics. However, the inner relation shown
in Fig. 2 indicates the presence of two potential subgroups.
On the basis of the data trend, the encircled drugs of Fig. 2
exhibit lower values of vf (reflected as u1) than expected. This
behavior was attributed to the effect of protein binding on the
extent of drug distribution (32), because the encircled drugs
of Fig. 2 exhibit higher protein binding than the remaining
data. In fact, the mean value of the bound fraction, fb, for the
encircled data of Fig. 2 is 0.88, whereas for the remaining is

Table I. Correlation Coefficients (R2, Q2) and Number of Significant
Components (A) for Each Model

Model Number of data A R2 Q2

PCA models
Total data set 314 2 0.706 0.654
Class I 131 2 0.883 0.841
Class II 141 2 0.849 0.796

PLS models for vf

Subcluster Ia 29a/30b 1 0.627 0.618
Subcluster Ib 101a/101b 1 0.548 0.530
Class II 132a/141b 1 0.545 0.537

Training sets
Subcluster Ia 21 1 0.621 0.607
Subcluster Ib 87 1 0.585 0.579
Class II 111 1 0.547 0.533

a Number of used data.
b Number of available data.

Fig. 1. The t1 vs. t2 score derived from PCA applied to the total data
set (314 drugs).

Fig. 2. The u1 vs. t1 plot showing the PLS relation for drugs of class
I using vf as response variable. See text for the encircled data.
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0.56. Accordingly, two subclusters were defined: the 30 drugs
within the encircled area formulated subcluster Ia, whereas
the remaining (101) drugs were considered to belong to sub-
cluster Ib. A 3-D representation of fb vs. u1 and t1 (i.e., the two
coordinates of Fig. 2) is shown in Fig. 3. This figure reveals
that the domain where Ia drugs are lying (high t1 and low u1

values; dashed area on the u1-t1 plane), comprises drugs
whose fb values tend toward unity, whereas the remaining
drugs belong to domain Ib.

Further PLS analysis of each subcluster Ia, Ib and class II
was performed utilizing the VIP criterion for the selection of
descriptors. One component models were derived for the seg-
mented sets of data with R2 and Q2 values listed in Table I.
Figure 4 A–C, shows the u1, t1 scatter plot for class Ia, Ib, and
II, respectively. The regression coefficients of the descriptors
for the three PLS models described above are shown in Fig. 5
A–C. In case of class Ia, one drug (diflunisal) proved to be
outlier and was excluded from the analysis. In the PLS analy-
sis of class II, 132 out of 141 drugs were included. The nine
excluded outliers were: amiloride, cytarabine, finasteride, li-
docaine, midazolam, nitrendipine, risperidone, trazodone,
and triamterene. For the sake of completion, Vap data were
re-analyzed considering subgroups Ia and Ib separately. The
results obtained with this parameter were again unsatisfac-
tory.

Validation

After the establishment of QSPR models for vf, the pre-
dictive ability of the models was tested. This task was imple-
mented by using the statistical tools described in the “Meth-
ods” section.

Permutation tests were based on the recalculation of the
models for randomly reordered response data. Figure 6 A–C
shows the results for the three models after 50 permutation
tests where R2 and Q2 estimates were plotted against the
correlation coefficient (RY) of the Y vector itself (i.e., this
axis characterizes the degree of correlation between per-
muted and original Y data). The intercepts of both R2, Q2

regression lines were below zero indicating robustness of the

models. Slightly worse results were obtained for class Ia

model, Fig. 6A.
The validation—training sets were formulated using a

random generator program developed in Mathematica 4.0
(Wolfram Research, Inc.). Approximately, 20% of the drugs
belonging to the three data sets (subclusters Ia and Ib and
class II) were selected for the validation sets. The newly de-
rived PLS models for the training sets of each class were
almost identical with those obtained from the whole data sets,
because both the correlation coefficients and the contribution
of descriptors expressed the same behavior. The observed vs.

Fig. 3. The 3-D relationship for the bound fraction (fb) of class I
drugs with the u1 and t1 values derived from the PLS analysis shown
in Fig. 2. Dashed ellipse on the u1-t1 plane represents the projection
of the space that is occupied from Ia drugs.

Fig. 4. The u1 vs. t1 plot showing the PLS relation for: subcluster Ia

(A), subcluster Ib (B), and class II (C).
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predicted vf values for each set of drugs are shown in Fig. 7
A–C, whereas the correlation coefficient values for the new
models derived are presented in Table I. The RMSEP values
shown in Fig.7 A–C were higher for class Ia and Ib than class
II. However, this observation originates from the different
range of the data values (i.e., 3 – 67 L for classes Ia, Ib, and
67–70 L for class II). This successful validation (Fig. 7) in
conjunction with the permutations results (Fig. 6) allows one
to infer that the developed models are reliable, especially for
subcluster Ib and class II that include a large number (101 and
132, respectively) of structurally diverse drugs. In case of class
Ia, we cannot be confident at the same degree due to the small
amount of data (29 drugs).

Molecular Descriptors—Disposition Parameters: Overview

The inability to approximate any correlation between
Vap, CL, CLf and a large variety of molecular descriptors lead
to useful conclusions. Overall, the three parameters globally
attempt to express drug distribution (Vap) and elimination
(CL, CLf) but according to our results fail to reflect the phys-
icochemical properties of drugs.

Fig. 5. Regression coefficients for the three models describing vf re-
sponse for drugs of: subcluster Ia (A), subcluster Ib (B), and class II (C).

Fig. 6. Validation plot (based on 50 randomization cycles) for the
three models describing vf responses for drugs of: subcluster Ia (A),
subcluster Ib (B), and class II (C). RY refers to the correlation coef-
ficient of the Y vector itself.
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For Vap, the fictitious numerical values reported in lit-
erature are the most plausible interpretation for this failure. It
seems likely that the Vap values provide only a qualitative
measure for the distribution of drug in the body but fail to
quantify it. This drawback originates from the heterogeneity
of the human body in conjunction with the experimental
methods used for the estimation of Vap. Unavoidably, Vap

estimates are exclusively derived from drug measurements in
plasma that is a homogeneous space but a tiny portion of the
heterogeneous body.

In the same vein, a number of physiologically based
causes can be quoted for the failure in establishing correlation

between CL, CLf and the molecular descriptors. These pa-
rameters express the volume cleared per unit of time and
therefore are highly affected by the way we conceive the vol-
ume of drug distribution (fractal (18,19) or classic). Besides,
CL and CLf are composite and in essence hybrid parameters
because different physicochemical factors govern renal and
hepatic processes. In addition, the time dependent or stochas-
tic character of the clearance terms cannot be ruled out if one
takes into account the diffusion of drugs in the heterogeneous
spaces of the human body and the complexity of elimination
processes. Relevant remarks have been reported in literature
sporadically (33–38).

The transformation of Vap values to vf using Eq. (1)
seems to be the underlying cause for the valid models found
for vf. These findings allow a global consideration of the phys-
icochemical properties that govern the distribution of drugs in
the human body. To interpret the results for vf in a compara-
tive manner, the frequency distribution of vf values for the
three classes is presented in Fig.8. The mean value of vf fol-
lows the ranking: Ia < Ib < II, whereas the composition of
classes in terms of ionic centers indicates that the acid/base
ratio decreases dramatically as we move from left to right,
Fig. 8. Lipophilicity and apparent lipophilicity are moderate
in class Ia, lower in class Ib, and higher in class II. Lipophilic-
ity, either intrinsic or apparent, seems not to play a dominant
role in vf for class Ia (Fig. 5A). Molecular size descriptors
contribute in a negative way to vf, which constitutes a reason-
able finding. Moving from class Ia to class Ib (Fig. 5B) the
negative contribution of bulk descriptors is reflected in mo-
lecular refractivity and molecular weight. Molecular polar

Fig. 7. Predicted vs. observed values of vf for the three models de-
scribing drugs of: subcluster Ia (A), subcluster Ib (B), and class II (C).
The dashed line indicates complete concordance. The values corre-
spond to root mean square error prediction (RMSEP).

Fig. 8. Frequency distribution of the vf values for class Ia, Ib, and II.
The relative size of the areas under the curves corresponds to the
number of drugs in each class: 29 (Ia), 101 (Ib) and 132 (II). The (%)
ionic center composition of the compounds is presented next to the
name of each class. Key (%): n � neutral, a � acidic, and b � basic
compounds.
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surface area is an additional negative factor, while apparent
lipophilicity expressed as logD has a positive effect on vf.
Class II comprises drugs with large vf values and includes
mainly basic, lipophilic compounds, Fig. 8. Molecular polar
surface area contributes in a negative way to vf, whereas li-
pophilicity has a positive impact (Fig. 5C). In this model, the
fraction ionized (fi) concerning the basic function seems a
dominant variable with a positive sign, indicating that next to
lipophilicity protonation is also important for the movement
of basic drugs to peripheral tissues.

CONCLUSION

Due to their composite character, the parameters Vap,
CL, CLf do not exhibit any correlation with the molecular
descriptors. Two drug classes (I, II) were formulated on the
basis of PLS models derived for vf. Class I was further sepa-
rated in two subclusters Ia and Ib. High protein binding was
found as the dominant factor, whereas molecular size contrib-
utes in a negative way to vf for class Ia drugs. For class Ib, vf

has a trend to increase with the increase of apparent lipo-
philicity whereas molecular refractivity, molecular weight,
solvent surface area and polar surface area enter with a nega-
tive sign. For class II, vf increases with the increase of lipo-
philicity and basicity of compounds whereas polar surface
area has a negative contribution.

Overall, this study elucidates the relationships between
the molecular descriptors and vf. Because the correlations
found for vf were based on a great number of structurally
unrelated drugs, one can anticipate the development of
QSPR models when specific drug categories will be used.
These models will certainly be practically useful for predictive
purposes.
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