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In a few short years, quantitative systems pharmacology

(QSP) has become a major tool available to pharmaco-

metricians to improve decision making in drug develop-

ment, so much so that today pharmacometrics can be

broadly classified into three groups: population-based

methods, physiological-based pharmacokinetics (PBPK),

and QSP. Recently, we are starting to see the emergence of

a fourth field: machine learning (ML). These recent ML

papers have primarily used ML with population-based

methods. There are papers on the use of genetic algorithms

to improve population-based model selection [1–3], on

using ML to identify important covariates in covariate

selection [4], the use of recurrent neural networks to pre-

dict pharmacodynamic profiles [5], and the use of ML to

help guide precision dosing in patients [6].

But machine learning is nothing new. In fact, it’s QSP

that is new. QSP had its official introduction with the

rollout of a white paper from the National Institutes of

Health in 2011 [7], just a little over a decade ago. But ML

is much older, having its origins in the 1950s when the first

ML algorithms were developed by IBM for the game of

checkers [8]. The basic unit of neural networks, the per-

ceptron, which is the foundation for deep learning, was

developed in 1957. Backpropagation was developed in the

1960s. Going back to the 1980s and 1990s, one can find the

first ML papers applied to PKPD modeling [9–11]. But the

use of ML never gained any traction over the population-

methods that were also being developed at the same time

and it remained a niche area in pharmacometrics for dec-

ades. It’s safe to say that overall, neural networks and ML

didn’t take off until the 21st century when computing

power and huge amounts of data converged to finally take

full advantage of these algorithms, which require huge

amounts of data and fast processing speed to be useful.

As part of the on-going efforts of the Journal of Phar-

macokinetics and Pharmacodynamics (JPKPD) to promote

the application of ML in pharmacometrics, this issue pre-

sents a series of papers related to the application of ML to

augment or assist in the development and analysis of QSP

models. The lead paper in this issue is an industry-acade-

mia white paper from the International Society of Phar-

macometrics Working Group on the Integration of

Quantitative Systems Pharmacology and Machine Learning

[12]. The working group has identified four areas where

machine learning can be used with QSP: parameter esti-

mation or extraction, model structure, dimension reduction,

and virtual populations. Each area is reviewed with some

specific case studies highlighted. The paper concludes with

some general thoughts on the future of this integration,

some challenges, and some of the practical considerations

in implementing ML in industry.

Following the white paper are a series of original

research articles and reviews that highlight the application

of ML to specific functional areas:

• Aghamiri, Amin, and Helikar [13] present a general

review of the application of ML to QSP.

• Cheng et al. [14] present a focused review on the use of

ML and deep learning (which is a subset of machine

learning, much like machine learning is a subset of

artificial intelligence, that uses neural networks for

learning) to diagnose and model heart failure.

• Generational adversarial networks (GANs) are a type of

deep learning method where two neural networks

compete against one another in a type of zero-sum

game. GANs have been in the news recently for their

ability to generate extremely realistic images of people

that do not exist. Parikh et al. [15] use GANs to

generate virtual populations of cardiac myocyte models

and applied it used it to study the positive ionotropic

effects of omecamtiv mecarbil.
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• Bayesian Networks (BN) are probabilistic models that

explain how a set of covariates interact with each other.

Using metabolic and cardiovascular markers extracted

from the National Heath and Nutritional Examination

Survey (NHANES) database, McComb et al. [16] use

Bayesian networks to first understand the relationship

between these markers and then used ML to to model

disease progression as a person ages, essentially using

current and previous measurements to predict future

measurements. Such a model could be used by clini-

cians in the future to monitor long term treatment

responses to diabetes or cardiovascular drugs.

• Network analysis is a methodology for examining the

relationships among high dimensional biological data.

In a sense, its output is similar to BN, but operates on a

much larger scale. Hayes, Sachs, and Cho [17] present a

new network analysis method, called DEKER-NET,

which uses ML to identify relationships among covari-

ates. Using Dialogue for Reverse Engineering Assess-

ments and Methods (DREAM) challenge data, the

authors show that DEKER-NET performs as good or

better than existing methods.

• Mager and colleagues first introduced Boolean network

models to pharmacometrics just a few years ago by

demonstrating how this new methodology can be used

to build and simplify QSP models prior to development

of more formal ordinary differential equation-based

models [18–20]. Putnins et al. [21] further develop this

methodology by implementing a pipeline approach to

simplify and standardize network model development.

They demonstrate their approach by developing a QSP

model for flotetuzumab.

• Zhang and Tyson [22] present a novel approach, using

ML followed by bifurcation analysis, to generate virtual

patients in QSP models. ML can quickly examine

thousands of virtual patients and determine which

parameters are important explaining variability in the

data; bifurcation analysis can provide greater mecha-

nistic insight into those parameters identified as impor-

tant. The authors illustrate their method using a QSP

model of the hypothalamic–pituitary–adrenal axis.

Science progresses. It evolves. New knowledge is cre-

ated. Pharmacometrics is no exception. This issue

demonstrates that as both QSP and ML evolve and mature,

we are starting to see the merging or cross-pollination of

two disciplines to create new opportunities for research and

further growth of both fields. The editors of the Journal and

organizers of this issue (Carolyn Cho, Tongli Zhang, and

myself) would like to thank all the authors and reviewers

for their help in making this issue a success.
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