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Purpose. To develop a new approach for describing drug dissolution
which does not require the presuppositions of time continuity and
Fick’s law of diffusion and which can be applied to both homogeneous
and heterogeneous media.

Methods. The mass dissolved is considered to be a function of a discrete
time index specifying successive “generations” (n). The recurrence
equation: ®,,, = &, + r(1 — ®)(1 — $,X/0) was derived for the
fractions of dose dissolved ®, and ®,,,, between generations n and
n + 1, where r is a dimensionless proportionality constant, X, is the
dose and @ is the amount of drug corresponding to the drug’s solubility
in the dissolution medium.

Results. The equation has two steady state solutions, ®,, = 1 when
(Xy/0) = 1 and ®,, = 6/X; when (X/0) > 1 and the usual behavior
encountered in dissolution studies, i.e, a monotonic exponential
increase of @, reaching asymptotically the steady state when either
r<0/X, < 1orr<1<0/X, Good fits were obtained when the model
equation was applied to danazol data after appropriate transformation of
the time scale to “generations”. The dissolution process is controlled
by the two dimensionless parameters 8/X,, and r, which were found to be
analogous to the fundamental parameters dose and dissolution number,
respectively. The model was also used for the prediction of fraction
of dose absorbed for highly permeable drugs.

Conclusions. The model does not rely on diffusion principles and
therefore it can be applied under both homogeneous and non-homoge-
neous conditions. This feature will facilitate the correlation of in vitro
dissolution data obtained under homogeneous conditions and in vivo
observations adhering to the heterogeneous milieu of the GI tract.

KEY WORDS: dissolution; model; growth; fraction absorbed; in
vitro-in vivo correlations.

INTRODUCTION

Dissolution testing is generally accepted as the most useful
physicochemical test to assess drug release from solid oral
dosage forms (1). In addition, it is used to predict in vivo
performance and as a surrogate for bioavailability and bioequi-
valence (1,2).

Due to the importance of drug dissolution, numerous stud-
ies have been carried out to identify the factors affecting drug
dissolution rate. Among the factors associated with the dissolu-
tion system, stirring conditions have been found to be of major
significance (3). Thus, dissolution experiments are always car-
ried out under well defined hydrodynamic conditions (4) which
ensure a homogeneous dispersion of the dissolved drug in the
dissolution medium. Accordingly, all expressions used to
describe the rate of dissolution presuppose a homogeneous
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dissolution medium where Fick’s law of diffusion can be
applied.

Under in vivo conditions, however, the hydrodynamic con-
ditions are controlled by gastrointestinal (GI) motility and have
not been well characterized. Furthermore, motility patterns in
the GI tract and therefore in vive hydrodynamic conditions are
dependent on GI contents (fasted or fed state, type of meal,
caloric content of meal etc) (5). Consequently, the assumptions
of homogeneity and well stirred medium routinely used in
in vivo drug dissolution are not valid given the anatomical
complexity of the GI tract and the variable composition and
hydrodynamics of GI fluids. Moreover, Fick’s law of diffusion
cannot be applied in these understirred media with topological
constraints (6). Finally, the concept of time continuity inherently
linked with the differential equations describing drug dissolu-
tion rate under homogeneous conditions may not be appropriate
for processes taking place in heterogeneous and understirred
media. It is worth mentioning that space and time have been
considered independent and discrete in a recent cellular autom-
ata model of dissolution (7).

Our objective in this study was to develop a new approach
for describing drug dissolution which can be applied to both
homogeneous and heterogeneous media, does not require the
presuppositions of Fick’s law of diffusion, and does not rely
on the concept of time continuity.

THEORY

The most common equation used to describe drug dissolu-
tion rate, is based on the very old work of Noyes and Whitney
(8) and Nernst and Brunner (9), as modified by Levich (4):

dW _ D

& h AG - O) M
where W is the amount of drug dissolved at time ¢, D is the
diffusion coefficient, 4 is the thickness of the effective diffusion
boundary layer, A is the total or more precisely the effective
surface area of the solid, C; is the saturation solubility of drug
in the dissolution medium and C is the concentration of the
dissolved drug at time ¢. Eq. 1 relies on Fick’s first law of
diffusion and presupposes that the parameters D, A, C,, and h
remain constant throughout the process while hydrodynamic
conditions are well defined and ensure homogeneous agitation
and laminar flow (4).

However, the dissolution of drug under in vivo conditions
is a very complex phenomenon which cannot be described by
a simple differential equation. In order to face the problem of
complexity and circumvent describing the system completely,
discrete time is used in this study. Thus, only instants of the
system’s behavior are considered and what happens in the mean-
while is ignored. The jump from one instant to the next is done
by a logical rule, which is not of course a physical law, but
some expression that works and gives realistic results based on
logical assumptions. In our approach the variable of interest
(mass dissolved) is not considered a continuous function of
time, but is a function of a discrete time index specifying
successive “generations”. Defining X,, and Y, as the populations
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equation describes the change of ¥, between generations n and
n+1:

Yn+l = Yn+an= Yn+r(X0— n) (2)

where 7 is a proportionality constant and X; is the population
of the drug molecules in the solid state corresponding to dose,
Figure 1. The growth of Y, is not unlimited since the solubility
of drug in the medium restricts the growth of ¥,. However, the
growth rate is a function of the population level and it can be
assumed to decrease with increasing population in a linear
manner:

Y,
r—-nY,)= r(l - 3) 3)

where 0 is the saturation level of the population i.e the number
of drug molecules corresponding to saturation solubility. Thus,
the recursion relation 2 is replaced with the nonlinear dis-
crete equation:

Yooy =Y, + r(Xo — n)(l - %) 4

Dividing both sides of Eq. 4 with 6 one gets the dimensionless
difference equation:

Xo
Zn+l = Zn + —e— - Zn (1 - Zn) (5)
where Z, = Y,/0.

RESULTS AND DISCUSSION

For the purposes of derivation X, and Y, in Eqgs. 4 and
5, refer to the populations of the drug molecules in the solid
state and in solution, respectively. However, it is rather obvious
that, the undissolved and dissolved amounts of drug are propor-
tional to the values of X, and Y,, respectively. Similarly, the
dose expressed in mass units corresponds to the number of
drug molecules in solid state, Xy, whereas the dissolved amount
of drug corresponding to saturation solubility is proportional
to 0. Hence, Eqs 4 and 5 describe, in essence, in an absolute
and a relative manner, respectively, the continuous increase of
the dissolved amount of drug in the successive “generations”.

Substituting in Eq. 5, Z,,, and Z, with the steady state
value Z, two fixed points are found: Z; = 1 and Z; = X/0.
This means that the system either reaches saturation (Z; = 1
since Y, = 0) when Xy/0 = 1 or the bulk of the initial quantity
(dose) is dissolved (Z,, = X/0) when X,/0 < 1.

In practice, however, in vitro dissolution profiles are rou-
tinely presented as percent or fraction dissolved versus time
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Fig. 1. A schematic representation of the population growth model of
dissolution; r denotes a proportionality constant.
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curves. To this end, Eq. 4 can be normalized in terms of dose
by dividing both sides by X

Yn+l — Yn + 1 Yn 1 - Yn (6

X X U X 0 )
which can be written more conveniently using (Y,/Xy) = @,
and (Yn+l/XO) = (DIH-]:

Q)

®,X,
By =0, + 1 — D1 -

0

where ®, and ®,,,, are the dissolved fractions of drug at “genera-
tions” n and n + 1, respectively. Eq. 7 has two steady-state
solutions, @, = 1 when Xy/0 < 1 and ®,, = 6/X, when X,/0
> 1. Since difference equations can exhibit dynamic behaviour
under certain conditions (10,11), the stability of the fixed points
of Eq. 7 are explored in the Appendix. As it is shown, both
fixed points are stable, when r < 2/(1 — (X/0)) for 6/X, > 1
and r < 2/((X¢/0) — 1) for 6/X, < 1. Because of the nature of
Eq. 7, the first step always gives @,-; = r; hence, r is always
lower than 1 i.e the theoretical top boundary of ®,. For the
interval 6/X, < r < 2/((X,/0) — 1), the first step is higher than
the plateau value followed by a progressive diminution to the
plateau, Figure 2. This diminution can either be smooth when
6/X, and r are close enough or it can take the form of a fading
oscillation when r is close to 2/((Xy/0) — 1). When r exceeds
2/((Xo/6) — 1) the fixed point becomes unstable bifurcating to
a double period stable fixed point. So we have both the unstable
main point and the generated double period stable point. This
mechanism is called bifurcation and is very common to dynami-
cal systems (11). For our purposes, however, this particular
case has no physical meaning since it generates a stable state
over the saturation level 6/X;. As a matter of fact, Eq. 7 has
the usual behavior encountered in dissolution studies i.e a mono-
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Fig. 2. Plot of the dissolved fraction @, as a function of generations
(n) using Eq. 7 with: r = 0.5, /X, = 1.2 (A); r = 0.7, 6/X, = 0.55
(B); r = 0.2, /X, = 0.45 (C). -
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tonic exponential increase of @, reaching asymptotically a limit,
when either r < 0/Xy; < 1 or r < 1 < 0/X,, Figure 2.

Equation 7 can be used to estimate the proportionality
constant r and the quotient 6/X, from experimental data by
plotting the fraction dissolved (d,) as a function of the “genera-
tions”, n. Prior to plotting the sampling times are transformed
to “time units” defining arbitrarily a constant sampling interval
as a “time unit”. By doing so, an initial estimate for » can be
derived by reading the value of ®, corresponding to the first
datum point. Obviously, the value of r is dependent on the
definition of the “time unit” in relation to chronological time
(see below). An initial estimate for the quotient 6/X, < 1 can
be obtained from the highest value of the dissolved fraction at
the end of the dissolution run. However, an estimate for 6/X,
cannot be derived from visual inspection when 6/X;, = 1 since
®, = 1 in all cases. The initial estimates for r and 6/X, can
be further used as starting points in a computer fitting program
to derive the best parameter estimates. A number of fitting
examples are shown in Figure 3 for the danazol data taken
from Shah er al. (12) by defining 15 minutes as a “time unit”.
Table I lists the estimates for r and 6/X; derived from the
computer analysis of danazol data utilizing an algorithm min-
imizing the sum of squares deviation between experimental and
theoretical values.

The approach developed for the analysis of drug dissolu-
tion is of particular interest for water-insoluble drugs since the
two independent dimensionless variables r and 6/X;, control
drug absorption. The parameter Xy/6 corresponds to the dose/
solubility ratio when a volume of 250 mL is considered for the
population (amount) 0 of the dissolved drug molecules (13,14).
This ratio has been termed dose number and it has been found,
together with the dissolution number, 1o be the key parameters

Fig. 3. The fraction of dose dissolved as a function of generations n,
where (—) represents the fittings of Eq. 7 to danazol data (12). Symbols
represent experimental points transformed to the discrete time scale
for graphing and fitting purposes assigning one generation equal to 15
minutes. Key (% sodium lauryl sulfate in water as dissolution medium):
@ 1.0, M 0.75; A 0.50; ¥ 0.25; ¢ 0.10.
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Table 1. Estimates for r and 6/X,, Derived from the Fitting of
Eq. 7 to Danazol Data (12)

Dissolution medium r /X, R%*
0.10% SLS/W? 0.06 0.10 0.993
0.25% SLS/W? 0.23 0.55 0.9993
0.50% SLS/W? 0.45 1.33 0.9999
0.75% SLS/W? 0.56 12.92 0.9995
1.00% SLS/W? 0.71 2.14 0.9996

¢ Correlation coefficient.
b Sodium lauryl sulfate in water.

controlling the magnitude of the fraction of dose absorbed for
drugs exhibiting dissolution limited absorption (13). Although
a fixed value for the dose/solubility ratio X¢/0 has been used
so far, separate analysis of in vitro and in vivo dissolution data
(obtained via deconvolution for highly permeable drugs) on the
basis of Eq. 7 will allow estimation of two values for X/0 under
the two different conditions. Such an approach will facilitate the
development of in vitro-in vivo correlations since i) the in vivo
solubility value can be drastically different from that usually
employed i.e solubility at pH 6.5 (13) and ii) the volume of
GI contents may differ from the 250 mL usually assigned to
those calculations dealing with the dose number (13,14). Fur-
thermore, the proportionality constant, r, can be considered to
be analogous to the dissolution number since both parameters
are dimensionless and both express globally the rate of the
dissolution process. The dimensionless character of r allows
comparisons to be made for r estimates obtained for a drug
studied under different in vitro and in vivo conditions e.g. various
dissolution media, fasted or fed state. This will certainly facilitate
the proper analysis of in vitro-in vivo correlation studies.

Under in vivo conditions, the birth rate of the dissolved
molecules, r, includes all drug physicochemical characteristics
as well as the physiological factors involved without strict
assumptions being made. On the contrary, the presuppositions
associated with the use of Eq. 1 delineated above are not fulfilled
under both in vitro and in vivo conditions. Moreover, the present
approach does not rely on various assumptions associated either
with the use of the dissolution number (13) or the similarity
and/or the constancy of hydrodynamic conditions in in vitro-
in vivo correlation studies (15). Therefore, this model can be
applied in in vitro-in vivo correlation studies involving data for
drugs with different physicochemical properties. Such a multi-
drug correlation study may reveal the dissolution media most
akin to in vivo conditions and/or identify potential cut-off values
of solubility and permeability appropriate for correlation
purposes.

Caution should be exercised though with the definition of
the “time unit” when the present model is applied to studies
involving more than one set of data. It is advisable to utilize
an approach with universal applicability in order to make the
estimates for r of various drugs and formulations in miscellane-
ous dissolution media comparable and meaningful. It is sug-
gested to analyze the data equating 15 minutes with a “time
unit” regardless of the sampling design utilized. Based on this
definition, Eq. 7 was used to calculate the fraction of dose
dissolved in 180 minutes (equivalent to 13 “generations”),
which approximately corresponds to the mean small intestine
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transit time (16,17), as a function of various values of r and
0/X,, Figure 4. The plot shows that the fraction of dose dissolved
is higher than 0.8 when 6/X;, > 1 and r > 0.5. Figure 4 can
be used to predict the fraction of dose absorbed for highly
permeable drugs as does the corresponding plot between frac-
tion of dose absorbed as a function of dose number and dissolu-
tion number (13). In reality, the two plots can be considered
to be complementary to one another since the calculations of
dose, dissolution and absorption numbers are based on the
physicochemical properties of drugs (13) while the use of Figure
4 requires dissolution data. For comparative and predictive
purposes, and because of the dimensionless character of the
parameters (68/Xo, dose number) and (r, dissolution number)
one can co-plot the data in a common system of coordinates
including the contour plots of the surfaces of the three dimen-
sional plots.

Some examples are shown in Figure 5, using the contour
plot of Figure 4 and fitting estimates for r and 0/X, derived
from analysis of dissolution studies of digoxin formulations
(18) along with the danazol data (Table I). Based on the visual
inspection of digoxin data, complete absorption is anticipated
for the “Lanoxin-new formulation” while the fraction of dose
absorbed from the other two digoxin formulations is roughly
0.55, Figure 5. Although exact estimates for the fractions of
dose absorbed from the digoxin formulations are not available,
these predictions seem to be in accord with the actual ir vivo
observations (19). The different dissolution characteristics of
danazol in the various dissolution media, (Figure 3 and Table
I), lead to predictions for the fraction of dose absorbed ranging
from 0.1 to 1, Figure 5. However, a very limited absorption of
danazol is expected in humans since absolute bioavailability
values 5 to 6% in dogs and rats have been reported in literature
(20,21). Therefore, the dissolution data obtained in sodium
lauryl sulphate (0.1%) seem to be the most suitable for the
prediction of fraction of danazol absorption.

CONCLUSIONS

The model developed (Eq. 7) utilizes the usual information
available in dissolution studies i.e the amount dissolved at
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Fig. 4. Estimated fraction of dose dissolved in 180 minutes versus r
and 0/X, using Eq.7 and assigning one generation equal to 15 minutes.
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Fig. 5. Contour plot of the surfaces of Figure 4 for the estimation of
fraction dose absorbed for highly permeable drugs. Circles represent
the danazol data quoted in Table 1. Squares represent digoxin data
calculated by fitting Eq. 7 to dissolution data points reported in literature
(18) assigning one generation equal to 15 minutes. Key (digoxin formu-
lation, r, 6/X;): Lanoxin “new formulation”, 0.85, 7.42; Lanoxin “old
formulation”, 0.16, 0.68; Second brand, 0.12, 0.68).

certain fixed intervals of time. The time points of all observa-
tions need to be transformed to equally spaced values of time
and furthermore to take the values O, 1, 2, ... By doing so,
the model was found to be capable of analysing dissolution
data. In addition, the model does not rely on diffusion principles
and therefore can be applied to both the homogeneous and non-
homogeneous conditions. This is of particular value for the
correlation of in vitro dissolution data obtained under homoge-
neous conditions and in vivo observations adhering to the het-
erogeneous milieu of the GI tract. The dimensionless parameters
r and 6/X,, which were found to control the dissolution process,
are qualitatively similar to the fundamental dimensionless
parameters dose and dissolution numbers (13) which control
the fraction of dose absorbed for highly permeable drugs. This
adds to the prediction potential of the previous approach for
the fraction of dose absorbed (13) since dissolution data of
drug’s formulations can be combined with the values of dose
and dissolution numbers for predictive purposes.

APPENDIX

Initially we present a simplified general approach based
on the perturbation theory to examine the stability of a system
in the vicinity of a given value (11).

Let us consider the general case of a mapping rule:

Yn+i :f(yn) (IA)
and let y, be a fixed point:
Yss = f(¥ss) (2A)

We are interested in the stability of Eq. 1A at that fixed point
i.e to find out whether for a starting point near y the system
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converges to y,, (stable) or diverges from it (unstable). Let us
consider a small change £, added to y,,. We rewrite Eq. 1A
using the transformation: y,.; = Y + &uif, Yo = Yss T &

Vss + §n+l =f(yxs + gn)

We use the Taylor expansion of f(y, + &,) = g(§,) at§, = 0
and keep only the first order term to linearize Eq. 3A.

(3A)

8(&) = g(0) + £,8'(E)lg,_, + higher order terms (4A)

Rewriting the function f(y,, + §&,) in accord with Eq. 4A:

s + &) = f(ys) + & (s + Elg, g (54)
Using Eq. 5A, Eq. 3A can be expressed:
Yss T &nr1t = fse) + & (Vs + €l (6A)
and because of Eq. 2A:
Eurt = &' (Vs T &l (7A)

According to Eq. 7A, y,, is a stable solution if the absolute
value of the derivative is less than the unity since &, will
converge to zero as n — . Otherwise the system is unstable
at yA\'X’

This methodology can be applied to Eq. 7. The derivative
of the right hand side of Eq. 7 is:

20X, Xy
1 r(l 5 + 6)

The absolute value of the derivative is compared with unity
for each fixed point. There are two cases:

a) If /X, > 1 then ®d,, = 1; hence, the derivative is equal
to 1 — r(1 — (Xy/0)). The condition for stability of the fixed

point & = 1 is
Xo
%)

The last inequality yields 0 < r < 2/((Xy/8) — 1). There-
fore, when 0 < r < 2/((X¢/6) — 1) the system is stable at
b, = 1.

<1

b) If 6/X, < 1 then ®,, = 6/X,; hence, the derivative is
equal to 1 — r{(Xy/68) — 1). The condition for stability of the
fixed point ®,, = 6/X, is

Dokoumetzidis and Macheras

o

The last inequality yields 0 < r < 2/(1 — (X/8)). Therefore,
when 0 < r < 2/(1 — (X,/0)) the system is stable at & = 6/X,,.
In the special case 6/X, = 1, Eq.7 collapses to

D,y = @, + (1 — D) (8A)

with a double root at steady state ®,, = 1. The derivative of
the right hand side of Eq. 8A is equal to unity and therefore
the steady state is neither stable or unstable (11).
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