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Abstract
The aim of this paper was to develop a convolution-based modeling approach for describing the paliperidone PK resulting

from the administration of extended-release once-a-day oral dose, and once- and three monthly long-acting

injectable products and to compare the performances of this approach to the traditional modeling strategy. The results of

the analyses indicated that the traditional and convolution-based models showed comparable performances in the char-

acterization of the paliperidone PK. However, the convolution-based approach showed several appealing features that

justify the choice of this modeling as a preferred tool for modeling Long Acting Injectable (LAI) products and for

deploying an effective model-informed drug development process. In particular, the convolution-based modeling can

(a) facilitate the development of in vitro/in vivo correlation, (b) be used to identify formulations with optimal in vivo

release properties, and (c) be used for optimizing the clinical benefit of a treatment by supporting the implementation of

integrated models connecting in vitro and in vivo drug release, in vivo drug release to PK, and PK to PD and biomarker

endpoints. A case study was presented to illustrate the benefits and the flexibility of the convolution-based modeling

outcomes. The model was used to evaluate the in vivo drug release properties associated with a hypothetical once-a-year

administration of a LAI product with the assumption that the expected paliperidone exposure during a 3-year treatment

overlays the exposure expected after repeated administrations of a 3-month LAI product.

Keywords Convolution-based model � Paliperidone � LAI � MIDD

Introduction

Paliperidone is the major active metabolite of risperidone

currently approved for the treatment of schizophrenia. A

once-daily extended-release formulation (ER) INVEGA�
was developed using an oral osmotic pump technology.

Later, two long-acting injectable (LAI) paliperidone

palmitate formulations were developed and approved for a

once-monthly (PP1M: INVEGA� SUSTENNA�), once-

every-3-months injection intervals (PP3M: INVEGA�
TRINZATM), and, recently, once-every-6 months injection

interval (PP6M: INVEGA HAFYERATM). All the LAI

products were subcutaneously injected.

Paliperidone LAI products have unique pharmacokinetic

properties characterized by a rate of drug absorption that is

slower than their rate of elimination; hence, they exhibit

flip-flop kinetics. Therefore, the shape of the terminal

phase of the pharmacokinetic profile of these products

reflects the rate of absorption, rather than the rate of

elimination, as is usually referred as flip-flop PK [1].

The recommended dosage regimens for the LAI prod-

ucts, the management of missed doses, the switching

strategy to formulations (oral to PP1M, PP1M to PP3M,

and PP3M to PP6M) were based on model-based simula-

tions conducted using population PK models. For this

reason, the quality and the reliability of the population PK

model plays a central role for supporting regulatory deci-

sion [2, 3], and for informing the appropriate patents used
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to protect the methodology for dose selection and for

handling missed doses [4, 5].

In this framework, the structure and the predictive per-

formance of the PK models are instrumental for qualifying

the simulation results and for justifying the proposed dos-

ing strategies, considering that different models can lead to

different recommended dosing and switching strategies.

Historically, different structural models (referred as ‘tradi-

tional approach’) were developed to characterize the time-

course of the absorption-rate-limited paliperidonePKfor theER

and LAI products (PP1M and PP3M) using a conventional

compartmentalmodeling approach. To date no structuralmodel

describing the population PK of PP6M has been published.

Recently, the convolution-based modeling approach was

proposed as a powerful and flexible tool for modeling com-

plex absorption pharmacokinetics of ER and LAI products,

and for maximizing the benefit-risk ratio of a treatment [6].

Using this approach, the time course of the drug concen-

tration can be described by convolving an input functionwith

a disposition and elimination function when input and dis-

position functions are described by parametric models. This

methodology provides a tool for developing an integrated

modeling approach for describing the PKof the different LAI

products using a common structural model for absorption

and disposition but with a parameter-specific characteriza-

tion of the drug absorption process. One of the benefits of this

modeling approach is the possibility to dispose of amodeling

framework for optimizing the development of alternative

LAI products by identify the in vivo input function regulat-

ing the drug release suitable for delivering the expected

exposure level at selected times.

The objectives of the present paper were: (a) to imple-

ment a convolution-based model for paliperidone ER and

LAI products for describing the paliperidone PK resulting

from the ER, PP1M, and PP3M product administrations,

(b) to compare the performance of the traditional and

convolution-based models, (c) to show how the convolu-

tion-based modeling approach is instrumental for support-

ing a model-informed drug development (MIDD) by

evaluating the feasibility and the characteristics of a pos-

sible new paliperidone LAI once-a-year product.

Methods

Data

The paliperidone ER PK data were generated in a dose

proportionality, open-label, randomized, 5-treatment,

5-period crossover study in 45 healthy males at dose levels

of 3 mg, 6 mg, 9 mg, 12 mg, and 15 mg. The mean PK

data were extracted from the European Medicines Agency

scientific discussion document and used for model devel-

opment [7].

The paliperidone PP1M PK data were generated in a

single-dose, open label, randomized, parallel group study

designed to evaluate the dose proportionality of 4 fixed

doses of paliperidone: 25 mg, 50 mg, 100 mg, and 150 mg

[8]. A total of 201 patients with schizophrenia were ran-

domized to receive a single paliperidone injection in either

the deltoid or the gluteal muscle. The mean data associated

with the injections in the deltoid muscle at the different

doses were used in the analysis.

The paliperidone PP3M PK single-dose data were gener-

ated in an open-label, randomized, phase I study designed to

evaluate the PK, safety, and tolerability of PP3M following

an intramuscular single dose injection in the gluteal or deltoid

muscle of schizophrenic patients of the doses of 175 mg,

300 mg, 450 mg, and 525 mg [9]. The mean data associated

with the injections in the deltoid muscle at the different doses

were used in the analysis. The paliperidone PP3M PK repe-

ated-dose data were generated in a double-blind, random-

ized, active-controlled, parallel-group multicenter clinical

trial in schizophrenic patients. In this trial, PP3M was

administered at the doses of 350 mg, and 525 mg. The study

was organized in 3 phases: (1) a screening phase (up to 28

days), (2) an open-labelmaintenance phase (duration of 1 or 3

months depending on treatment received), and (3) a double

blind (DB) phase (12 months). The 12-month DB phase

included a total of 4 injections at 3-month intervals. The PK

steady-state was assumed during the DB phase [10].

The mean PK data used in the analysis were digitized

from the reference papers at different doses: ER single dose

of 3 mg, 6 mg, 9 mg, 12 mg, and 15 mg; PP1M single

dose of 25 mg, 50 mg, 100 mg, and 150 mg; PP3M single

dose of 175 mg, 300 mg, 450 mg, and 525 mg and repe-

ated doses of 350 mg, and 525 mg.

The data were analyzed using a non-linear mixed-effect

modeling approach. In this model, a random effect (log-

normally distributed) was used to account for the potential

variability in the PK parameters associated with the dif-

ferent assessment of the mean PK time course used in the

analysis (intra-measurements variability). The residual

error model was assumed proportional the PK measure-

ments. The analyses were conducted in NONMEM version

7.4 (ICON Development Solutions, Dublin, Ireland) using

the ADVAN13 subroutine and the first-order conditional

estimation with interaction method.

Traditional modeling approach

The three different structural models initially used to

implement the traditional approach (Fig. 1) were:
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• ER two-compartment model (three differential equa-

tions) with consecutive zero- and first-order absorption

with lag-time, and first-order elimination [11].

• PP1M one-compartment model (two differential equa-

tions) with first-order elimination and absorption

described by a fraction of the dose released with zero-

order process and a fraction with first-order process

[12].

• PP3M The PP3M formulation had a considerably

slower absorption profile than the PP1M formulation.

Attempts to fit the PP1M model to PP3M data

resulted in inadequate model performance. The final

absorption sub model (three differential equations)

described the absorption as two parallel saturable

processes; one fast and one slow. The processes were

parameterized using the Hill function, the slow

absorption process included a Hill coefficient that

was greater than 1 [13, 14].

Convolution-based modeling approach

The time-course of the drug concentration resulting from

an arbitrary dose can be described as a function of the

in vivo drug release and the disposition/elimination pro-

cesses defined by the unit impulse response accordingly to

the convolution integral:

Cp tð Þ ¼
Z t

0

f sð Þ � UIRðt� sÞ � ds ð1Þ

where s is a dummy variable used for integration, Cp is the

plasma concentration as a function of time t, f is the drug

input rate, and UIR is unit impulse response function.

The function characterizing the drug delivery f can be

estimated as the first-derivative of the cumulative drug

release function r:

f tð Þ ¼ dr tð Þ
dt

ð2Þ

The convolution integral model (Eq. 1) can be repre-

sented in a more manageable form using a system of dif-

ferential equations. In case of simple disposition process

(say one compartment with first order process), the UIR

function is characterized by the volume of distribution (V)

and by the first order elimination rate constant (kel). The

equation describing Cp(t) (one differential equation) is:

dAp tð Þ
dt

¼ F� Dose� dr tð Þ
dt

� kel� Ap ð3Þ

Kel ¼ CL

V
; Cp tð Þ ¼ Ap tð Þ

V
ð4Þ

where Ap(t) is the amount of drug, and F is the relative

bioavailability of the current formulation with respect to

the reference formulation (the one that provided an esti-

mate of the UIR function defined by CL and V). In this

scenario, Cp can be analytically estimated by numerically

integrating Eq. 3. This model can easily be generalized to

account for complex disposition processes including non-

linearity in the PK distribution and elimination processes.

The implementationof the convolution-basedmodel requires

that one specify the sub-model characterizing the r(t) function.

The structural form of r(t) was assumed to be described by a

parametric function, such as: exponential or single and dual

Weibull functionswithunknownparameters. In caseof adouble

Weibull function, the r(t) function can be written as:

Fig. 1 Schematic

representations of the traditional

and convolution-base models

used in the analysis
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r tð Þ ¼ 1� FF� e�
t

TDð Þssð Þ þ 1� FFð Þ � e�
t

TD1ð Þss1
� �� �

ð5Þ

where t = time, FF = fraction of the dose released in the

1st process, TD and TD1 = times to release 63.2% of the

dose in the 1st and in the 2nd process, and SS and

SS1 = sigmoidicity factors for the 1st and the 2nd process,

respectively. The dr/dt function can be analytically esti-

mated using the first derivative of the Eq. 5 or can be

approximated using a finite difference approach:

dr

dt
ffi r t� Dð Þ � r tþ Dð Þ

2� D
ð6Þ

where D is a sufficiently small number.

The schematic representations of the traditional and

convolution-base models are presented in Fig. 1.

Comparison of the models’ performances

The same single dose datasets for ER and LAI products

were analyzed using the traditional and convolution-based

modeling approaches. The Akaike (AIC) and Baye-

sian (BIC) information criteria were used for comparing

the performances of the two modeling approaches. Among

two models, the most informative will be the one with the

lowest AIC and BIC values. In addition, the overall ability

of the two modeling approaches to fit the data was evalu-

ated using the average percent prediction error defined as

100 9 [observations - predictions]/observations (%PE).

Software

The data used in the analyses were extracted from the

different referred publications using ScanIt plot digitizer

software, version 2.0 [15]. The analyses were conducted

using NONMEM, version 7.4 (ICON Development Solu-

tions, Hanover, MD, USA). Graphical data presentations

were conducted using R (R Foundation for Statistical

Computing).

Results

The paliperidone concentrations of each formulation (i.e.,

ER, PP1M, and PP3M), resulting from the administration

of the different doses were jointly analyzed using a non-

linear mixed effect approach using the traditional and the

convolution-based models.

The estimated parameter values using the convolution-

based model with the relative standard error for the ER,

PP1M, and PP3M products are presented in Table 1.

The estimated parameter values using the traditional

modeling approach with the relative standard error for the

ER, PP1M, and PP3M products are presented in the Sup-

plementary Material 2.

The plots of observed and model predicted concentra-

tions versus time estimated with the two modeling

approaches are presented in Fig. 2. The comparison of the

observed and model predicted concentrations indicated a

good and comparable ability of the two-modeling approa-

ched for describing the mean concentrations of the 3

products at the different doses evaluated.

The summary results of the analyses with the compar-

ison of the performances of the two modeling approaches

are presented in Table 2. The results confirmed comparable

performances with a numerical preference for the convo-

lution-based model.

The NONMEM code and data for the joint fitting of the

single and repeated doses for PP3M is provided in the

Supplementary Material 1.

The fraction of the dose released in vivo computed using

the double Weibull parameter values estimated in the

modeling of the ER, PP1M, and PP3M products (Table 1)

are presented in Fig. 3 (left panel).

The feasibility and the characteristics of a possible new

paliperidone LAI once-a-year product were explored using

the in vivo drug release function (i.e., the r(t) model

defined by the Eq. 5).

The steady state paliperidone concentrations of the

PP3M product estimated over a treatment time of 3 years

were considered as the reference target exposure. The same

disposition and elimination parameter values estimated in

Table 1 Estimated parameters using the convolution-based model

with the relative standard error (RSE) for the ER, PP1M, and PP3M

formulations

Parameter ER PP1M PP3M

Estimate (RSE) Estimate (RSE) Estimate (RSE)

TD (h) 0.864 (0.70%) 9.45 (12.90%) 12.6 (0.10%)

SSa 8.71 (1.20%) 3.14 (10.90%) 1.66 (0.30%)

TD1 (h) 1.54 (0.80%) 3.61 (27.70%) 6.32 (0.10%)

SS1a 0.395 (1.90%) 2.68 (12.60%) 2.16 (0.10%)

FF (%) 0.309 (3.20%) 0.355 (14.10%) 0.676 (0.10%)

CL/F (L/h) 15.13 (1.50%) 5.04 (9.70%) 4.38 (0.10%)

V/F (L) 446 (2.10%) 6080 (16.90%) 11,700 (0.20%)

RSE relative standard error
aUnitless
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the PP3M analysis were used in the simulation. Alternative

modified time varying input functions for PP12M were

explored. The final values retained for the potential in vivo

drug release of the PP12M products were: TD = 22 (h),

SS = 1.6, TD1 = 180 (h), SS1 = 2.13, and FF = 0.2768

(%) (Fig. 3, right panel).

The plot of the paliperidone concentrations versus time

at the dose of 350 mg for PP3M and 1600 mg for PP12M

are presented in Fig. 4.

Discussion

The aim of the analysis was to evaluate the features and the

interest of a common integrated convolution-based struc-

tural model for describing the paliperidone PK resulting

from the administration of extended-release oral dose, and

once- and three- monthly LAI products.

In the present analysis the absorption rate was described

by a double Weibull model.

Fig. 2 Mean observed data

(dots) versus time with the

model predicted concentrations

estimated with the traditional

(dotted lines) and the

convolution-based (solid lines)

approaches. Panel a ER

formulation, panel b PP1M,

panel c PP1M single dose, panel

d PP3M repeated doses

Table 2 Summary results of the

analysis with the comparison of

the performances of the two

modeling approaches

Formulation Method AIC BIC Mean %PE (95%CI)

ER Traditional - 157.593 - 134.90 - 0.38 (- 1.70, 0.95)

Conv-based - 153.935 - 126.20 - 0.53 (- 2.23, 1.16)

PP1M Traditional - 106.54 - 78.68 - 0.50 (- 2.16, 1.16)

Conv-based - 107.66 - 77.27 - 0.49 (- 2.13, 1.14)

PP3M Traditional 358.904 392.09 - 2.46 (- 5.40, 0.48)

Conv-based 241.699 277.81 - 1.84 (- 4.77, 1.09)

AIC Akaike information criterion, BIC Bayesian information criterion, %PE % prediction error,

95%CI 95% confidence interval
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Even though this model accurately described the data,

this remains one among many possible models available

for describing the complex absorption processes of LAI

products. Among these models we can mention the transit

compartment model, the sum of inverse gaussian models,

and the combination of different drug release models such

as parallel first-order absorption, mixed zero-order and

first-order absorption, absorption window with or without

Michaelis-Menten absorption [16–19].

The comparative performance of these modeling

approaches was out of the scope of the present paper. Our

objective was to compare the performances of traditional

Fig. 3 Left panel: fraction of the dose released in vivo computed

using the double Weibull parameter values estimated in the modeling

of the ER, PP1M, and PP3M products. Right panel: estimated fraction

of the dose released in vivo associated with a hypothetical once-a-

year (PP12M) LAI product

Fig. 4 Comparison of the paliperidone plasma concentrations versus time for the reference PP3M product at the dose of 350 mg (blue solid line)

and for the estimated PP12M at the dose of 1600 mg (red solid line) administered over 3 years
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compartmental and convolution-based modeling

approaches.

The results of the analyses indicated that the traditional

and convolution-based models showed comparable per-

formances in the characterization of the paliperidone PK.

However, the convolution-based approach showed several

appealing features that justify the choice of this modeling

as a preferred tool for modeling LAI products.

In particular, this modeling approach: (a) can facilitate

the development of IVIVC [20], (b) can be used to identify

formulations with optimal in vivo release properties [6],

(c) can be used for optimizing the clinical benefit of a

treatment by supporting the implementation of integrated

models connecting in vitro and in vivo drug release, in vivo

drug release to PK, and PK to PD [21], and (d) the model is

flexible enough to describe the paliperidone data previ-

ously characterized by three different models separately.

The mechanism of action of paliperidone is mainly

associated with the antagonistic activity on the D2 recep-

tors (a PD biomarker) at the level of the brain. It is cur-

rently widely accepted that a D2 occupancy ranging from

60 to 80% is needed for anti-psychotic’s clinical efficacy

[22]. Based on data from a positron emission tomography

(PET) scan study, a relationship between paliperidone

plasma concentrations and D2 receptor occupancy was

established, and plasma concentrations needed to achieve

an effect on schizophrenic symptoms were well defined.

An Emax model was developed and the paliperidone

concentration associated with the 50% of the maximal

response was estimated at 4.9 ± 0.53 ng/mL [23]. The

relationship between paliperidone PK and D2 receptor

occupancy is instrumental for determining the PK levels

and the in vivo release rate appropriate for achieving the

effective level of D2 occupancy over time.

A methodology for optimizing the clinical benefit of an

antipsychotic treatment (defined as the ability to reach and

maintain a D2 receptor occupancy ranging from 60 to 80%)

was proposed using a nonlinear optimization algorithm

operating on an integrated convolution-based drug-disease

model [21]. In this analysis the clinical benefit was

expressed as a nonlinear function of the in vivo drug

release and dosage regimen. The results of the analyses

indicated that a substantial improvement in clinical benefit

can be obtained when optimal strategies for in vivo drug

release and dose finding are deployed.

On these bases, the convolution-based modeling can be

considered as a modeling framework facilitating the

development of new LAI products with an improved ben-

efit-risk ratio over different time intervals.

A case study is presented to illustrate how the convo-

lution-based model developed using PP1M and PP3M

products can be used to inform the development of alter-

native LAI products with even longer dosing interval such

as a paliperidone LAI product administered once-a-year

(PP12M).

The simulated plasma concentrations indicated that a

similar steady state exposure of PP3M can be achieved

with a repeated administration of PP12M once the in vivo

drug release was characterized by a specific function. The

knowledge of the shape of this function in conjunction with

the availability of IVIVC can be utilized as tool for guiding

the in vitro development of new formulations satisfying the

target drug release properties.

These results provide a proof-of-principle of the feasi-

bility of a once-a-year LAI product. Obviously, additional

clinical and practical criteria should be considered for

defining the optimal shape of the paliperidone exposure for

such a long treatment time period.

The limitationsof themethodologyremainassociatedwith

the characterization of the UIR function required for imple-

menting the convolution-modeling if the objective of the

model would have been to conduct a deconvolution analysis,

theuse of theparameters for theUIR functionestimatedusing

IV data would have been mandatory. In this case, these

parameters of the UIR function would have been fixed in the

fittingprocedurefor thedeconvolutionanalysis. In thecontext

of the present analysis and in absenceof IVdata, the objective

of the modeling was not to conduct a deconvolution analysis

but simply toestimate thePKparameters (includingCL/Fand

V/F) that best describe the data.

In the present analysis the values of the UIR function

was empirically estimated for each product (ER, PP1M,

and PP3M) using the available measurements resulting

from LAI products treatment.

Conclusion

In conclusion, the proposed modeling and simulation

approaches have been shown to represent an effective

framework for describing complex and multiphase PK of

LAI products, for identifying the optimal dosing strategy,

for facilitating the development of LAI formulations, and

for deploying an effective Model-informed drug develop-

ment (MIDD) process.
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