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The theory of nonlinear dynamical systems (chaos theory), which deals with deterministic systems that
exhibit a complicated, apparently random-looking behavior, has formed an interdisciplinary area of
research and has affected almost every field of science in the last 20 years. Life sciences are one of the
most applicable areas for the ideas of chaos because of the complexity of biological systems. It is widely
appreciated that chaotic behavior dominates physiological systems. This is suggested by experimental
studies and has also been encouraged by very successful modeling. Pharmacodynamics are very tightly
associated with complex physiological processes, and the implications of this relation demand that the
new approach of nonlinear dynamics should be adopted in greater extent in pharmacodynamic studies.
This is necessary not only for the sake of more detailed study, but mainly because nonlinear dynamics
suggest a whole new rationale, fundamentally different from the classic approach. In this work the basic
principles of dynamical systems are presented and applications of nonlinear dynamics in topics relevant
to drug research and especially to pharmacodynamics are reviewed. Special attention is focused on three
major fields of physiological systems with great importance in pharmacotherapy, namely cardiovascular,
central nervous, and endocrine systems, where tools and concepts from nonlinear dynamics have been
applied.
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INTRODUCTION

The values of the measured properties of many physi-
ological systems look random. We are used to thinking that
the determinants of variability are unknown because the fac-
tors affecting the phenomena studied are numerous. This idea
relies on the classical view of randomness, which requires that
a complex system has a large (perhaps infinite) number of
degrees of freedom that are not directly observed but whose
presence is manifested through fluctuations. However, over
the last two decades, scientists from various fields of research
have shown that randomness generated by deterministic sys-
tems (dynamical systems) exhibit spectra practically indistin-
guishable from spectra of pure random processes. This is re-
ferred to as chaotic behavior, a specific subtype of nonlinear
dynamics, which is the science dealing with the analysis of
dynamical systems (1,2).

The paradox with the term chaos is the contradiction
between its meaning in colloquial use and its mathematical
sense. Routinely, we use the word chaos in every day life as a
synonym of randomness with (usually) catastrophic implica-
tions; in mathematics, chaos refers to irregular behavior of a
system that appears to be random, but is not. Accordingly,

this apparently random-looking behavior poses a fundamen-
tal dilemma for the origin of randomness in a set of irregular
observations of a studied system: Is the system chaotic or not?
In other words, does the irregular behavior of observations
arise from noise or chaos? (Fig 1, A and B)

The key element in this complex, unpredictable, random-
like behavior is nonlinearity. When a system consists only of
linear terms, a result is proportional to its stimulus and the
cumulative effect of two stimuli is equal to the summation of
the individual effects of each stimulus. This is the superposi-
tion principle, which states that every linear system can be
studied by analyzing it into its components, taking complexity
out of the question. In contrast, for nonlinear systems, the
superposition principle does not hold; the overall behavior of
the system is not at all the same as the summation of the
individual behaviors of its components, making complex, un-
predictable behavior a possibility. Nevertheless, not every
nonlinear system is chaotic, which means that nonlinearity is
a necessary but not a sufficient element for chaos.

The basic ideas of chaos were introduced more than a
hundred years ago; however, its significance and implications
were realized relatively recently because chaos was studied in
detail after the wide spread of computers in the seventies.
Although its study started from the fields of mathematics,
astronomy and physics, scientists from almost every field
grew interest in these ideas. Life sciences are one of the most
applicable areas for the ideas of chaos due to the complexity
of biological systems, although many consider the advanced
mathematics used, a drawback. The last 20 years the science
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of chaos has formed a truly interdisciplinary area of research
which has changed the way people look at phenomena in
every field of science.

This work is divided into two sections. In the first section
the basic principles of dynamical systems are presented. In the
second part, applications of nonlinear dynamics in topics rel-
evant to drug research are reviewed.

BASIC PRINCIPLES OF DYNAMICAL SYSTEMS

A dynamical system is a deterministic mathematical sys-
tem whose state is defined at any time by the values of N
variables x1, x2, . . . , xN, and its evolution in time is deter-
mined by a set of rules. These rules, given a set of initial
conditions x1(t0), x2(t0), . . . , xN(t0), determine the time evo-
lution of the system in a unique way. This set of rules can be
either differential equations of the form:

dxi

dt
= fi@x1, x2,...,xN,t;a#, i = 1,2,...,N (1)

and then the system is called a flow, or discrete equations
where every consequent generation of the variable xi is given
by an equation of the form

xi,n+1 = fi@x1,n, x2,n,...,xN,n;a#, i = 1,2,...,N (2)
where xi,n stands for the nth generation of the ith variable,
and then the system is called a map. In the above definitions
a represents a set of dynamical parameters of the system,

having constant values. These parameters are also called con-
trol parameters. The set of the system’s variables forms a
mathematical space called phase space (1). A point in the
phase space represents a unique state of the dynamical sys-
tem. Thus the evolution of the system in time is represented
by a curve in the phase space called trajectory. The number of
variables needed to describe the system’s state, which is the
number of initial conditions needed to determine a unique
trajectory, is the dimension of the system. There are also dy-
namical systems that have infinite dimension. Such systems
are usually described by differential equations with partial
derivatives or time delay differential equations, which can be
considered as a set of infinite in number ordinary differential
equations. The main property of the phase space is that tra-
jectories can never intersect themselves or each other due to
the uniqueness of the solutions. The phase space is a valuable
tool in dynamical systems analysis since it is easier to analyze
the properties of a dynamical system by determining topolog-
ical properties of the phase space rather than analyzing the
time series of the values of the variables directly.

Dynamical systems are classified in two main categories:
the conservative and the non-conservative systems. The con-
servative systems have the major property of conserving the
volume that is formed by an initial set of points in the phase
space as times goes by, although the shape of the volume may
change. In other words, a volume in the phase space re-

Fig. 1. (A) A series of uniformly distributed random numbers between 0 and 1. (B) Plot generated by
the logistic map, a deterministic system of the form xn+1 4 4xn(1 − xn). It is impossible to distinguish
them visually (A or B). (C and D) The pseudophase plots of the two sequences of plots A and B,
respectively. Each xn is plotted against its consequent xn+1. The random sequence (A) produces a
pseudophase space of scattered points (C) showing that there is no correlation between successive
points. On the contrary, the points of the deterministic sequence (B) lay in a well formed line (D).
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sembles an incompressible liquid. On the other hand, non-
conservative systems do not possess this property and an ini-
tial volume in the phase space, apart from changing its shape,
it may also grow or shrink. In the latter case (when the vol-
ume shrinks) the system is called more specifically, dissipa-
tive. Most systems in nature, including biological systems, are
dissipative.

The trajectories of dissipative dynamical systems, in the
long run, are confined in a subset of the phase space, which is
called attractor (1), i.e., the set of points in phase space where
the trajectories converge. An attractor is usually an object of
lower dimension than the entire phase space (a point, a circle,
a torus, etc). For example, a multidimensional phase space
may have a point attractor (dimension 0), which means that
the asymptotic behavior of the system is a steady state, or a
limit cycle (dimension 1) which corresponds to a periodic
asymptotic behavior, an oscillation. Even the solutions of sys-
tems with infinite dimension, like systems described by partial
differential equations, may lie on attractors of low dimension
(1). A phase space of a system may also have more than one
attractors. In this case the asymptotic behavior, i.e., to which
attractor a trajectory ends up, depends on the initial condi-
tions. Thus, each attractor is surrounded by an attraction ba-
sin, which is the part of the phase space in which every initial
condition gives a trajectory that ends up to the specific at-
tractor. Schematic representations for the point, the limit
cycle and the torus attractors, are depicted in Figure 2,
whereas the point attractor of a classical pharmacokinetic-
pharmacodynamic system is shown in Figure 3.

A dynamical system may exhibit qualitatively different
behavior for different values of its control parameters. Thus,
a system which has a steady state (point attractor) for some
value of a parameter, may oscillate (limit cycle) for some
other value. The critical value where the behavior changes, is
called a bifurcation point and the process, bifurcation (1).
More specifically this kind of bifurcation, i.e. the transition
from a point attractor to a limit cycle, is referred to as Hopf
bifurcation.

The most widely known bifurcation is pitchfork bifurca-
tion. Consider the one-dimensional map

xn+1 4 f [xn] 4 axn[1 − xn] (3)

This difference equation is called logistic map, and rep-
resents a simple deterministic system, where given a xn one
can calculate the consequent point xn+1 and so on. It was
introduced by May to describe the dynamics of a single spe-
cies population (1). For values of the control parameter a
between 1 and 3, Eq. 3 exhibits two steady states which can be
considered of period 1, namely xs,1a 4 (a − 1)/a and the trivial
xs,1b 4 0. These steady states are the solutions of the alge-
braic equation x 4 f [x] 4 ax(1 − x). Although the steady
states are two, for any initial condition different than x 4 0
the system after a few steps will end up to xs,1a (Fig. 4A). This
is so because steady state xs,1a is stable, while steady state xs,1b

is unstable. The stability of steady state xs,1a means that a
small change in the initial condition will not influence the
final state of the trajectory, which will end up at xs,1a. On the
other hand, steady state xs,1b is unstable since a small change
in the initial condition x 4 0 will lead the trajectory away
from xs,1b 4 0, and towards the stable steady state xs,1a 4 (a
− 1)/a, although for initial condition exactly x 4 0 the system
will remain always at x 4 0.

For values of a higher than 3 the steady state xs,1a be-
comes unstable and gives birth to a new steady state of period
2, namely

xs,21,xs,22 =
a + 1 ± =a2 − 2a − 3

2a

which is a solution of the equation x 4 f [f [x]] 4 a2x (1 −
x)[(1 − ax (1 − x))]. What happens now is that for any initial
condition, except x 4 0 and x 4 (a − 1)/a, the system after a
few steps will end up forming a never-ending succession of the
two values of xs,21 and xs,22 (Fig. 4B). This type of bifurcation
is called pitchfork bifurcation. It must not be confused with
Hopf bifurcation, since both attractors are of the same dimen-
sion, only the period is doubled. For an even higher value of
a, namely a > 1 + √6 the stable steady state of period 2 be-
comes unstable and a new stable steady state of period 4 is
born (Fig. 4C). The procedure of period doubling bifurcation
continues as the value of the parameter a grows (Fig. 5). The
difference between the values of a at which two successive
bifurcations take place decreases (Fig. 5). It was actually
found that the ratio of two successive intervals of a between

Fig. 2. A schematic representation of the various types of attractors. Left: the point attractor. Regardless the
initial conditions, the system ends up to the same steady state. Middle: A limit cycle. The system always ends
up doing a specific oscillation. Right: A torus attractor. The torus is the two-dimensional (2D) equivalent of
a circle. In fact, a circle can be called a 1-torus, the 2D torus can be called a 2-torus and there is also the 3-torus
and generally the n-torus. The trajectory on a 2-torus is a 2D oscillation with the ratio of the frequencies of
the two oscillations being non-rational. Because the trajectory never passes from the same point twice, in
infinite time fills the entire surface of the torus. This type of trajectory is called quasiperiodic. Being an
attractor, the torus attracts all trajectories to fall on its surface and follow the quasiperiodic behavior.
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successive bifurcations is universally constant, namely d 4
4.66, not only for this specific system, but for all systems of
this kind and it is referred to as Feigenbaum constant (1).

The period doubling sequence continues asymptotically
as a approaches a critical point around a 4 3.6, where the
period goes to infinity. So, for a > 3.6 there exist infinite

unstable steady states of period 1, 2, 4, 8, . . . and no stable
steady states (Fig. 5). This means that almost any initial con-
dition leads to a non periodic trajectory which looks random
(Fig. 4D). This behavior is called chaotic.

So, apart from the regular behavior, which is either
steady state, periodic, or quasiperiodic behavior (trajectory
on a torus, Fig. 2), some dynamical systems, exhibit chaotic
behavior, i.e., trajectories follow complicated non-periodic
patterns that resemble randomness. Necessary but not suffi-
cient conditions in order for chaotic behavior to take place in
a system described by differential equations, is that it must
have dimension at least 3, and it must contain nonlinear
terms. However, it is not certain for three nonlinear differen-
tial equations to exhibit chaotic behavior. This kind of behav-
ior may not take place at all, and when it does, it usually
occurs only for a specific range of the system’s control pa-
rameters.

The main characteristic of chaotic behavior is the sensi-
tivity to initial conditions. This means that nearby trajectories,
whose initial conditions are slightly different, follow com-
pletely different evolution in time (Fig. 4D). This property
has the implication of nonpredictability of the time evolution
of the system in the long run due to our inability to know the
initial conditions with infinite accuracy. The deviation of two
initially neighboring trajectories increases exponentially with
time i.e. proportional to exp(lt), where the exponent l is
called Lyapunov exponent (1). The Lyapunov exponent is an
indicator of the chaotic behavior of the system. A dynamical
system has the same number of Lyapunov exponents as its
dimension. The Lyapunov exponents express the deviation of
initially nearby trajectories in each “direction.” So, a Lyapu-
nov exponent may be negative for a stable “direction,” which
expresses the exponential approach of two nearby trajecto-
ries, zero for a nonexponential deviation and positive for ex-
ponential deviation. A system of high dimension may have
Lyapunov exponents of all signs and is considered chaotic if at
least one of them is positive, which states that at least in one
“direction” there exists sensitivity to the initial conditions.

Because chaotic systems may have both negative and
positive Lyapunov exponents, their asymptotic behavior can
be limited in an attractor as well, where the negative expo-
nents express the convergence to the attractor and the posi-
tive the exponential divergence (chaotic behavior) within the
attractor. These chaotic attractors are not elementary topo-
logical entities with integer dimensions, like a point, a circle
or a torus. Instead they have a fractal dimension, which de-
fines an extremely complicated object of infinite detail, being
confined though in a finite space. This kind of attractor is
called a strange attractor (1), and the integer dimension of the
entire phase space in which the attractor lives, is called em-
bedding dimension of the attractor (Fig 6A). The two con-
cepts of the exponential divergence of initially neighboring
trajectories and the confinement in a compact space, look
controversial. However, the fractal structure of the strange
attractor makes their coexistence feasible.

The concepts of nonlinear dynamics do not only apply in
abstract mathematical systems that are described by maps or
differential equations. Useful results can be obtained for real
life data as well. Real life data, like biological signals, are
usually time series of measured quantities. Instead of studying
a time series statistically the idea is to consider it as if it came
out of a dynamical system. Then, one tries to reconstruct its

Fig. 3. (B) A typical example of a two dimensional phase space plot
is the Concentration (C) over Effect (E) counter clockwise hysteresis
loop plot, which is used in pharmacokinetics/pharmacodynamics.
Here the two variables, C and E, are used to construct the phase
space of a system of a one compartment indirect link model with
bolus intravenous injection. The arrow indicates the time flow. Each
point represents a uniquely defined state and only one trajectory may
pass from it. The phase space has a point attractor, i.e., a steady state,
which is obviously the point (C 4 0, E 4 0) reached at theoretically
infinite time. Three different initial conditions of the form (C 4 dose,
E 4 0), are used to generate three different trajectories which all end
up to the point attractor. The integrated equations of the system are

C =
D

V
? e−k10t, E =

D ? Emax ~e−k10t − e−kEt!

CE50
V~k10 − kE! + D~e−k10t − e−kEt!

where D 4 0.5, 0.75, and 1 (from left to right) are the doses, V 4 1
is the volume of distribution, k10 4 0.1 is the elimination rate con-
stant, kE 4 0.5 is the effect site dissipation rate constant, Emax = 1 is
the maximum effect, and CE50

4 0.7 is the concentration at which the
50% of the maximum effect is observed (all units are arbitrary). (A)
The classical time profiles of the two variables, C and E,for D 4 0.5,
are shown.
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phase space (pseudophase space) and see if any structure is
detectable, either visually or using certain mathematical and
numerical tools. The absence of any structure in the phase
space, that is scattered points, means that it is not a real phase
space and the system is stochastic (Fig. 1C). However, the
presence of structure is an evidence of the dynamical origin of
the time series and the existence of an attractor (Fig. 1D). The
dimension of the attractor can give us information for the
dynamical behavior of the whole system. If, for example the
dimension of the attractor is not an integer, it corresponds to
a strange attractor and the system exhibits chaotic behavior.
The embedding dimension of the attractor, which is actually
the dimension of the reconstructed phase space and in the
case of a strange attractor should be the next greater integer
of the fractional dimension, gives the least number of inde-
pendent variables, or quantities, needed to describe the sys-
tem.

The phase space reconstruction of a time series is accom-
plished by the method of delays. An embedding dimension N
is chosen, plus a time delay t, and then the phase space is
constructed using as variables x(t), x(t + t), . . . ,x(t + (N −

1)t), for all t (Fig. 6). It is evident that the choice of N and t
is crucial for the reconstruction. There are certain theorems
and tests that help in the proper choice of these parameters,
but also experience and trial are always valuable tools. It must
be mentioned though that due to the automated character of
the algorithms, the danger of misleading results always exists.
During the past years an overuse of these techniques was
noticed and many of the results obtained by this rationale
were either wrong or led to erroneous conclusions due to
poor application of the techniques and algorithms.

The estimation of the dimensionality of a time series,
which comes out as a result from the phase space reconstruc-
tion procedure, is important information for the prospect
mathematical modeling of the system. A key factor in the
mathematical modeling is parameter estimation. One usually
needs to fit the established mathematical model to experi-
mental data in order to estimate the control parameters of the
system both for simulation and comparative purposes. How-
ever, a task so common in a classical system is quite difficult
in a chaotic one. The sensitivity of the system’s behavior from
the initial conditions and the control parameters, makes it

Fig. 4. The logistic map, for various values of the parameter a. (A) a steady state of period 1 for a 4

2.7; (B) a steady state of period 2 for a 4 3.2; (C) a steady state of period 4 for a 4 3.5; (D) Two chaotic
trajectories for a 4 4 are coplotted. Only the initial conditions of the two trajectories differ slightly. For
the solid line the initial condition is x 4 0.1, whereas for the dashed line it is x 4 0.10001. Although the
difference is extremely small, the effect is not at all negligible. The orbits follow an indistinguishable
route only for the first 10 steps. Right after, they deviate dramatically. Thus, the sensitivity from the
initial conditions, together with its main consequence of long term unpredictability, are exhibited. The
initial condition for all solid line plots (A to D) is x 4 0.1.
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very hard to assess the parameters using tools such as least
square fitting, however efforts have been made to deal with
this problem (3).

APPLICATIONS OF NONLINEAR DYNAMICS
RELEVANT TO DRUG RESEARCH

Biopharmaceutics–Pharmacokinetics

Pharmacokinetic (PK) studies are in general less variable
than pharmacodynamic (PD) studies (4). This is so since sim-
pler dynamics are associated with pharmacokinetic processes.
According to van Rossum and de Bie (5), the phase space of
a pharmacokinetic system is dominated by a point attractor
since the drug leaves the body, i.e., the plasma drug concen-
tration tends to zero. Even when the system is as simple as
that, tools from dynamical systems theory are still useful.
When a system has only one variable a plot referred to as
phase plane can be used to study its behavior. The phase plane
is constructed by plotting the variable against its derivative.
The most classical, quoted even in textbooks, phase plane is
the dC/dt vs. C plot of the ubiquitous Michaelis–Menten ki-
netics (Fig. 7). In the pharmaceutical literature the phase
plane plot has been used for the discernment of absorption
kinetics and the estimation of the elimination rate constant
(6,7).

To the best of our knowledge, only one model exhibiting
chaotic behavior has been published in the pharmaceutical
literature (8,9). This is the population growth model of dis-
solution, which is based on a recursion equation and was used
to describe both classical and supersaturated dissolution pro-
files. This model, for specific ranges of values of the control
parameters can exhibit chaotic behavior which mimics ad-
equately the supersaturated dissolution profiles.

Another topic in which there is a potential use of dy-
namical systems theory is the analysis of variability encoun-

tered in PK studies with highly variable orally administered
formulations (10). For example, the dissolution of a sparingly
soluble drug takes place in the continuously changing envi-
ronment of the gastrointestinal (GI) lumen (11). Because of
the interactive character of the three principal physiological
variables that affect drug dissolution i.e., the motility of in-
testines, the composition, and volume of GI contents, a dy-
namical system of low dimension can be envisaged. If this is a
valid hypothesis a significant portion of the high variability
encountered in the GI absorption studies (10) can be associ-
ated with the dynamics of the physiological variables control-
ling drug dissolution, transit and uptake. However, the inac-
cessibility of the region and thus the difficulty to obtain de-
tailed information for the variables of interest, impose one to
infer that the observed variability (10) originates exclusively
from classical randomicity. Finally, the heterogeneous dy-
namical picture of the GI tract becomes even more compli-
cated, by the coexistence of either locally or centrally driven
feedback mechanisms e.g., avitriptan (12). Experimental ob-
servations indicate (12) that when avitriptan blood levels ex-
ceed a certain threshold level, a centrally driven feedback
mechanism which affects gastric emptying is initiated. Conse-
quently, the presence or absence of double or multiple peaks
of avitriptan blood levels is associated with the dynamical
system describing the dissolution, uptake of drug as well as
the feedback mechanism controlling the functioning of the
pylorus. It can be concluded that the use of nonlinear dynam-
ics in GI absorption studies can provide a tool for the inter-
pretation of variability and the understanding of unpredict-
ability in situations where single, double or multiple peaks are
observed and classical explanations, e.g., enterohepatic cy-
cling, are not applicable.

Ligand–Receptor Interaction

Pharmacodynamics traditionally has been based on the
mass action law which governs the drug-receptor interaction.
This consideration leads to the classical Emax model, which is
used routinely in most PD studies. However, deviations from
this behavior can be anticipated when an endogenous sub-
stance e.g., a hormone or a neurotransmitter, is considered
and a feedback mechanism, induced by the formation of a
ligand–receptor complex, operates to maintain a basal ligand
value. Indeed, Tallarida (13) has analyzed such a system using
techniques of nonlinear dynamics and has shown that this
system can be either dynamically stable or unstable, depend-
ing on the values of the parameters involved. These theoret-
ical results were confirmed experimentally in a quantitative
study of the control of dopamine release by negative feedback
in the rat striatum (14). A consequence of this model is that
competitive antagonists augment dopamine release, whereas
competing agonists reduce such release. A new quantitative
concept that describes the feedback control of the dopami-
nergic system is introduced, the control curve. Once known,
the ligand’s control curve has predictive value that may be
useful in the design of efficient drug tests. These findings may
be of a more general importance because baseline parameters
are crucial in determining PD responses (15) whereas feed-
back mechanisms are frequently involved in the physiological
processes e.g., the secretion of hormones, the recurrent in-
hibitory pathway for g-aminobutyric acid (GABA) in the hip-
pocampus, which has been described in almost every type of

Fig. 5. The bifurcation diagram of the logistic map. The stable steady
state of x as a function of the parameter a is plotted. Below a 4 3 the
steady state is of period 1 and then following the Feigenbaum se-
quence, the period doubles repeatedly and goes to infinity as a ap-
proaches the critical point a ≅ 3.6. This type of bifurcation is referred
to as pitchfork due to the shape of this plot. Above a 4 3.6 all steady
states are unstable and the system is chaotic.
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neural tissue, ranging from the lowest invertebrates through
humans (16), and the production of biotech products in hu-
mans (17). As a matter of fact, the state of the art in PK/PD
studies relies heavily on the concept of indirect response (15),
which is based on our ignorance of the detailed nature of
drug–receptor interaction in the biophase and in particular, of
the “post-receptor events” (4) after the formation of drug-
receptor complex. Recent research on the signaling between
receptors (18) indicates that the “response” can be, in several
cases, much more complex than it is supposed in PK/PD mod-
els.

In the next paragraphs three major fields of physiological
systems with great importance in pharmacotherapy, namely
cardiovascular, central nervous, and endocrine systems, and
where tools and concepts from nonlinear dynamics have been
applied, will be discussed.

Cardiovascular System

Numerous applications of nonlinear dynamics and chaos
theory to cardiac physiology have been published (19). Many
techniques, either statistical (like spectral analysis) or dy-
namical (like phase space reconstruction) applied to electro-
cardiogram (ECG) data clearly indicate that the frequency of
the heartbeat is essentially irregular. The ECG was in fact,
one of the first biological signals studied with the tools of
nonlinear dynamics. Studies applying concepts from chaos
theory to ECG data, regarding the effects of drugs on the
dynamics of cardiac physiology, have also been published.

Fig. 6. (A) the Rossler strange attractor (1). The system is dx/dt 4 −y
− z, dy/dt 4 x + 0.2y, dz/dt 4 0.4 + xz − 5.7z, with initial conditions
x(0) 4 3, y(0) 4 3, z(0) 4 0. The single trajectory plotted, never
passes from the same point a second time without however leaving a
compact volume, thus forming a fractal object of infinite detail (frac-
tal dimension ≅ 2.07). (B) the x variable of the same trajectory is
plotted as a function of time, exhibiting its obvious nonperiodicity.
(C) the Rossler attractor is reconstructed with the method of delays,
making use only of the data from the x variable, as it would be if x

was an observable quantity and nothing more of the underlying dy-
namics was known. Of course, here the dimension of the system is
also known and one does not have to try other dimension values.

<
Every value of x(t) is plotted against x(t + T) and x(t + 2T) with lag
time T 4 1. The reconstructed phase space is not identical to the
original one, however, the main topology and features are depicted
adequately.

Fig. 7. A −dC/dt vs C plot of a one compartment model with bolus i.v.
input and Michaelis–Menten elimination. The arrows indicate the
time flow. This widely used type of plot is actually a phase plane plot.
Michaelis–Menten kinetics is the first thing that comes in the mind of
a pharmaceutical scientist regarding nonlinear differential equations.
This type of non-linear differential equations, however, are associ-
ated with regular behavior in every day experience. Indeed, the fact
that they are usually used in systems of a single variable, takes chaotic
behavior out of the question. But even if one uses three or more
coupled differential equations, including nonlinear terms of any type,
chaotic behavior is not guaranteed. The behavior of a system may still
be regular in the region of the control parameters that there is inter-
est in, or even in the whole region of control parameters space.
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Examples include the effect of atropine on cardiac interbeat
intervals (20), the induction of cellular chaos during quinidine
toxicity (21), the attempt to control cardiac chaos using oua-
bain (22), and the effect of anticholinergic drugs on heart rate
variability (23).

Another very successful application of nonlinear dynam-
ics to the heart is through mathematical modeling. An ex-
ample in which a simple model based on coupled oscillators
describes the dynamics of agonist induced vasomotion is in
the work of de Brouwer et al. (24), where the route to chaos
in the presence of verapamil, a class IV antiarrhythmic drug,
is studied.

Undoubtedly, the most promising modeling of the car-
diac dynamics is associated with the study of the spatial evo-
lution of the cardiac electrical activity. The cardiac tissue is
considered to be an excitable medium of which the electrical
activity is described both in time and space by reaction–
diffusion partial differential equations (25). This kind of sys-
tem is able to produce, spiral waves, which are the precursors
of chaotic behavior. This consideration explains the transition
from normal heart rate to tachycardia, which corresponds to
the appearance of spiral waves, and the following transition to
fibrillation, which corresponds to the chaotic regime after the
breaking up of the spiral waves (Fig. 8). The transition from
the spiral waves to chaos is often characterized as electrical
turbulence due to its resemblance to the equivalent hydrody-
namic phenomenon. These concepts have been successfully
applied to the effect of antiarrhythmic drugs as well. It is
widely known that although class II antiarrhythmic drugs, like
isoproterenole, have shown satisfactory results (26), class I
and III agents, such as encainide, flecainide, and moricizine,
have been shown even to increase sudden death rate caused
by ventricular fibrillation (27). Although it is unclear how to
integrate the drug action in the excitable media models, suc-
cessful attempts have been made to simulate, mainly, two-
dimensional cardiac tissue (28,29). Also three-dimensional

(3D) cardiac tissue has been simulated as well (30), where the
3D equivalent of spiral waves appear, the scroll waves. These
models explain how a drug can exhibit antiarrhythmic action
in a single cell system, which ignores the spatial evolution,
while acting as proarrythmic in a system of a whole cardiac
tissue of spatial dimension 2 or 3. This has given rise to a new
approach to antiarrhythmic drug evaluation based on the cha-
otic dynamics of the transition from tachycardia to fibrillation
(29–31), which is also supported by experimental evidence
(30). The results of these recent studies (31) indicate that the
failure to predict long-term efficacy of classs I and III antiar-
rhythmic agents in patients with ischemic heart disease (27)
may be associated with the limitations of the classical ap-
proach which is based only on the suppression of premature
ventricular polarization on the electrocardiogram i.e., the ini-
tiation of tachycardia. Sudden cardiac death resulting from
ventricular fibrillation, however, is separated into two com-
ponents: initiation of tachycardia and degeneration of tachy-
cardia to fibrillation. It is proposed by these studies that a new
antiarrhythmic drug classification scheme must be adopted
which should incorporate the antifibrillatory profile based on
results from excitable media modeling, together with the clas-
sical antitachycardiac profile (classes I to IV scheme). Also,
the drug bretylium is proposed as a prototype for future de-
velopment of antifibrillatory agents (30).

In the pharmaceutical literature (32), the pharmacody-
namics of antiarrhythmic drugs are treated with the classical
models, Emax, indirect link with effect compartment, etc.
Variability, wrong dosage scheme, narrow therapeutic index
and lack of individualization of treatment are the dominant
interpretations for the failure of these drugs. Another factor
held responsible for the failure in treatment with antiarrhyth-
mics is the possible non-bioequivalency of the generics used
(33). However, classical bioequivalence studies, are based
only on the comparison of pharmacokinetic parameters of the
formulations (Cmax, area under the curve [AUC]); although
testing for therapeutic equivalence is implied, pharmacody-
namics are not taken into account at all. Thus, classical bio-
equivalence studies may be inappropriate to assess the effects
of antiarrhythmic drugs if their mechanism of action relies on
a nonlinear dynamical system as the studies of the UCLA
team (29–31) indicate.

Central Nervous System (CNS)

The application of non-linear dynamics to brain electrical
activity offers new information about the dynamics of the
underlying neuronal networks and formulated the brain dis-
orders on the basis of qualitatively different dynamics (34).
Once again, most of studies in this field applying non-linear
tools are based on experimental electroencephalogram
(EEG) recordings and demonstrate the irregular behavior of
the brain electrical activity. Various metrics have been used to
assess the EEG variability, using phase space reconstruction
techniques or even calculating the fractality of the EEG re-
cording in real time (35). These tools, apart from pointing out
the obvious complexity of the brain electrical signals, offer
supplemental information to the classical techniques, such as
Fourier analysis, to distinguish qualitatively different EEG
recordings, e.g., in epileptic seizures (36), in Parkinson’s dis-
ease (37), or in schizophrenia (38). In the same context, low
doses of ethanol have been found to reduce the non-linear
structure of brain activity (39). Most of the PK/PD studies of

Fig. 8. The four snapshots show the evolution and break up of a
spiral wave pattern in 2D simulated cardiac tissue (300 × 300 cells).
The chaotic regime shown in the final snapshot, corresponds to fi-
brillation. [From (31) with permission.]
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centrally acting drugs rely on quantitative measures of EEG
parameters (40). However, an ideal EEG parameter to char-
acterize the CNS effect of drugs has not been found as yet. To
the best of our knowledge, time series analysis of EEG data
of PD studies with CNS drugs using techniques of non-linear
dynamics are limited. Examples include investigations of the
influence of anticonvulsive (41) and antiepileptic (42) drugs in
epilepsy, the study of sleep EEG under lorazepam medication
(43), the study of the effects of pregnenolone sulfate and
ethylestrenol on rat behavior (44), the investigation of the
electrophysiological effects of the neurotoxin 5,7-dihydroxy-
tryptamine (45), and the study of epileptiform bursts in rats
after administration of penicillin and K+ ions (46).

Modeling in the brain is targeted mainly to the general
qualitative principles underlying the various phenomena,
such as epileptic seizures (47) and not of course to quantita-
tive assessment and forecasting as one would expect to
achieve in simpler systems. For example in (16), modeling
recurrent inhibition and epilepsy, is studied and also penicillin
is considered, as a GABA inhibitor.

The analysis of brain activity using tools from chaos
theory can provide important information with regard to the
underlying dynamics if one takes into consideration that the
qualitative EEG changes, induced by centrally acting drugs
e.g., ketamine, thiopental, etomidate, propofol, fentanil,
alfentanil, sulfentanil, and benzodiazepines differ consider-
ably (40). This exercise can also unmask the sources of ex-
tremely high variability (the coefficient of variation for model
PD parameters of benzodiazepines in humans ranges from 30
to 100%) (40). A plausible interpretation for the extremely
high variability of PD parameters of benzodiazepines may be
associated with the dynamical behavior of the underlying sys-
tem i.e., the recurrent inhibitory pathway of GABA (16).

Endocrine System

It is widely appreciated that hormone secretion is char-
acterized by pulsatility. The first experimental studies of the
pulsatile nature of hormone secretion started more than thirty
years ago. Hellman et al. reported in 1970 (48) that “Cortisol
is secreted episodically by normal man.” It was also realized
that this pulsatility was not due to noise, but was actually
associated with physiological processes. Indeed, the circadian
clock, the interaction between hormones through feedback
mechanisms, and the interaction of hormones with central
and autonomic nervous systems are some of the reasons for
this behavior. It has been apparent that the theory of dynami-
cal systems is the right field to find useful tools for the study
of hormonal systems. This has been done in two directions:
experimental studies using tools from time series analysis and
modeling with differential equations.

Experimental studies of hormonal systems utilizing tools
from nonlinear dynamical systems theory started in the nine-
ties. The phase space reconstuction approach, making use
only of the hormone’s plasma profiles, was utilized to assess
the dimensionality and expose the chaotic nature of the un-
derlying dynamics of various hormones. Such examples are,
the work of Prank et al. (49) on parathyroid hormone, Pa-
pavasiliou et al. (50) on prolactin (Fig. 9), and Ilias et al. (51)
on cortisol and growth hormone. In all the above studies, the
reconstruction of the phase space gave attractors of fractal
dimension showing evidence for the presence of nonlinear

dynamics. Also, Pincus developed in 1991 a different method
to quantify the hormone pulsatility, which is referred to as
Approximate Entropy algorithm (ApEn) (52) and is based on
the concept of Lyapunov exponents. This method has been
applied for several hormones such as adrenocorticotropic
hormone (ACTH), cortisol, prolactin, insulin, growth hor-
mone (GH), testosterone and luteinizing hormone (LH),
quantifying the observed pulsatility, and comparing it be-
tween different groups, such as sick against healthy, different
age groups, etc. [(53) and references therein]. The experimen-
tal evidence of the chaotic nature of hormonal underlying
dynamics clarify the origin of the pulsatility and act as a guide
for proper modeling.

Smith in 1980 (54) used a mathematical model of three
interacting hormones, namely testosterone, LH, and LH-
releasing hormone, to describe qualitatively their behavior.
The initial model was improved later by Cartwright and Hu-
sain (55), who introduced time-retarded terms of the three
variables to make the system more realistic, exhibiting limit
cycle solutions. Further improvements of the model were
studied by Bing-Zheng and Gou-Min (56) and also by Das et
al. (57). Apart from testosterone other efforts in the same

Fig. 9. (A) A composite prolactin time series that consists of six
individual 24-hour profiles making a total of 432 data points. (B)
Sketch of the 3D attractor of prolactin generated by the data of plot
A. The dimension of the attractor was found to be fractional, namely
D0 4 1.66, indicating that diurnal prolactin secretion is governed by
nonlinear dynamics. [From (50) with permission.]
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context have been made to model the secretion of hormones.
Examples are the work of Lenbury and Pacheenburawana
(58) in the system of cortisol, ACTH and corticotrophin-
releasing hormone (CRF), the work of Topp et al. in the
system of b-cell mass, insulin, and glucose (59) and also the
work of Londergan and Peacock-Lopez (60). The latter is a
general model of hormone interaction description with nega-
tive feedback, exhibiting very rich dynamics, even chaotic be-
havior.

Many drugs affect the normal hormonal secretion, either
as their primary target of action or as a side effect. Many
studies in the last years have considered models of hormonal
secretion together with the dominant PK/PD concepts of drug
action. Examples include the effect of corticosteroids on cor-
tisol by Chakraborty et al. (61); the effect of the gonadotro-
pin-releasing hormone antagonist on testosterone and LH by
Fattinger et al. (62); the effect of the dopaminomimetic drug
DCN 203-922 on prolactin by Francheteau et al. (63); the
effect of the calcimimetic agent R-568 on parathyroid hor-
mone by Lalonde et al. (64); and the effect of ipamorelin on
GH by Gobburu et al. (65). All the above studies share a
common element. The hormone secretion modeling is kept to
the minimum, usually consisting of a single differential equa-
tion or even an algebraic equation that gives a simple smooth
hormone baseline. Then, the PK/PD models like direct or
indirect link and response (66), relate the inhibition or the
stimulation of the baseline, with the drug concentration. In
order to set the baseline, only the most obvious characteristics
of the hormone profile are integrated, like a periodic circa-
dian rhythm. The dynamical structure of the underlying
physiology is practically ignored and so is pulsatility which is
considered to be noise. The only studies, that pulsatility is
considered as a feature of the profile, are the works of Fran-
cheteau et al. (63) for the effect of dopaminomimetic drug
DCN 203-922 on prolactin and Chakraborty et al. (61) for the
effect of fluticasone propionate on cortisol. However, even in
these studies the pulsatility is integrated phenomenologically
through spline terms or Fourier harmonics, respectively, and
not through modeling of the dynamical origin of the pulsatil-
ity. It must be noted though that there are studies where the
pulsatility does not play an important role, like in the study of
Gobburu et al. (65) for the effect of ipamorelin on growth
hormone, where the baseline of the hormone is reasonably
considered zero due to the multifold amplification of the GH
levels after the administration of the drug.

From the above presentation, it is evident that although
significant progress has been made as far as the physiological
modeling of hormonal systems is concerned, the relevant
pharmacodynamic modeling, even in state of the art studies
dealing with the effect of drugs on hormonal levels, practically
ignores these findings. It is a necessity to develop new phar-
macodynamic models for drugs related to hormonal secre-
tion, compatible with the physiological modeling and the ex-
perimental findings that suggest low dimensional nonlinear
dynamical behavior. This kind of modeling not only is it more
realistic but integrates a new rationale as well. The notions of
the sensitivity from the initial conditions and the qualitatively
different behavior for different, even slightly, values of the
control parameters, surely play an important role and must be
taken into account in modeling since their presence is sug-
gested by experiments.

EPILOGUE

The application of nonlinear dynamics in physiological
systems proposes a new basis in the way certain pathological
phenomena emerge. The main characteristic is that a patho-
logical symptom is considered as a sudden qualitative change
in the temporal pattern of an illness, i.e., a bifurcation takes
place. This change can either be caused by endogenous fac-
tors or by an exterior stimulus that changes one or more
critical control parameters. According to this rationale, thera-
peutic strategies should aim to invert the progress of the dis-
ease and restore normal physiological conditions by interfer-
ing with the control parameters. This is in contrast to the
classical approach where the effort is focused in eliminating
the symptoms with a linear rationale which relates the thera-
peutic stimulus with the effect through a proportionality. This
is a general concept also referred to as dynamic disease, a
term introduced by Mackey and Milton (2,67).

It is widely appreciated that chaotic behavior dominates
physiological systems. Moreover, periodic or other non-
chaotic states are considered pathological, whereas the cha-
otic behavior is considered to be the normal, healthy state.
The reason of this has to be associated with a fundamental
advantage of nonlinear systems over classical. Indeed, it is
considered that the main characteristic of nonlinear dynami-
cal systems, which is the different qualitative behavior for
small variations of the control parameters may offer finer,
more rapid, and more energy efficient controllability of the
system compared to linear systems (68). This may be the
reason why nature prefers chaos than regularity and of course
the latter is a good enough reason for applied biological sci-
ences such as pharmacodynamics to adopt this rationale in
greater extent. We hope that this review article contributes to
this direction, however it must be pointed out that it must not
be considered exhaustive since pharmacodynamics are also
strongly related to other systems where nonlinear dynamics
are present, e.g., biochemical and immunological systems.
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