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Université d’Abomey-Calavi, Abomey-Calavi, Bénin

* romain.glelekakai@fsa.uac.bj

Abstract

The initial phase dynamics of an epidemic without containment measures is commonly well

modelled using exponential growth models. However, in the presence of containment mea-

sures, the exponential model becomes less appropriate. Under the implementation of an

isolation measure for detected infectives, we propose to model epidemic dynamics by fitting

a flexible growth model curve to reported positive cases, and to infer the overall epidemic

dynamics by introducing information on the detection/testing effort and recovery and death

rates. The resulting modelling approach is close to the Susceptible-Infectious-Quarantined-

Recovered model framework. We focused on predicting the peaks (time and size) in positive

cases, active cases and new infections. We applied the approach to data from the COVID-

19 outbreak in Italy. Fits on limited data before the observed peaks illustrate the ability of the

flexible growth model to approach the estimates from the whole data.

Introduction

COVID-19 is a pandemic caused by the new coronavirus strain SARS-nCOV2 which emerged

from Wuhan, China [1, 2]. A total of 21 026 758 COVID-19 cases and 755 786 related deaths

were reported across the world as at August 15, 2020 [3]. The worldwide social, as well as eco-

nomic ravages by COVID-19 has immediately motivated the use of mathematical models to

understand the course of the epidemic and plan for effective control strategies. These include,

for instance, the SIR (Susceptible, Infectious, Recovered), SEIR (Susceptible, Exposed, Infec-

tious, Recovered) and its variants, SIDR (Susceptible, Infectious, Recovered, Dead) and SIQR

(Susceptible, Infectious, Quarantined, Recovered) models [4–7]. These modelling approaches

use mechanistic models which incorporate key physical laws or mechanisms involved in the

dynamics of the population at risk and the pathogen [8]. A second class of approaches uses

empirical phenomenological models which does not require specific knowledge on the physi-

cal laws or mechanisms that give rise to the observed epidemic data [9], and was considered,

for instance, by [10] and [11] to understand both short and long term dynamics of COVID-19.

A new curve fitting-like approach, namely fractal interpolation [12, 13] was also proposed by

[14–16] to account for the high noise and reporting bias in data from the COVID-19
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Citation: Tovissodé CF, Lokonon BE, Glèlè Kakaï R
(2020) On the use of growth models to understand

epidemic outbreaks with application to COVID-19

data. PLoS ONE 15(10): e0240578. https://doi.org/

10.1371/journal.pone.0240578

Editor: Maria Alessandra Ragusa, Universita degli

Studi di Catania, ITALY

Received: August 18, 2020

Accepted: September 29, 2020

Published: October 20, 2020

Copyright: © 2020 Frédéric Tovissodé et al. This is
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pandemic. As generally is the case with dynamic biological systems [17, 18], mathematical

model development and adaptation are fundamental requirements to guide public health

policies.

When facing an epidemic outbreak, public health officials are mostly interested in data

driven, mathematically motivated, practical and computationally efficient approaches that can:

i) generate estimates of key transmission parameters; ii) gain insight to the contribution of dif-

ferent transmission pathways; iii) assess the impact of control interventions (e.g. social distanc-

ing, test + isolation, vaccination campaigns); iv) optimize the impact of control strategies; and

v) generate short and long-term forecasts [8]. In regard to the current COVID-19 outbreak,

politics and public health officials are mostly worried about the ability of the disease to induce

saturation of the health system, reducing the survival of patients, and even consulting for rea-

sons different from the epidemic itself. High interest is thus currently given to accurate fore-

casting of the epidemic peak time and size, epidemic size and duration, as well as their

sensitivity to control interventions in order to optimize the impact of control strategies.

An exponential-growth model is usually assumed to characterize the early phase of epidem-

ics. But, this assumption can lead to failure to appropriately capture the profile of the epidemic

growth, eventually giving rise to non-realistic epidemic forecasts [10, 19]. In an ultimate view

to guide control interventions aiming to limit the spread of epidemics, with focus on the

COVID-19 pandemic, this work considered a flexible growth curve fitting approach to under-

stand the dynamics of epidemics. We used the generic growth model of [20] to model the

course of reported positive cases and a binomial regression to model removals (recoveries and

deaths). Thereafter, we inferred the overall dynamics of the epidemic, in terms of observables

(reported cases, active/quarantined cases) and unobservables (new infections, lost cases), and

predicted interest quantities such as the peak (time and size) in reported cases, active cases and

new infections. The performance of the approach was assessed through an application to daily

case reporting data from Italy, which has virtually completed a whole COVID-19 outbreak

wave, thus offering the possibility to compare predicted outputs to real events.

Methods

We used a growth curve approach for modeling the course of an epidemic along time. We fol-

lowed [8, 10, 21] who, among others, used growth models to forecast epidemic dynamics.

Structural model for epidemic incidence

Let Ct denote the size of the detected infected population at time t, i.e. the cumulative number

of infected, identified and isolated individuals. We assumed for convenience that Ct is continu-

ous and denote _Ct its first derivative with respect to t. Also let It be the true size of infectives at

t, related to Ct through

_Ct ¼ dtIt ð1Þ

where δt 2 (0, 1] is the detection rate which is closely related to the testing effort (number of

tests, tracing of contact persons of identified cases and targeting exposed people) and is

assumed at least twice differentiable with respect to t. We ressorted to the generic growth

model of [20] for the identified positive cases:

Ct ¼ Kð1þ utÞ
� 1=n ð2Þ

with ut = [1 + νωρ(t − τ)]−1/ρ. In Eq (2), K> 0 is the ultimate epidemic size (detected), ω> 0 is

the “intrinsic” growth constant, ν and ρ are powers (ν> 0 and −1< ρ< ν−1) characterizing
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respectively the rates of change with respect to the initial size C0 = δ0 I0 (number of cases

detected at time t = 0) and the ultimate size K, and τ is a constant of integration, determined

by the initial conditions of the epidemic and implicitly the detection rate δ0 through C0 = K[1

+ (1 − νωρτ)−1/ρ]−1/ν for ρ 6¼ 0 and C0 = K(1 + eνωτ)−1/ν for ρ = 0. The growth model in Eq (2) is

quite flexible to handle various shapes of epidemic dynamics. Indeed, if K!1 and νρ! 0,

Eq (2) specializes to the exponential growth model

Ct ¼ eoðt� tÞ ð3Þ

where ω is the exponential growth rate. Apart from Eq (3), other special or limiting cases of Eq

(2) include the hyper-Gompertz (ν! 0 while ων1+ρ is constant) and the Gompertz (ν! 0, ρ
! 0 while ων is constant), the Bertalanffy-Richards (ρ! 0), the hyper-logistic (ν = 1) and the

logistic (ν = 1 and ρ! 0) growth models [20]. From Eq (2), the observed epidemic incidence

_Ct is given by

_Ct ¼ Kou1þr
t ð1þ utÞ

� nþ1
n : ð4Þ

In order to ensure the restriction −1< ρ < ν−1, we set r ¼ r0
nþ1

n
� 1 with ρ0 2 (0, 1) free of ν.

Active cases and outcomes

The number At of detected and active cases along an epidemic outbreak is of high interest for

public health officials. Indeed, At must be kept under the carrying capacity of the health system

to avoid overload and disrupture. The derivative _At of the detected and active cases satisfies

_At ¼
_Ct � Rt ð5Þ

where Rt = αt At denotes the number of removed and permanently immune (mortality and

recovery) at time t, and αt is the unit time removal probability, i.e. the odds to have an outcome

(recovery or death), averaged over the active cases. Eq (5) fits in the SIQR (Susceptible, Infec-

tious, Quarantined, Recovered) model framework [22] with the detected active cases referred

to as “quarantined” and the strong assumption that αt is constant along the epidemic outbreak

(see the third equation in system (6) in [22]). The removal probability can more generally be

given the logistic form at ¼
eZt

1þeZt with Zt ¼ X>tβþ kt where Xt = (Xt1, Xt2, � � �, Xtq)> is a vector

of q covariates (known constants) and β is the q vector of associated effects, and κ determines

the change in the log-odds ratio for having an outcome per unit time. These changes in αt can

be due to an improvement in the health care system during the epidemic outbreak (increase in

recovery ratio) or a deterioration of the health care system for infected individuals (increase in

mortality ratio due to the outbreak). The general solution of the differential Eq (5) turns to

have the form

At ¼

½A0 þ
R t

0
_Cseassds�e� at t if k ¼ 0

½A0ð1þ eX>t βÞ1=k þ
R t

0
_Csð1þ eZsÞ

1=kds�ð1þ eZt Þ
� 1=k if k 6¼ 0

8
>>><

>>>:

ð6Þ

where A0 is the number of active cases at time t = 0. Indeed, when κ = 0, taking the first deriva-

tive of At yields _At ¼
_Cteat te� at t þ ½A0 þ

R t
0

_Cseassds�ð� atÞe� at t resulting in _At ¼
_Ct � atAt

which is the Eq (5). For t = 0, the integral in Eq (6) vanishes, resulting as expected in At = A0

since e� at t¼1. When κ 6¼ 0, the first derivative of At is _At ¼
_Ctð1þ eZtÞ

1=k
ð1þ eZt Þ

� 1=k
þ
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At
1

� k

� �
keZtð Þð1þ eZtÞ

� 1
¼ _Ct �

eZt
1þeZt At which reduces to _At ¼

_Ct � atAt in accordance with

Eq (5). Here, for t = 0, eZt ¼ eX>t β so that At = A0.

There are no general closed form solutions for the integrals in Eq (6), unless _Ct and αt are

purposely chosen as functions of time to simplify the integral. At can, however, be obtained in

practice from Eq (6) using a numerical integration routine such as the function integrate in R

freeware [23] or the function integral of Matlab [24]. Nevertheless, to circumvent this issue

during estimation under the generic growth model in Eq (2), we discretized the active cases At

by assuming a binomial removal process Rt conditional on the detected unit time new cases Yt

as

RtjAt� 1;Yt � BINðAt� 1 þ Yt; atÞ ð7Þ

At ¼ At� 1 þ Yt � Rt ð8Þ

where BIN(n, α) denotes a binomial distribution with n trials and success probability α and Yt

is a non-negative process with expectation lt ¼
_Ct . Clearly, the bivariate process {At, Rt}

defined by Eqs (8) and (7) is not stationary. However, since Yt� 0 and _Ct ! 0 as t!1, we

have Yt! 0 in distribution as t!1, and if the removal probability αt does not approach zero

as t!1, then At! 0 as t!1.

Peak of detected cases

The epidemic peak is an important event in the disease dynamic and can be estimated for a

better management of the epidemic. An epidemic described by the exponential growth model

in Eq (3), (K!1 or νρ! 0) does not peak. Otherwise, the peak in the detected number of

infected individuals corresponds to the maximum of the incidence rate _Ct. This maximum is

then attained when €Ct ¼
@ _Ct
@t ¼ 0. We have from Eq (4)

€Ct ¼ nourt
nþ 1

n

ut

1þ ut
� 1þ rð Þ

� �

_Ct: ð9Þ

Solving €Ct ¼ 0 for t using Eq (9) yields the peak time tp ¼ tþ
1� nr

nð1þrÞ

h ir
� 1

n o
=ðnorÞ which

reads,

tp ¼ tþ
1

o½r0 � ð1 � r0Þn�

r0

1 � r0

� �1� r0ðnþ1Þ=n

� 1

" #

ð10Þ

on replacing r ¼ r0
nþ1

n
� 1. Inserting tp in Eq (1) and denoting up ¼ n

1þr

1� rn
gives the peak

_Cp ¼ Kou1þr
p

nþ 1

1 � rn

� �� nþ1
n

: ð11Þ

At the peak in detected cases, the cumulative number of detected cases is Cp = K(1 + up)−1/ν.

Overall epidemic dynamics

An important interest in modelling the epidemic incidence is the derivation of quantities

related to the overall dynamics of the epidemic, in both detected and undetected cases.

Total cases: Detected and losts. Let us denote St the cumulative number of cases from the

epidemic outbreak to t, and let _St be the first derivative of St. We also introduce Λt, the

PLOS ONE Growth models and epidemic dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0240578 October 20, 2020 4 / 14

https://doi.org/10.1371/journal.pone.0240578


cumulative number of lost cases (with first derivative _Lt), i.e. people who were infected, unde-

tected, and removed from infectives (mortality and recovery).

The size of the lost cases is determined by the unit time removal rate πt 2 (0, 1) from unde-

tected infectives (πt is an average over all infectives, i.e. irrespective of the time since infection

onset). The lost rate πt which is assumed at least twice differentiable with respect to t, depends

on various factors like the disease related mortality, the average infection duration, the natural

proportion of asymptomatics within infectives, and the existence and the use of medicines that

may reduce symptoms (induced asymptomatics). It is worthwhile noticing that πt can be esti-

mated from the removal rate αt in the detected cases, taking into account various factors that

may induce difference between the two rates. For instance, since the undetected cases include

asymptomatics, disease related mortality may be lower and recovery rate higher in undetected

as compared to detected cases. However, efficiency of the health care system in treating identi-

fied and isolated cases can reduce mortality thereby reducing αt, but also improve recovery

thereby increasing αt.

With the above notations, the lost cases count Λt satisfies the differential equation,

_Lt ¼ ptð1 � dtÞIt ð12Þ

whereas the cumulative number of cases St is given on setting υt = (1 − πt)(1 − δt) by

St ¼ Ct þ Lt þ utIt: ð13Þ

The factor υt represents at time t the proportion of infectives who will potentially continue to

spread the epidemic after adequate contacts (i.e. contacts sufficient for transmission) with sus-

ceptibles. In other words, the number of undetected currently infectives is

ð1 � ptÞðd
� 1

t � 1Þ _Ct. From Eq (1), the infectives It and its first derivative with respect to time

_I t are given for t� 0 by

It ¼ d
� 1

t
_Ct ð14Þ

_I t ¼ d
� 1

t ½
€Ct �

_d td
� 1

t
_Ct� ð15Þ

where _dt is the first derivative of the detection rate δt with respect to t. Straightforward alge-

braic operations then give the number of new cases and the cumulative number of cases as

_St ¼ ½ptd
� 1

t þ ð1 � ptÞð1 � ðd
� 1

t � 1Þd
� 1

t
_dtÞ þ _utd

� 1

t �
_Ct

þð1 � ptÞðd
� 1

t � 1Þ€Ct

ð16Þ

St ¼ Ct þ Lt þ ð1 � ptÞðd
� 1

t � 1Þ _Ct ð17Þ

where _ut ¼ � ð1 � ptÞ
_dt � ð1 � dtÞ _pt with _pt the first derivative of the lost rate πt, and the

cumulative number of lost cases Λt is given for t� 0 by

Lt ¼ S0 þ

Z t

0

psðd
� 1

s � 1Þ _Csds ð18Þ

with S0 the cumulative number of all cases until the first detection date t = 0. The total size

of the epidemic is S1 = C1 + Λ1 since _Ct ! 0 as t!1. Under the Turner’s growth model,

S1 = K + Λ1.

Let us assume a constant detection rate δt = δ closely related to detection effort but also to

the average duration from infection to recovery or death of non-isolated cases. Assuming in
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addition a constant lost rate (πt = π), we have _dt ¼ _pt ¼ _ut ¼ 0, and the new cases _St and its

accumulation St, as well as the lost cases Λt simplify to

_St ¼ ½1þ pðd
� 1
� 1Þ� _Ct þ ð1 � pÞðd

� 1
� 1Þ€Ct ð19Þ

St ¼ S0 þ ½1þ pðd
� 1
� 1Þ�Ct þ ð1 � pÞðd

� 1
� 1Þ _Ct ð20Þ

Lt ¼ S0 þ pðd
� 1
� 1ÞCt: ð21Þ

The total epidemic size is here S1 = S0 + [1 + π(δ−1 − 1)]K.

Epidemic peak. At the time tp of the peak of reported cases (€Ct ¼ 0) under constant

detection and lost rates, the new infectives is _Sp ¼ ½1þ pðd
� 1
� 1Þ� _Cp with _Cp given in Eq

(11). This, however, corresponds to the peak in the overall new cases _St only under the unreal-

istic assumption δ = 1. The peak of new infections occurs when the second derivative €St of St

with respect to t vanishes (€St ¼ 0). We have from Eq (16)

€St ¼ ½ptd
� 1

t þ ð1 � ptÞð1 � ðd
� 1

t � 1Þd
� 1

t
_dtÞ þ _utd

� 1

t �
€Ct

þð1 � ptÞðd
� 1

t � 1ÞC⃛t þCt

ð22Þ

where C⃛t (the third derivative of Ct with respect to t) and Ct are given by

C⃛t ¼ n2o2u2r
t

�

ð1þ rÞð2rþ 1Þ �
3ðnþ 1Þðrþ 1Þ

n
zt

þ
ðnþ 1Þð2nþ nrþ 1Þ

n2
z2

t

�

_Ct

ð23Þ

Ct ¼ f _pt½d
� 1

t ð1þ ðd
� 1

t � 1Þ _dtÞ � 1� þ ð1 � ptÞd
� 1

t ½€ut � ðd
� 1

t � 1Þ€dt�

þd
� 2

t
_dt½ð1 � ptÞ½ _ptð1 � dtÞ þ

_d tð2d
� 1

t � ptÞ� � pt�g
_Ct

� ½ _ptðd
� 1

t � 1Þ þ ð1 � ptÞd
� 2

t
_dt�

€Ct

ð24Þ

with zt ¼
ut

1þut
, and €pt and €dt the second derivatives of respectively πt and δt with respect to t.

The peak time and value depend on the particular forms of δt and πt as functions of time.

Here, we restrict the attention to the simple situation with constant positive detection and lost

rates (δt = δ with δ 2 (0, 1) and πt = π with π 2 (0, 1)) where _d t ¼ _pt ¼ Ct ¼ 0 and Eq (22)

reduces to

€St ¼ ½1þ pðd
� 1
� 1Þ�€Ct þ ð1 � pÞðd

� 1
� 1ÞC⃛t: ð25Þ

It appears that the peak of new infections occurs before the time tp of the peak in detected

cases. Indeed, at t = tp, we have €Ct ¼ 0, (1 − π)(δ−1 − 1)> 0 and C⃛t < 0 so that €St < 0, i.e. _St is

already in its descending phase. The expression Eq (25) indicates that at the time tP of the peak

of new infections, €Ct is equal to €CP ¼ � zC
⃛

P where z ¼
ð1� pÞð1� dÞ

pþdð1� pÞ
and C⃛P is given by Eq (23)

with t = tP. The lower z, the lower j€CPj, and the lower the difference tp − tP (delay of the

observed peak). Differentiating z with respect to δ gives @z

@d
¼ � 1� p

½pþdð1� pÞ�2
< 0, hence the higher

δ, the lower the delay between the observed peak time and the time of the peak in new
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infections. Using Eqs (9) and (23), €St becomes

€St ¼ nourt d
� 1

�
noð1 � pÞð1 � dÞ

1þ norðt � tÞ

�

ð1þ rÞð2rþ 1Þ �
3ðnþ 1Þðrþ 1Þ

n
zt

þ
ðnþ 1Þð2nþ nrþ 1Þ

n2
z2

t

�

þ dþ p 1 � dð Þ½ �
nþ 1

n
zt � ð1þ rÞ

� ��

_Ct

ð26Þ

which does not have a closed form root. The root tP can, however, be obtained using root find-

ing numerical routines such as the R function uniroot or the Matlab function fzero. Afterwards,

the peak _Sp size (the maximum number of new infections) is obtained using Eq (19).

Statistical models and inference

Let us consider a record of new confirmed infected cases Y1, Y2, � � �, Yn, active cases A0, A1, � � �,

An−1, removed cases R1, R2, � � �, Rn (available from Eq (8) as Rt = Yt − At + At−1) and the associ-

ated vectors of covariates X1, X2, � � �, Xn at n time points. The parameters K, ω, ν, ρ0, τ, and κ
can be estimated using maximum likelihood (ML) by assigning to each Yt an appropriate sta-

tistical distribution with expectation lt ¼
_Ct and a dispersion parameter σ> 0, and probability

density function (pdf) or probability mass function (pmf) f(Yt|θ) where θ = (K, ω, ν, ρ0, τ, κ,

β>, σ)>. We subsequently considered inference under log-normal and negative binomial

distributions.

Log-normal model. Epidemic incidence case data are generally fitted through non-linear

least squares applied at logarithmic scale [19, 25, 26]. To deal with zero incidence cases, the

logarithmic transform is usually applied on the shifted cases Yt + 1. Mimicking this procedure

in a likelihood inference framework, we consider a log-normal distribution assumption for the

shifted incidence cases, i.e. Yt + 1 * LN(λt + 1, σ). The pdf of Yt, adapted from [27], reads

f ðYtjyÞ ¼
1

sðYt þ 1Þ
ffiffiffiffiffiffi
2p
p exp �

1

2

logðYt þ 1Þ � logðlt þ 1Þ

s
þ
s

2

� �2
( )

ð27Þ

so that Yt has expectation E[Yt] = λt and variance Var½Yt� ¼ ðlt þ 1Þ
2
ðes2

� 1Þ.

Negative binomial model. Since incidence cases are counts, Yt can be assumed to follow

the negative binomial distribution, i.e. Yt * NB(λt, σ) with pmf

f ðYtjθÞ ¼
GðYt þ 1=sÞ

GðYt þ 1ÞGð1=sÞ

slt

slt þ 1

� �1=s
1

slt þ 1

� �Yt

: ð28Þ

The incidence case Yt then has expectation E[Yt] = λt and variance Var[Yt] = λt(1 + σλt).

Likelihood inference. Based on the information {Yt, Rt} for t = 1, 2, � � �, n, the conditional

log-likelihood of the parameter θ given A0 is

‘ðθÞ ¼
Xn

t¼1

½log f ðYtjθÞ þ log fBðRtjθÞ� ð29Þ

where fBðRtjθÞ ¼ ð
At� 1 þ Nt

Rt
Þa

Rt
t ð1 � atÞ

At� 1þNt � Rt is the binomial probability mass function for Rt.

The function ℓ(�) can be maximized to obtain the maximum likelihood estimate θ̂ of θ using

an optimization routine such as the function optim in R or the function fminsearch of Matlab.

Let H(θ) the hessian matrix of ℓ(θ) and define the covariance S(θ) = −[H(θ)]−1. The large
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sample distribution (i.e. for n!1) of the maximum likelihood estimator is multivariate nor-

mal with mean θ̂ and covariance matrix Ŝ ¼ Sðθ̂Þ.

Application to reported COVID-19 new cases in Italy

The data. In order to test the reliability of the Turner’s growth model in predicting the

dynamics of an epidemic, we used data from one of the countries which had completed a

whole COVID-19 outbreak wave. The daily case reporting data in Italy was obtained from

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_

covid_19_time_series. We used only the confirmed data (2020-02-20 to 2020-07-11) accessed

on 2020-07-28, discarding the latest data subject to possible reporting delay, as indicated by

the Istituto Superiore di Sanità (ISS) at https://www.epicentro.iss.it/en/coronavirus/sars-cov-

2-dashboard.

Data analysis. All analyses were performed in R [23]. We fitted the Turner’s growth

model curve to the whole Italian data. Both the log-normal and the negative binomial distribu-

tions were used, and the fit with the lowest root mean square error (RMSE) computed for the

daily new positive cases was selected as the best. Then, we derived peak statistics (time and

size) for daily new reported cases and active cases. We also inferred the daily new infections

from assuming constant detection and lost rates and estimated its peak (time and size). The

detection (δ = 0.033/day) and the lost rates (π = 0.1/day) for Italy were obtained from [7].

These rates follow from assumptions that the average time of duration from infection to recov-

ery or death of non-isolated cases is 10 days (hence π = 0.1/day) and that during this detection

window, 1/3 of infectives are tested positives (hence δ = 0.033/day).

To assess the ability of the model in predicting the peak of the new positive cases in coun-

tries which have not yet reached the peak, we retrospectively fitted the model to the Italian

data before the observed peak (day 29 after the notification of first case), using data of the first

two weeks, and then data of the first three weeks. For these analyses with limited data, we fitted

the full Turner’s growth model to the positive cases, but also its special cases, namely the

hyper-Gompertz (ν! 0 while ων1+ρ is constant), the Gompertz (ν! 0, ρ! 0 while ων is con-

stant), the Bertalanffy-Richards (ρ! 0), the hyper-logistic (ν = 1) and the logistic (ν = 1 and

ρ! 0) models using the log-normal distribution for the daily counts. We then computed the

Akaike’s Information Criterion (AIC) defined as AIC¼ � 2‘̂ þ 2Np with ‘̂ the maximized log-

likelihood and Np the number of parameters in a fitted model. Finally, we retained and pre-

sented the best fit (lowest AIC value).

Results

Modelling the whole Italian data

Table 1 shows parameter estimates using the whole Italian COVID-19 daily case reporting

data from 2020-02-20 to 2020-07-11, with standard errors and 95% confidence intervals. The

log-normal distribution based fit recorded the lowest RMSE, and was thus retained for subse-

quent analyses. The confidence bounds for the parameter ρ (r̂ ¼ 0:32 with CI(ρ) = [0.29,

0.35]) indicated that neither the logistic growth model (ρ! 0 and ν = 1) nor the Bertalanffy-

Richards growth model (ρ! 0) were appropriate for this dataset. It was noted that ν was not

significantly different from 1 (n̂ ¼ 0:85 with CI(ν) = [0.70, 1.05]), hence the hyper-logistic

model (ν = 1) was found to be compatible with the data. The fitted equation (Eq (30) is for
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t� 0

Ĉt ¼
253124:1

f1þ ½1þ 0:0242ðt � 39:3877Þ�
� 3:1659

g
1:1691 ð30Þ

with a coefficient of determination of R2 = 99.97%. The curves fitted to the new positive cases

and the cumulative number of positive cases are shown on Fig 1(A) and 1(B). It can be

observed on Fig 1(A) that the peak of new positive cases occurred 29 days after the notification

of first case, whereas the maximum likelihood estimate of the theoretical peak time is five days

later as shown in Table 2 (̂tp ¼ 34:10, CI(tp) = [31.94, 36.41] days). The theoretical peak size is

Table 1. Estimate, standard error (SE) and 95% confidence interval (CI95%) of Turner’s growth model parameters fitted to the Italian COVID-19 daily case report-

ing data from 2020-02-20 to 2020-07-11, using the log-normal distribution (RMSE = 514.24, R2 = 99.97%) and the negative binomial distribution (RMSE = 530.93,

R2 = 99.93%).

Model Log-normal fit Negative binomial fit

parameter Estimate SE CI95% Estimate SE CI95%

K 253124.1 12623.0 [229554.2, 279114.1] 242952.6 169.6 [242951.2, 242954.0]

ω 0.0896 0.0113 [0.0700, 0.1146] 0.0902 0.0098 [0.0729, 0.1117]

ν 0.8553 0.0906 [0.6951, 1.0526] 0.8300 0.0771 [0.6918, 0.9959]

ρ 0.3159 0.0142 [0.2892, 0.3451] 0.3231 0.0124 [0.2996, 0.3484]

τ 39.3877 2.5181 [34.7491, 44.6456] 39.3457 2.2393 [35.1927, 43.9888]

β -4.0229 0.0060 [-4.0348, -4.0111] -4.0229 0.0060 [-4.0348, -4.0111]

κ 0.0076 0.0001 [0.0075, 0.0078] 0.0076 0.0001 [0.0075, 0.0078]

σ 0.4332 0.0257 [0.3857, 0.4867] 0.1466 0.0175 [0.1160, 0.1853]

Notes: RMSE = root mean square error; β and κ define the daily removal rate from detected cases as at ¼
ebþkt

1þebþkt ; σ is the log-normal/negative binomial distribution scale

parameter (see the pdf in Eq (27) and pmf in Eq (28)).

https://doi.org/10.1371/journal.pone.0240578.t001

Fig 1. Log-normal fit of Turner’s model to the COVID-19 daily case reporting data from Italy (2020-02-20 to

2020-07-11). New reported cases (A), cumulative positive cases (B), active (quarantined) cases (C) and estimated

(average) daily new infections based on a detection rate of δ = 0.033/day and a lost rate (recovery or death) of non-

detected cases of π = 0.1/day (D).

https://doi.org/10.1371/journal.pone.0240578.g001
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on average 5 298 new positive cases ( _̂Cp ¼ 5 298:96, CIð _CpÞ ¼ ½4 609:72; 6 091:25� new

cases) against a maximum of 6 248 observed new positive cases.

From the estimate of the parameter β given in Table 1 (b̂ ¼ � 4:02 with CI(β) = [−4.03,

−4.01]), it appears that the daily removal rate (recoveries and deaths) averaged â0 ¼ 1:8% in

the very early phase of the epidemic (t� 0 day). Then, from the estimate of κ (k̂ ¼ 0:0076

with CI(κ) = [0.0075, 0.0076]), it appears that the removal rate increased with time, i.e. the

probability for an active case to recover or die within a day increased on average by 5.5% over

a week. Fig 1(C) displays the active cases and the corresponding fitted curve using the removal

probability along with the fitted Eq (30). The active cases were predicted to peak on day 56

(̂ta ¼ 55:71 days, CI(ta) = [53.87, 57.62] days) to 111 070 active cases (Âa ¼ 111 069:88 cases,

CI(Aa) = [98 580.39, 125 141.70] cases), whereas the observed peak amounted to 114 683 cases

and occurred 58 days after the notification of the first case.

The daily new infections inferred from assuming a constant detection rate (δ = 0.033/day)

and a constant lost rate (π = 0.1/day) is depicted on Fig 1(D). The peak in new infections

likely occurred about 28 days (̂tP ¼ 27:52 days, CI(tP) = [25.62, 29.56] days) after the

notification of the first case, and averaged 22 748 new infections ( _̂SP ¼ 22 748:38,

CIð _SPÞ ¼ ½19 726:30; 26 233:44� new infections) (Table 2). The ratio of the number of infec-

tives to the number of active cases decreased from 44.70 at the first notification day to 11.41

one week later (averaging 22.95, CI = [22.01, 23.93] over this period) and to 2.99 at peak time,

22 days later.

Retrospective fits

The AICs of the retrospective fits of Tuners’s growth model and its special cases to the Italian

COVID-19 data of the first two weeks and the first three weeks are presented in Table 3. It can

be observed that the best fits correspond to the hyper-logistic growth model for both data of

the first two weeks (AIC = 483.03) and data of the first three weeks (AIC = 863.58). Although

parsimony indicated the hyper-logistic model fits as the best, the differences ΔAIC in AIC with

respect to the full Turner’s growth model fit were mild (|ΔAIC|< 2).

Table 4 shows the estimate of the hyper-logistic growth model parameters for the two

shorted datasets. It appears that the estimates of the intrinsic growth parameter ω increased

slightly with data availability from ô ¼ 0:05 (CIω = [0.04, 0.07]) using the data of the first two

weeks, to ô ¼ 0:07 (CIω = [0.06, 0.08]) using the data of the first three weeks and to ô ¼ 0:09

(CIω = [0.07, 0.11]) using the whole dataset from Italy.

Table 2. Estimate, standard error (SE) and 95% confidence interval of peak statistics using the COVID-19 daily case reporting data from Italy (2020-02-20 to 2020-

07-11).

Quantity Peak statistic Estimate SE CI95% Observed

Detected Time (day) 34.10 1.14 [31.94, 36.41] 29

New positive cases 5298.96 376.73 [4609.72, 6091.25] 6248

Actives (isolated) Time (day) 55.71 0.96 [53.87, 57.62] 58

Active cases 111069.88 6759.93 [98580.39, 125141.70] 114683

New infections Time (day) 27.52 1.02 [25.62, 29.56] -

New infections 22748.38 1351.44 [19726.30, 26233.44] -

Notes: - = not available.

https://doi.org/10.1371/journal.pone.0240578.t002
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The estimates of the peak time and size from the two shorted datasets are shown in Table 4.

The forecast of the peak time from the data of the first two weeks was day 44 (̂tp ¼ 43:38, CI
(tp) = [39.04, 48.22] days) which overestimated the observed peak time (day 29). The estimate

from the data of the first three weeks reduced the delay, with t̂ p ¼ 38:97 (CI(tp) = [36.80,

41.27]) days. The forecast of the peak size from the data of the first two weeks was 3 794

( _̂Cp ¼ 3 793:60, CI(tp) = [3 032.63, 4 745.53]) new positive cases (Table 5), which underesti-

mated the observed peak (6248 new positive cases). The forecast from the data of the first three

weeks also underestimated the peak but is less biased, with _̂Cp ¼ 4 733:35 (CI(tp) = [4 136.58,

5 416.22]) new positive cases (Table 5).

Summary and perspectives

This work proposes the use of a flexible growth model to model case reporting data from an

epidemic outbreak with containment measures including at least isolation of individuals

Table 3. AIC of Turner’s growth model fitted to the Italian COVID-19 daily case reporting data of the first two weeks and the first three weeks from 2020-02-20,

with a log-normal distribution for the positive cases.

Dataset Growth model Restrictions NFGMP AIC ΔAIC

Data of the first two weeks Full Turner - 5 484.49 0

Bertalanffy-Richards ρ! 0 4 504.45 19.97

Hyper-logistic ν = 1 4 483.03 -1.46

Logistic ν = 1 and ρ! 0 3 530.22 45.73

Hyper-Gompertz ν! 0 and ων1+ρ is constant 3 542.92 58.43

Gompertz ν! 0, ρ! 0 and ων is constant 2 499.50 15.02

Data of the first three weeks Full Turner - 5 864.21 0

Bertalanffy-Richards ρ! 0 4 901.78 37.57

Hyper-logistic ν = 1 4 863.58 -0.63

Logistic ν = 1 and ρ! 0 3 945.16 80.95

Hyper-Gompertz ν! 0 and ων1+ρ is constant 3 966.71 102.49

Gompertz ν! 0, ρ! 0 and ων is constant 2 896.52 32.30

Notes: - = not applicable; NFGMP = Number of free growth parameters; ΔAIC = difference between the AIC of a special growth model fit and the AIC of the full

Turner’s growth model fit.

https://doi.org/10.1371/journal.pone.0240578.t003

Table 4. Estimate, standard error (SE) and 95% confidence interval of peak statistics using the COVID-19 daily case reporting data from Italy (2020-02-20 to 2020-

07-11).

Model First two weeks data First three weeks data

parameter Estimate SE CI95% Estimate SE CI95%

K 260124.1 930.9 [258305.9, 261955.1] 260122.6 633.1 [258884.8, 261366.3]

ω 0.0518 0.0066 [0.0404, 0.0665] 0.0661 0.0050 [0.0569, 0.0768]

ρ 0.3401 0.0183 [0.3061, .3779] 0.3075 0.0121 [0.2846, 0.3322]

τ 55.5287 4.3775 [47.5790, 64.8068] 47.7007 2.0405 [43.8645, 51.8724]

β -4.7679 0.2379 [-5.2341, -4.3017] -3.4678 0.1013 [-3.6663, -3.2693]

κ 0.1144 0.0196 [0.0761, 0.1528] -0.0100 0.0058 [-0.0214, 0.0013]

σ 0.2081 0.0393 [0.1437, 0.3014] 0.2165 0.0334 [0.1600, 0.2930]

Notes: β and κ define the daily removal rate from detected cases as at ¼
ebþkt

1þebþkt ; σ is the log-normal distribution scale parameter (see pdf in Eq (27))

https://doi.org/10.1371/journal.pone.0240578.t004
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tested positive. The generic growth model of [20] offers a flexible framework with the

possibility to recover many special growth models such as the common exponential and the

logistic growth models, the hyper-logistic, the hyper-Gompertz, the Gompertz and the Ber-

talanffy-Richards growth models. Since the special models are all nested within the generic

model framework, the most appropriate model can be identified using information criteria

such as the Akaike’s Information Criterion (AIC), but a likelihood ratio test [28] can also be

conducted for models with different number of free parameters. Where additional informa-

tion can be obtained on the ability to detect infective individuals, the proposed framework

allows to include this information so as to infer on the dynamics of the epidemic beyond the

identified (positive) cases, without ressorting to mechanistic/compartmental models. Never-

theless, we considered a constant (average) detection rate whereas the detection rate obvi-

ously changes over the epidemic course in terms of the detection effort (number of tests,

tracing of contact persons).

From our application to the COVID-19 outbreak data in Italy, the hyper-logistic model

is the most appropriate model for the dataset. It appears that the modelling approach can

predict the dynamics of an epidemic using data from first few days of an outbreak, at least in

this example. Indeed, the predicted peak time (and size) for the positive cases (using only

the first two/three weeks data) overestimates (and underestimates) the observed peak time

(and size). However, the biases can be attributed, for instance, to the increase in the testing

effort and isolation (and the subsequent decrease in the growth rate) in Italy where only

about 3 762 tests/day were performed in the first three weeks from 2020-02-20, and about

21 248 tests/day were performed in the subsequent three weeks. Our estimate of the ratio

of the number of infectives to the number of active cases averaged 22.95 in the first week

of the outbreak, within the range [5, 25] obtained by [7] using the SIQR model. Our pro-

posal thus offers a valid alternative to mechanistic models, for instance, the piecewise expo-

nential growth used by [7] within the SIQR model framework on the Italian early outbreak

data.

In a very limited data situation, we suggest a further reduction of the number of model

parameters to be estimated. Indeed, since the parameter τ in the growth model in Eq (2) is a

constant of integration determined by the initial conditions of the epidemic, it can be

expressed in terms of other parameters and the number of cases C0 detected at time t = 0 as

t ¼ 1

nor
1 � K

C0

� �n
� 1

h i� rn o
for ρ 6¼ 0 and τ = log((K/C0)ν − 1)/(νω) for ρ = 0. Consideration

of a procedure where τ is not estimated as a free parameter may lead to parsimony, with

inference conditional on the number of individuals tested positive at time t = 0. Inference on

the effective reproduction number and the sensitivity of the epidemic dynamics to the con-

tainment measures under the generic growth model framework is considered for future

work.

Table 5. Estimate, standard error (SE) and 95% confidence interval (CI95%) of the parameters of the hyper-logistic growth model fitted using the log-normal distri-

bution to the COVID-19 daily case reporting data from Italy for the first two weeks (RMSE = 92.16, R2 = 99.68%) and for the first three weeks (RMSE = 224.41, R2 =

99.87%) from 2020-02-20.

Peak Data of the first two weeks Data of the first three weeks

statistic Estimate SE CI95% Estimate SE CI95%

Time (day) 43.38 2.34 [39.04, 48.22] 38.97 1.14 [36.80, 41.27]

New positive cases 3793.60 433.34 [3032.63, 4745.53] 4733.35 325.46 [4136.58, 5416.22]

Notes: RMSE = root mean square error.

https://doi.org/10.1371/journal.pone.0240578.t005
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Funding acquisition: Romain Glèlè Kakaï.

Methodology: Chénangnon Frédéric Tovissodé, Romain Glèlè Kakaï.
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Romain Glèlè Kakaï.

References
1. Giordano G, Blanchini F, Bruno R, Colaneri P, Di Filippo A, Di Matteo A, et al. Modelling the COVID-19

epidemic and implementation of population-wide interventions in Italy. Nature Medicine. 2020; p. 1–6.

2. Velavan TP, Meyer CG. The COVID-19 epidemic. Tropical medicine & international health. 2020; 25

(3):278. https://doi.org/10.1111/tmi.13383

3. WHO. Coronavirus disease 2019 (COVID-19): situation report, 208; 2020.

4. Anastassopoulou C, Russo L, Tsakris A, Siettos C. Data-based analysis, modelling and forecasting of

the COVID-19 outbreak. PloS one. 2020; 15(3):e0230405. https://doi.org/10.1371/journal.pone.

0230405 PMID: 32231374

5. Casella F. Can the COVID-19 epidemic be controlled on the basis of daily test reports? IEEE Control

Systems Letters. 2020; 5(3):1079–1084. https://doi.org/10.1109/LCSYS.2020.3009912

6. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission

and control of COVID-19: a mathematical modelling study. The lancet infectious diseases. 2020.

7. Pedersen MG, Meneghini M. Quantifying undetected COVID-19 cases and effects of containment mea-

sures in Italy. ResearchGate Preprint (online 21 March 2020). 2020; 10.

8. Chowell G. Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for

parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling. 2017; 2(3):379–398.

https://doi.org/10.1016/j.idm.2017.08.001 PMID: 29250607

9. Chowell G, Sattenspiel L, Bansal S, Viboud C. Mathematical models to characterize early epidemic

growth: A review. Physics of life reviews. 2016; 18:66–97. https://doi.org/10.1016/j.plrev.2016.07.005

PMID: 27451336

10. Golinski A, Spencer PD. Modeling the Covid-19 Epidemic using Time Series Econometrics. medRxiv.

2020; https://doi.org/10.1101/2020.06.01.20118612.

11. Agosto A, Giudici P. A Poisson autoregressive model to understand COVID-19 contagion dynamics.

SSRN ePrint. 2020.

12. Guariglia E. Primality, fractality, and image analysis. Entropy. 2019; 21(3):1–12. https://doi.org/10.

3390/e21030304

13. Guariglia E. Entropy and fractal antennas. Entropy. 2016; 18(3):1–17. https://doi.org/10.3390/

e18030084

14. Păcurar CM, Necula BR. An analysis of COVID-19 spread based on fractal interpolation and fractal

dimension. Chaos, Solitons & Fractals. 2020; 139:1–23.

15. Materassi M. Some fractal thoughts about the COVID-19 infection outbreak. Chaos, Solitons & Fractals:

X. 2019; 4(7):1696–1711.

PLOS ONE Growth models and epidemic dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0240578 October 20, 2020 13 / 14

https://doi.org/10.1111/tmi.13383
https://doi.org/10.1371/journal.pone.0230405
https://doi.org/10.1371/journal.pone.0230405
http://www.ncbi.nlm.nih.gov/pubmed/32231374
https://doi.org/10.1109/LCSYS.2020.3009912
https://doi.org/10.1016/j.idm.2017.08.001
http://www.ncbi.nlm.nih.gov/pubmed/29250607
https://doi.org/10.1016/j.plrev.2016.07.005
http://www.ncbi.nlm.nih.gov/pubmed/27451336
https://doi.org/10.1101/2020.06.01.20118612
https://doi.org/10.3390/e21030304
https://doi.org/10.3390/e21030304
https://doi.org/10.3390/e18030084
https://doi.org/10.3390/e18030084
https://doi.org/10.1371/journal.pone.0240578


16. Kosmidis K, Macheras P. A fractal kinetics SI model can explain the dynamics of COVID-19 epidemics.

PLOS ONE. 2020; 15(8):1–9. https://doi.org/10.1371/journal.pone.0237304

17. Bianca C, Pennisi M, Motta S, Ragusa MA. Immune system network and cancer vaccine. In: AIP Con-

ference Proceedings. 1. American Institute of Physics; 2011. p. 945–948.

18. Bianca C, Pappalardo F, Pennisi M, Ragusa M. Persistence analysis in a Kolmogorov-type model for

cancer-immune system competition. In: AIP Conference Proceedings. 1. American Institute of Physics;

2013. p. 1797–1800.

19. Chowell G, Viboud C. Is it growing exponentially fast?–impact of assuming exponential growth for char-

acterizing and forecasting epidemics with initial near-exponential growth dynamics. Infectious disease

modelling. 2016; 1(1):71–78. https://doi.org/10.1016/j.idm.2016.07.004 PMID: 28367536

20. Turner ME, Bradley EL, Kirk KA, Pruitt KM. A theory of growth. Mathematical Biosciences. 1976; 29

(3):367–373. https://doi.org/10.1016/0025-5564(76)90112-7.

21. Chowell G, Luo R, Sun K, Roosa K, Tariq A, Viboud C. Real-time forecasting of epidemic trajectories

using computational dynamic ensembles. Epidemics. 2020; 30:100379. https://doi.org/10.1016/j.

epidem.2019.100379

22. Hethcote H, Zhien M, Shengbing L. Effects of quarantine in six endemic models for infectious diseases.

Mathematical biosciences. 2002; 180(1-2):141–160. https://doi.org/10.1016/S0025-5564(02)00111-6

PMID: 12387921

23. R Core Team. R: A Language and Environment for Statistical Computing; 2019. Available from: https://

www.R-project.org/.

24. MATLAB. version 9.0.0 (R2016a). Natick, Massachusetts: The MathWorks Inc.; 2016.

25. Chowell G, Nishiura H, Bettencourt LM. Comparative estimation of the reproduction number for pan-

demic influenza from daily case notification data. Journal of the Royal Society Interface. 2007; 4

(12):155–166. https://doi.org/10.1098/rsif.2006.0161

26. Viboud C, Simonsen L, Chowell G. A generalized-growth model to characterize the early ascending

phase of infectious disease outbreaks. Epidemics. 2016; 15:27–37. https://doi.org/10.1016/j.epidem.

2016.01.002 PMID: 27266847

27. Limpert E, Stahel WA, Abbt M. Log-normal Distributions across the Sciences: Keys and Clues. BioSci-

ence. 2001; 341(5). https://doi.org/10.1641/0006-3568(2001)051%5B0341:LNDATS%5D2.0.CO;2

28. Wilks SS. The large-sample distribution of the likelihood ratio for testing composite hypotheses. The

annals of mathematical statistics. 1938; 9(1):60–62. https://doi.org/10.1214/aoms/1177732360

PLOS ONE Growth models and epidemic dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0240578 October 20, 2020 14 / 14

https://doi.org/10.1371/journal.pone.0237304
https://doi.org/10.1016/j.idm.2016.07.004
http://www.ncbi.nlm.nih.gov/pubmed/28367536
https://doi.org/10.1016/0025-5564(76)90112-7
https://doi.org/10.1016/j.epidem.2019.100379
https://doi.org/10.1016/j.epidem.2019.100379
https://doi.org/10.1016/S0025-5564(02)00111-6
http://www.ncbi.nlm.nih.gov/pubmed/12387921
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1098/rsif.2006.0161
https://doi.org/10.1016/j.epidem.2016.01.002
https://doi.org/10.1016/j.epidem.2016.01.002
http://www.ncbi.nlm.nih.gov/pubmed/27266847
https://doi.org/10.1641/0006-3568(2001)051%5B0341:LNDATS%5D2.0.CO;2
https://doi.org/10.1214/aoms/1177732360
https://doi.org/10.1371/journal.pone.0240578

