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Abstract
The main objective of this article is to propose the closed-form solution of one-compartment pharmacokinetic model with

simultaneous first-order and Michaelis–Menten elimination for the case of constant infusion. For the case of bolus

administration, we have previously established a closed-form solution of the model through introducing a transcendent X

function. In the same vein, we found here a closed-form solution of constant infusion could be realized through introducing

another transcendent Y function. For the general case of constant infusion of limited duration, the closed-form solution is

then fully expressed using both X and Y functions. As direct results, several important pharmacokinetic surrogates, such as

peak concentration Cmax and total drug exposure AUC0�1, are found the closed-form expressions and ready to be

analyzed. The new pharmacokinetic knowledge we have gained on these parameters, which largely exhibits in a nonlinear

feature, is in clear contrast to that of the linear case. Finally, with a pharmacokinetic model adapted from that formerly

reported on phenytoin, we numerically analyzed and illustrated the roles of different model parameters and discussed their

influence on drug exposure. To conclude, the present findings elucidate the intrinsic quantitative structural properties of

such pharmacokinetic model and provide a new avenue for future modelling and rational drug designs.

Keywords Pharmacokinetic model � Closed-form solution � Constant infusion � Simultaneous first-order and Michaelis–

Menten elimination � Total drug exposure AUC0�1

Introduction

Many drugs, mostly biologics, have complex physico-

chemical characteristics and show specific pharmacoki-

netics in absorption, distribution, metabolism and excretion

(ADME) compared to small molecules [1]. Typical

examples are hormones, growth factors, monoclonal anti-

bodies, which often manifest parallel elimination mecha-

nisms [2–7]. Generally, their elimination involves a linear

elimination pathway through organs such as kidney, lung,

skin, etc., and simultaneously combined with a nonlinear

saturate elimination pathway that metabolizes or clears the

parent products. To model the pharmacokinetics (PK) of

such drugs, compartment models concurrently considering

first-order and Michaelis–Menten elimination are widely

used [2–10]. While the major effort in modeling applica-

tion is the parameter estimation from data, many authors

have studied the closed-form solutions of compartmental

models involving exclusively the Michaelis–Menten elim-

ination pathway through the use of Lambert W function

[11–13]. Whereas for the models of simultaneous first-

order and Michaelis–Menten elimination, we have intro-

duced a new family of transcendent X functions that con-

stitutes the base for expressing the closed-form solutions in

the case of intravenous bolus administration [14–16].

The administration route is however an important issue

that influences the absorption aspect of a drug. To have

better control of drug disposition, there have been
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QC H3C 3J7, Canada
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widespread considerations of various administration routes.

For example, the constant infusion of growth factors,

MAbs, hormones are studied and reported [17–20]. Unlike

the usual case of linear elimination, the principle of con-

volution for the linear time-invariant system cannot be

applied to easily deduce the analytic solution of these

nonlinear elimination systems for constant infusion.

Though numerical approximations for fitting are feasible, it

is still a difficult issue to make good judgment and pre-

diction before the hidden mathematical mechanism is

clarified. To our knowledge, this issue has been studied for

the single Michaelis–Menten elimination [11], whereas the

general case of simultaneous first-order and Michaelis–

Menten elimination is always an open problem. Since a

simple closed-form solution will be of great help to

establish and simplify the application, we will investigate

in the current article this plausibility by exploring some

specific mathematical functions.

Suppose a drug is administered intravenously by a

constant infusion into the system, and from which the

elimination takes place simultaneously through two types

of pathways, one first-order and one Michaelis–Menten.

Using a one-compartment model, the change of drug

plasma concentration C(t) at time t can be characterized by

the following differential equation

dCðtÞ
dt

¼ R

Vd
� kelCðtÞ �

VmCðtÞ
Km þ CðtÞ ; t[ 0

Cð0Þ ¼ 0; t ¼ 0;

8
<

:
ð1Þ

where Vd represents the apparent volume of distribution;

kel is the elimination rate constant for the linear elimination

pathway; Vm and Km are the maximum rate of the

Michaelis–Menten kinetics (in the unit of concentra-

tion/time) and the so-called Michaelis–Menten constant,

respectively. The latter is known as the concentration value

at which the rate of change of Michaelis–Menten kinetics

reaches a half of Vm. Moreover, we suppose the drug is

constantly infused at the rate of R (in the unit of

amount/time), and at time t ¼ 0, the drug concentration

value is zero. To be realistic for their pharmacokinetic

meaning, it has to be reminded that all model parameters

are positive.

As we have mentioned, for the intravenous bolus

administration, we previously introduced a transcendent X

function that allowed us to express the closed-form solu-

tion of a one-compartment pharmacokinetic model of

simultaneous linear and Michaelis–Menten elimination.

With X function, the descending elimination phase of such

types of models can be fully characterized [14–16]. How-

ever, if we consider the infusion mechanism, it is found

that the use of X function is not enough, and another

transcendent Y function as we name it in this article should

be introduced for the closed-form expression of the

ascending phase. For the usual case of the constant infusion

of limited duration, we will demonstrate that the applica-

tion of both X and Y functions will provide a full mathe-

matical characterization of such kind of pharmacokinetic

profiles. And this will be the key result of the current

article. Moreover, by using this closed-form expression, the

pharmacologically important drug exposure surrogates

such as Cmax, total or partial AUC will be naturally

obtained and analyzed for their nonlinear properties to the

administered doses, which will be found in clear contrast to

the known linear situations.

This article is organized as follows. We will first sum-

marize the concept of X function previously introduced

based on a one-compartment model of simultaneous linear

and Michaelis–Menten elimination in the case of intra-

venous bolus administration. Then we will introduce the

family of Y functions and use it for the expression of the

closed-form solution of a one-compartment model of

simultaneous linear and Michaelis–Menten elimination in

the case of constant infusion. Using this closed-form

solution, we will focus on the practical case of constant

infusion of a limited duration, and the closed-form solution

of drug concentration-time course, as well as the drug

exposure surrogates (Cmax and AUC), will be provided. For

an illustrative purpose, we will adapt a real drug example

from literature to show the impact of our findings on the

current pharmacokinetic knowledge as well as some pos-

sible applications. Moreover, several topics will be

addressed in the discussion.

Transcendent X function

The family of X functions is introduced for expressing the

closed-form solution of the pharmacokinetic model of

simultaneous first-order and Michaelis–Menten elimination

in the case of intravenous bolus administration [14]. In fact,

the pharmacokinetics of a one compartment model can be

mathematically described as

dCðtÞ
dt

¼ �kelCðtÞ �
VmCðtÞ

Km þ CðtÞ ;

Cð0þÞ ¼ D=Vd,C0;

8
<

:
ð2Þ

where the model coefficients are the same as described in

Model (1), except D here is the bolus dose amount intra-

venously administered at time t ¼ 0.

To facilitate the description of X function, we introduce

two concepts below:

(i) kem ¼ Vm

Km
: the intrinsic elimination rate constant of

the Michaelis–Menten elimination pathway. It

indicates the maximum strength of the nonlinear

pathway to reduce the drug concentration and can
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only be attained for very low drug concentration by

letting CðtÞ ! 0. In fact, when drug concentration

tends to zero, we have

d

dCðtÞ
VmCðtÞ

Km þ CðtÞ

� ���
�
�
�
CðtÞ¼0

¼ VmKm

ðKm þ CðtÞÞ2

�
�
�
�
�
CðtÞ¼0

¼ Vm

Km
:

(ii) ke;tot ¼ kel þ kem: the intrinsic total elimination rate

constant. It indicates the maximum strength of the

system to drop the drug concentration by simulta-

neously combining the two elimination pathways.

Using these notations and performing partial fraction

decomposition, the differential equation of Model (2) can

be changed as

p1
CðtÞ þ

p2
CðtÞ þ Cb

� �

dCðtÞ ¼ �keldt; ð3Þ

where p1, p2 and Cb are defined as

p1 ¼
kel
ke;tot

; p2 ¼
kem
ke;tot

; Cb ¼
ke;tot
kel

� Km; ð4Þ

respectively. It is noteworthy that p1 and p2 are the frac-

tions that share in the intrinsic total elimination rate con-

stant of the linear and Michaelis–Menten elimination

pathways, respectively. Thus p1 þ p2 ¼ 1. Cb is a constant

of concentration obtained from Km multiplied by the ratio

of the intrinsic total elimination constant to that of the

linear pathway. Pharmacokinetically, if we consider the

rate of change in drug concentration at Km for a linear

model with the elimination coefficient ke;tot, then Cb is the

corresponding concentration value of this linear model that

gives the same rate of change but with the elimination

coefficient replaced by kel (for more details see [14]).

Performing integration from time 0þ to time t[ 0,

Eq. (3) can be transformed as

CðtÞp1ðCðtÞ þ CbÞp2 ¼ C0ð Þp1 C0 þ Cb

� �p2e�kelt;

which is equivalent to

CðtÞ
Cb

� �p1

1þ CðtÞ
Cb

� �p2

¼ C0

Cb

� �p1

1þ C0

Cb

� �p2

e�kelt: ð5Þ

Equation (5) is transcendent and the solution cannot be

expressed through composition of elementary functions in

a conventional way. Motivated by the Lambert W function

[21], which had been rediscovered its application for the

closed-form solution of the pharmacokinetic model with a

single Michaelis–Menten elimination, a new family of

transcendent X functions in [14] was introduced for the

closed-form expression of C(t) of Eq. (5).

Definition 1 [14] Given both p1 and p2 positive real

numbers, X(s) is defined as the multivalued solution of the

following equation:

XðsÞp1 � ð1þ XðsÞÞp2 ¼ s ð6Þ

where s is a complex variable. Depending on situations,

notation Xðs; p1; p2Þ will be used as well as X(s).

It is noteworthy that the value of X function is deter-

mined by the choice of parameters p1, p2 and the inde-

pendent variable s. In fact, we have investigated the real

branches of X function in the scope of real numbers. As a

result, for any positive real number s 2 Rþ, there is a

unique positive X(s) satisfying Eq. (6). For the purpose of

applications, we define the real branch of X function

occurring in the first quadrant as the principal real branch

of X function and denoted it by X0ðs; p1; p1Þ [22]. Based on

the above definition, the following result is obtained.

Theorem 1 [14] For Model (2) with the simultaneous first-

order and Michaelis–Menten elimination and an intra-

venous bolus administration, the concentration time course

can have a closed-form solution as

CðtÞ ¼ Cb � X0

C0

Cb

� �p1

1þ C0

Cb

� �p2

e�kelt; p1; p2

� �

; t[ 0;

ð7Þ

where X0 is the aforementioned principal real branch of X

function in the first quadrant.

With an explicit expression of C(t), the qualitative

properties of many pharmacological parameters, as we

have shown for the elimination half-life and area under the

curve, can be revealed and even quantitatively expressed

[14–16]. Moreover, Eq. (7) will be further used to solve the

closed-form solution of the pharmacokinetic model with a

constant infusion of limited duration in this article.

Transcendent Y function

If we change the drug administration in Model (2) to an

intravenous constant infusion, the already introduced one

compartment pharmacokinetic model (Eq. (1)) could be

rewritten as

dCðtÞ
dt

¼ r � kelCðtÞ �
VmCðtÞ

Km þ CðtÞ ; t[ 0

Cð0Þ ¼ 0; t ¼ 0;

8
><

>:
ð8Þ

where r ¼ R=Vd is a constant that represents the rate of

constant infusion per volume (in the unit of
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concentration/time). All other model parameters are as

described in Eq. (1) and positive.

The first equation of Model (8) can be rewritten as

dCðtÞ
dt

¼ �kel
ðCðtÞ � C1ÞðCðtÞ þ C1

b Þ
Km þ CðtÞ ; ð9Þ

where

C1 ¼ 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cb �
r

kel

� �2

þ4
r

kel
Km

s

� Cb �
r

kel

� �	

[ 0

ð10Þ

and

C1
b ¼ 1

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cb �
r

kel

� �2

þ4
r

kel
Km

s

þ Cb �
r

kel

� �	

[ 0:

ð11Þ

Clearly, the two quantities of C1 and C1
b play a crucial

role to express the closed-form solution of Model (8).

Accordingly we summarize their mathematical properties

below, and their proof is provided in Appendix 1.

Lemma 1 For Model (8) that describes the change of drug

concentration induced by the constant infusion and

simultaneous first-order and Michaelis–Menten elimina-

tion, we have

(i) C1 in Eq. (10) is the unique positive equilibrium.

Moreover, C(t) is strictly increasing with respect to

t� 0 and asymptotically converges to C1 as

t ! þ1, that is, CðtÞ\C1 for all t� 0.

(ii) C1
b in Eq. (11) is a positive value which is greater

than Km, that is C
1
b [Km.

Using a straightforward algebraic manipulation, Eq. (9)

can be changed as
�

q1
CðtÞ � C1 þ q2

CðtÞ þ C1
b

�

dCðtÞ ¼ �kel dt ð12Þ

where

q1 ¼
C1 þ Km

C1 þ C1
b

; q2 ¼
C1
b � Km

C1 þ C1
b

; and q1 þ q2 ¼ 1:

ð13Þ

Clearly, it follows from Lemma 1 that both q1 and q2 are

positive numbers between 0 and 1.

We now integrate both sides of Eq. (12) from time 0 to t

and apply Lemma 1, and we have

q1 lnðC1 � CðtÞÞ þ q2 lnðC1
b þ CðtÞÞ

¼ q1 lnC
1 þ q2 lnC

1
b � kelt;

which is equivalent to

�
C1 � CðtÞ
C1 þ C1

b

�q1�

1� C1 � CðtÞ
C1 þ C1

b

�q2

¼
�

C1

C1 þ C1
b

�q1� C1
b

C1 þ C1
b

�q2

e�kelt:

ð14Þ

Equation (14) is a transcendent equation if C(t) is consid-

ered the sole variable. It is noteworthy the form likeness

between Eqs. (14) and (5), and the latter had led to the

introduction of X functions for the closed-form solution of

the case of intravenous bolus. Thus we introduce the fol-

lowing Y functions.

Definition 2 Given both q1 and q2 positive real numbers,

Y(s) is defined as a multivalued solution of the following

equation:

YðsÞq1 � ð1� YðsÞÞq2 ¼ s ð15Þ

where s is a complex variable. As notations, Yðs; q1; q2Þ
will be used as well as Y(s) as the situation requires.

To show the existence of solution to Eq. (14), we need

the following properties characterizing the transcendent

Y functions.

Lemma 2 Given real parameters q1 2 ð0; 1Þ, q2 2 ð0; 1Þ
and q1 þ q2 ¼ 1, there exists a unique Y 2 ð0; q1Þ � ð0; 1Þ
for any s 2 ð0; qq11 q

q2
2 Þ � ð0; 1Þ such that Eq. (15) holds.

Proof Consider the following derivative with respect to x

d

dx

h
xq1ð1� xÞq2

i
¼ xq1ð1� xÞq2 q1 � x

xð1� xÞ ;

which is positive when x belongs to ð0; q1Þ. Accordingly,
xq1ð1� xÞq2 is increasing in this interval and its range is

ð0; qq11 q
q2
2 Þ � ð0; 1Þ. By the inverse function theorem,

Eq. (15) admits a unique real value Yðs; q1; q2Þ 2 ð0; q1Þ
corresponding to s 2 ð0; qq11 q

q2
2 Þh.

Similar to aforementioned X0, we define this positive

real solution belonging to the interval ð0; q1
q1þq2

Þ as a prin-

cipal real branch of Y functions in the first quadrant,

denoted by Y0. However, a thorough mathematical inves-

tigation of Y function is not intended here since it is out of

the scope of the current article. To provide readers a direct

view of X0ðs; p1; p2Þ and Y0ðs; q1; q2Þ, these functions are

simulated and plotted for different values of p1, p2, q1 and

q2 using MATLAB (R2015a, MathWorks, Inc.) (see

Appendix 2).

Let us go back to Eq. (14), and we can check

0\
C1 � CðtÞ
C1 þ C1

b

\
C1 þ Km

C1 þ C1
b

¼ q1:

And
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0\
�

C1

C1 þ C1
b

�q1� C1
b

C1 þ C1
b

�q2

e�kelt

\
�

C1

C1 þ C1
b

�q1� C1
b

C1 þ C1
b

�q2

;

which is less than
�
C1 þ Km

C1 þ C1
b

�q1�

1� C1 þ Km

C1 þ C1
b

�q2

¼ qq11 q
q2
2 :

Therefore, by the definition of the principal real branch of

Y functions and Lemma 2, Eq. (14) admits a unique solu-

tion
C1�CðtÞ
C1þC1

b
that can be expressed as

C1 � CðtÞ
C1 þ C1

b

¼ Y0

�
C1

C1 þ C1
b

�q1� C1
b

C1 þ C1
b

�q2

e�kelt; q1; q2

 !

:

Finally, we have the following result.

Theorem 2 For Model (8) with the simultaneous first-

order and Michaelis–Menten elimination and a constant

infusion, the closed-form solution of concentration time

course is

CðtÞ ¼C1 � ðC1 þ C1
b Þ�

Y0

�
C1

C1 þ C1
b

�q1� C1
b

C1 þ C1
b

�q2

e�kelt; q1; q2

 !

;

t[ 0;

ð16Þ

where Y0 is the principal real branch of Y functions in the

first quadrant.

Compared to Theorem 1, the closed-formed solution

found in Theorem 2 has a more complex form. In fact, in

the former, only a decreasing elimination is involved,

whereas an accumulation process is integrated into the

latter, which interacts with the elimination process. So,

Eq. (16) clearly characterizes how C(t) increases from 0 at

t ¼ 0 to the steady-state C1 when t tends to infinity.

Depending upon the infusion rate r (or R), C1 and C1
b play

a crucial role for the closed-form solution of Model (8). To

better understand the pharmacokinetics of this model, the

relationships between C1 and C1
b with the infusion rate

and the pharmacokinetic meaning of C1
b are clarified

below.

Proposition 1 For Model (8) with the simultaneous first-

order and Michaelis–Menten elimination and a constant

infusion, we have

(i) If r ¼ 0, which is same as R ¼ 0, then C1 ¼ 0

and C1
b ¼ Cb.

(ii) If r
¼
[
\

0

@

1

Ake;totKm, which is same as

R
¼
[
\

0

@

1

AVdke;totKm, then C1
¼
[
\

0

@

1

AC1
b .

(iii) C1 is monotonically increasing with respect to r

(or R) and eventually tends to infinity; and C1
b is

monotonically increasing with respect to r (or R)

and eventually tends to Km, that is

lim
r!1

C1 ¼ þ1 and lim
r!1

C1
b ¼ Km:

Proof See Appendix 3. h

Figure 1 illustrates the variations of C1 and C1
b with

respect to the infusion rate r, respectively, where C1 is

monotonically increasing towards to infinity, C1
b is

monotonically decreasing towards to zero, and they are

equal at r ¼ ke;totKm.

Pharmacokinetic meaning of C ¥
b

It is understandable that C1 is the steady state drug con-

centration that the system will asymptotically attain when

the constant infusion is continued to be administered. As

shown in Fig. 1, a larger constant infusion induces a higher

C1.

For the positive value of C1
b , a pharmacokinetic inter-

pretation can be similarly attributed as in [15]. Let us

Infusion rate r
0 10 20 30 40 50 60 70 80 90 100

C
on

ce
nt

ra
tio

ns
 C

∞
 a

nd
 C

∞

0

50

100

150

200

250

300

350

C∞

C∞
β

β

Cβ

r=k
e,tot

K
m

K
m

Fig. 1 Illustration of C1 and C1
b with respect to infusion rate

r 2 ½0; 100 mIU/ml/h]. Here kel ¼ 0:21 1=h, Vd ¼ 61:18 ml, Vm ¼
32:58 mIU/ml/h, Km ¼ 67:23 mIU/ml are adapted from [10]
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consider two linear pharmacokinetic models with a con-

stant infusion and a first-order elimination:

(a)

dC1ðtÞ
dt

¼ kelC
1 � kelC1ðtÞ;

and

(b)

dC2ðtÞ
dt

¼ r � ke;totC2ðtÞ;

then C1
b is the drug concentration level in Model (a) that

has the same change rate of concentration or slope as that

of Model (b) but at the concentration level Km, that is

dC1ðtÞ
dt

�
�
�
�
C1ðtÞ¼C1

b

¼ dC2ðtÞ
dt

�
�
�
�
C2ðtÞ¼Km

¼ r � ke;totKm:

In fact this concentration change rate is r � ke;totKm (or

kelðC1 � C1
b )) that may be positive or negative, depending

on how C1 and C2 converge to their steady states,

respectively, whether from above or below. If C1 [C1
b

(samely as r[ ke;totKm), we assume C1ðtÞ and C2ðtÞ are

initially below their respective steady state levels, then this

change rate is positive. If C1\C1
b (samely as

r\ke;totKm), we assume C1ðtÞ and C2ðtÞ are initially above

their respective steady state levels, then this change rate is

negative. If C1 ¼ C1
b (samely as r ¼ ke;totKm), then the

two systems are at their steady state with change rate zero.

Pharmacokinetic model with a constant
infusion of limited duration

By introducing a transcendent Y function, we arrive to

provide in the last section the closed-form solution for the

constant infusion case of the pharmacokinetic model with

the simultaneous first-order and Michaelis–Menten elimi-

nation. For a more general application in pharmacokinetic

practice, we still need to extend its use to pharmacokinetic

models of a constant infusion of limited duration. To

achieve this objective, we can combine the use of tran-

scendent X and Y functions.

In this case, we assume a dose D is executed as a con-

stant infusion for a time duration T. For the sake of sim-

plicity, we further assume the administration starts from

time zero and ends at time T. The one-compartment

pharmacokinetic model is

dCðtÞ
dt

¼ f ðtÞ � kelCðtÞ �
Vm � CðtÞ
Km þ CðtÞ ; t[ 0;

Cð0Þ ¼ 0; t ¼ 0;

8
><

>:
ð17Þ

where the drug input function is

f ðtÞ ¼
R=Vd; t 2 ½0; T�;
0; t[ T

(

and R ¼ D

T
: ð18Þ

Closed-form solution of C(t)

The time course of drug concentration of Model (17) can

be separated into two phases according to drug input

(Eq. 18). In the first phase from time zero to T, the drug is

intravenously administered at a constant rate R ¼ D
T , and

drug concentration increases from zero to its maximum

value occurring at time T. Hence, during [0, T], the time

evolution of drug concentration in Model (17) is the same

as that in Model (8). And from time T, there is no more

drug input, Model (17) enters the second phase where only

simultaneous first-order and Michaelis–Menten elimination

exists. This leads to the situation as described in Model (2)

but the initial time is changed to T equivalently with a

bolus dose CðTÞVd administered. By Theorems 1 and 2, we

immediately have the result below.

Theorem 3 For Model (17) with a limited constant

infusion time, the closed-form solution of time course of

drug concentration can be expressed as

C tð Þ ¼
C1 � ðC1 þ C1

b Þ � Y0 ð C1

C1 þ C1
b

Þq1ð
C1
b

C1 þ C1
b

Þq2e�kelt; q1; q2

 !

; 0\t� T ;

Cb � X0

CðTÞ
Cb

� �p1

1þ CðTÞ
Cb

� �p2

e�kelðt�TÞ; p1; p2

� �

; t[ T

8
>>>><

>>>>:

ð19Þ

where C1, C1
b , q1 and q2 are given by Eqs. (10)–(11) and

Eq. (13) while r ¼ D=ðTVdÞ; p1, p2, Cb are given in Eq.

(4); C(T) is the last concentration of the ascending phase

and is also the peak concentration, which is

Cmax ¼ CðTÞ ¼ C1 � ðC1 þ C1
b Þ�

Y0

�
C1

C1 þ C1
b

�q1� C1
b

C1 þ C1
b

�q2

e�kelT ; q1; q2

 !

:
ð20Þ

Total drug exposure

The area under the concentration-time curve (AUC) is a

useful parameter that reflects the actual body exposure to

an administered drug. The total drug exposure AUC0�1 is

the integral of drug concentration time curve from the dose

administration (t ¼ 0) to t ¼ þ1, namely

AUC0�1 ¼
Z þ1

0

CðtÞ dt:

For the pharmacokinetics of linear elimination, the total

drug exposure AUC0�1 is proportional to the administered
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dose. However, this property may change for the simulta-

neous first order and Michaelis–Menten elimination. In the

following, we will give the exact formula for the case of a

constant infusion of a limited duration.

Theorem 4 For Model (17) describing the simultaneous

first-order and Michaelis–Menten elimination and a con-

stant infusion with limited duration T, the exact formula of

total drug exposure is

AUC0�1 ¼ 1

kel
�q1C

1 ln 1� CðTÞ
C1

� ��

þq2C
1
b ln 1þ CðTÞ

C1
b

 !

� p2Cb ln 1þ CðTÞ
Cb

� �#

;

where C1, C1
b , q1 and q2 are given in Eqs. (10)–(11) and

Eq. (13) while r ¼ D=ðTVdÞ; p2 and Cb are given in Eq.

(4).

Proof Firstly, we calculate the partial area under the curve

AUC0�T for the ascending phase of drug infusion.

During the time period [0, T], the drug concentration

follows Eq. (12). Multiplying both sides of this equation by

C(t) and making a rearrangement yields

1þ q1C
1 1

CðtÞ � C1 � q2C
1
b

1

CðtÞ þ C1
b

 !

dCðtÞ

¼ �kelCðtÞ dt:

Thus

Z T

0

1þ q1C
1 1

CðtÞ � C1 � q2C
1
b

1

CðtÞ þ C1
b

 !

dCðtÞ

¼ �kel

Z T

0

CðtÞ dt:

Using the fact Cð0Þ ¼ 0, it yields

CðTÞ þ q1C
1 ln

C1 � CðTÞ
C1 � q2C

1
b ln

C1
b þ CðTÞ
C1
b

¼ �kelAUC0�T ;

which gives rise to

AUC0�T ¼ 1

kel
�q1C

1 ln 1� CðTÞ
C1

� ��

þ q2C
1
b ln 1þ CðTÞ

C1
b

 !

� CðTÞ
#

:

Secondly, we calculate the area under the curve AUCT�1
for the descending phase of the drug elimination that

elapses from time T to þ1. During the time period

½T;þ1Þ, the drug concentration follows Eq. (3). For both

sides of Eq. (3), multiplying first by C(t) and then inte-

grating from time T to þ1, we have

Z þ1

T

1� p2Cb
1

CðtÞ þ Cb

� �

dCðtÞ ¼ �kel

Z þ1

T

CðtÞ dt:

Taking the fact lim
t!þ1

CðtÞ ¼ 0, it yields

�CðTÞ � p2Cb ln
Cb

CðTÞ þ Cb
¼ �kelAUCT�1

which is equivalent to

AUCT�1 ¼ 1

kel
CðTÞ � p2Cb ln 1þ CðTÞ

Cb

� �� 	

: ð21Þ

Accordingly, the total drug exposure AUC0�1 from time

zero to infinity is

AUC0�1 ¼AUC0�T þAUCT�1

¼ 1

kel
�q1C

1 ln 1�CðTÞ
C1

� ��

þq2C
1
b ln 1þCðTÞ

C1
b

 !

�p2Cb ln 1þCðTÞ
Cb

� �#

:

h

It is noteworthy that, for the pharmacokinetics of linear

elimination, we usually use
CðtlastÞ
kel

to estimate AUCtlast�1.

According to Eq. (21), for the current model of simulta-

neous linear and Michaelis–Menten elimination, it should

be replaced by 1
kel
CðtlastÞ � 1

kel
p2Cb ln 1þ CðtlastÞ

Cb


 �
where

the first term is the drug exposure left for linear elimination

in absence of Michaelis–Menten elimination, the second

term clearly shows the reduction to this exposure when the

Michaelis–Menten elimination presents.

Illustration with case studies

Phenytoin (diphenylhydantoin, DPH) is an anticonvulsant

known for narrow therapeutic window and nonlinear

pharmacokinetics [23]. Therapeutic drug monitoring is

usually required for its safe and effective use. It is origi-

nally reported to follow a one-compartment model struc-

ture with nonlinear pharmacokinetics as presented by

Model (17) in [23]. For an illustration purpose, we

extracted the data from [23] and re-estimated the mean

values of our studied model.

From Table 1 in [23], we averaged the weights of five

subjects as 76.38 kg, and the mean Vd is 48.58 L using the

data of mean volume per weight (0.636 l/kg). The maxi-

mum change rate Vm ¼ Vmax=Vd and Michaelis–Menten

constant Km were estimated to be 0.334 mg/l/h and 5.28

mg/l using the data of mean Vmaxð¼ 5:10 mg/kg/day) and

mean Michaelis–Menten constant (= 3.36 mg/kg) of

phenytoin, respectively. Moreover, kel was estimated using
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CLR=Vd, where CLR ¼ 0:072 ml/min is the renal clearance

of phenytoin in [23]. The total dose amount is based on the

mean dose amount per weight (4.6 mg/kg) of phenytoin in

[23].

In summary, we obtained the following parameters for

the studied one-compartment model:

D ¼ 351:30mg; Vd ¼ 48:58 l; kel ¼ 8:75� 10�5 h�1;

Vm ¼ 0:334mg=l=h; Km ¼ 5:28mg=l:

ð22Þ

From these parameters, we further calculated

kem ¼ 0:0633 h�1. The result of kem 	 kel is consistent

with what is reported in [23], where the capacity-limited

metabolism or protein binding process plays a major role in

the systemic disposition of phenytoin.

Consider a constant infusion time T ¼ 8 h, then the

ascending infusion phase of phenytoin concentration-time

course is characterized by the first formula in Eq. (19),

while the second formula gives the descending post-infu-

sion elimination phase. Using Eqs. (10)–(11) and Eq. (13),

we can calculate the following parameters as required in

the first formula of Eq. (19):

C1 ¼ 6517:10mg=l; C1
b ¼ 8:37mg=l;

q1 ¼ 0:9995 and q2 ¼ 0:0005:

It should be pointed out that the values of the above

parameters depend on the infusion rate of R ¼ D=T .

Thus, for the infusion period 0\t� 8 h, we have

CðtÞ ¼ 6517:10� 6525:47�
Y0 0:9954e�0:0000875t; 0:9995; 0:0005
� �

:
ð23Þ

At the end of infusion time T ¼ 8 h, the peak concentration

is attained, we can use the above formula to find

Cmax ¼ 6:29mg=l.

The post infusion phase only consists of elimination.

Using formulas in Eq. (4), we can calculate the following

parameters as required in the second formula of Eq. (19):

Cb ¼ 3823:20mg=l; p1 ¼ 0:0014 and p2 ¼ 0:9986:

It has to be reminded these parameters are independent of

the infusion rate R.

Hence for t[ 8 h, we have

CðtÞ ¼ 3823:20� X0 0:9927e�0:0000875ðt�8Þ; 0:0014; 0:9986

 �

:

ð24Þ

More cases with different infusion times and doses are

simulated, and associated parameters are calculated and

listed in Table 1.

As shown in Table 1, we observe that p1 
 p2, which is

independent of any infusion rate, and the relationships of

q1 	 q2, C
1 	 C1

b are true for the high dose infusion rate

R. The reason behind this is the principal role of the

capacity-limited elimination process in the elimination of

phenytoin. In other words, for those high levels of drug

concentrations, the capacity-limited elimination pathway

largely outpasses the linear elimination pathway. However,

if we slow down the input rate by increasing infusion

duration or decreasing the dose, it can be observed that q1
and C1 slowly decrease whereas q2 and C1

b slowly

increase. Whereas, when the infusion rate R reduces to

15:97mg=h, C1 and C1
b as well as q1 and q2 are close.

Particularly when R continually reduces to 14:05mg=h, the

situation is completely inverted to q1 
 q2 and C
1 
 C1

b .

This is due to the fact that a lower infusion rate of

phenytoin leads to a lower drug concentration, thus the

importance of the capacity-limited elimination pathway is

diminished compared to that of the linear pathway which is

Table 1 Simulated parameters

of phenytoin concentration time

course during and after infusion

(Eq. (19)) for different scaled

doses to D ¼ 351:30mg and

different infusion times T

Dose T ðhÞ R ðmg=hÞ C1 ðmg=LÞ C1
b ðmg=LÞ q1 q2

D 1.0 351.30 98,838.00 5.54 0.999997 0.000003

2.0 175.65 37,510.00 5.82 0.999986 0.000014

3.0 117.12 23,735.00 6.13 0.99996 0.00004

D

4

1.0 87.83 16847.00 6.48 0.9999 0.0001

2.0 43.91 6517.10 8.37 0.9995 0.0005

3.0 29.28 3076.50 11.82 0.9979 0.0021

D

10

2.0 17.58 368.72 59.18 0.8740 0.1260

2.2 15.97 111.60 177.76 0.4039 0.5961

2.5 14.05 31.81 548.82 0.0639 0.9361

Cb ¼ 3823:20 ðmg=LÞ; p1 ¼ 0:0014; p2 ¼ 0:9986

C1, C1
b , q1 and q2 are calculated from Eqs. (10)–(11) and Eq. (13), which are dose-dependent; Cb, p1 and

p2 are calculated from Eqs. (4), which are dose-independent
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largely increased, a phenomenon that we have discussed in

[14].

The time courses of phenytoin concentration for the

cases of T ¼ 1; 2; 4; 8; 16 h are presented in Fig. 2. Note

that the ascending phase of absorption is reproduced with

Y function, whereas X function is used for the descending

phase of elimination, and the maximum phenytoin con-

centration occurs at the time when the infusion terminates.

Table 2 lists the corresponding exposure surrogates

using the formulas we derived in the current article. With a

fixed total dose D, it is observed that, as the infusion time T

increases, both the maximum (peak) concentration and the

total drug exposure decrease, and it is the same for

AUCT�1. However AUC0�T increases as well as its share

in the total drug exposure.

Discussion and conclusion

The goal of the current study was to find a closed-form

mathematical solution for the concentration-time course of

a one-compartment pharmacokinetic model with simulta-

neous first-order and Michaelis–Menten elimination for the

case of intravenous constant infusion. In fact, the result of

the post-infusion phase is not surprising given our previous

works for the bolus administration, for which we intro-

duced a transcendent X function that enlarges the classical

description of the negative exponential approach and even

generalizes the Lambert W function that had been proven

suitable for the model with solely Michaelis–Menten

elimination [11]. When we considered the constant infu-

sion, we realized that we needed to introduce another

transcendent Y function to describe the ascending absorp-

tion phase. To our surprise, Y function almost has the same

form as that of X function with only a mathematical symbol

shift from þ to -. This almost perfect match of Y for

ascending and X for descending alludes to some intrinsic

relationships needed to be further explored for the

absorption and elimination processes of such kind of

nonlinear pharmacokinetic models, no matter from the

viewpoint of pharmacokinetics or simply mathematics.

Model (17) in fact extends two pharmacokinetic models

with a single elimination pathway, either the type of linear

first-order or that of nonlinear Michaelis–Menten. In

Appendix 4, these models, (25) and (27), and their asso-

ciated closed-form solutions of concentration time courses,

using either elementary exponential function (Eqs. (26)) or

transcendent Lambert W function (Eqs. (28)–(29)), are

reported. It is noteworthy that both real branches of Lam-

bert W function are equally used for the latter.

In Fig. 3, we display different pharmacokinetic profiles

of three models simulated using their corresponding

closed-form solutions, under the condition of the same

constant infusion rate R. The first is the model of the

simultaneous first-order and Michaelis–Menten elimination

(Model (17)), the second is the single first-order linear

elimination model (Model (25)) by dropping the Michae-

lis–Menten elimination pathway out of the first, the third is

the single Michaelis–Menten elimination model (Model

(27)) by dropping the linear elimination pathway out of the

first. We may note that the simultaneous elimination model

has the lowest concentration-time course compared with

the other two models. This is understandable since the

elimination capacity of the model includes two possible

pathways and it influences the whole pharmacokinetic

process. Moreover, it could be observed that the ascending

trend during the infusion period fades off more quickly

than that of the single-elimination model. However, when

the infusion terminates, it also drops faster than the other

two. In terms of the two single elimination models, the
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Fig. 2 Simulated time course of

phenytoin concentrations using

the principal real branches X0

and Y0 functions for different

intravenous infusion time T=1,

2, 4, 8, 16 h. D ¼ 351:3mg;

Vd ¼ 48:58L; kel ¼
8:75� 10�5 h�1;Vm ¼
0:334mg=L=h and Km ¼
5:28mg=L are used from (22)

which are re-estimated from

[23]
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relation between kel and kem may play a crucial role. In fact,

if kel � kem, which naturally implies kelCðtÞ[ Vm

KmþCðtÞCðtÞ,
thus the ascending speed of C(t) for Model (27) is faster

than that of Model (25) (Fig. 3a), as for the latter, the drug

concentration drops more quickly under the same concen-

tration level. However, if kel\kem, it is uncertain to predict

the situation. Generally, if the infusion period is not too

long, the ascending of C(t) of the linear elimination model

should be faster than that of the Michaelis–Menten elimi-

nation model and may remain until the end of infusion

(Fig. 3b). However, since kem is the intrinsic elimination

rate constant of the Michaelis–Menten elimination that

only behaves as in the linear case when the drug concen-

tration is low, and when C(t) goes up, the situation may be

inverted due to the saturated mechanism of Michaelis–

Menten elimination. As a remark to the discussion above,

we have to note that the choice of representative real

branches of Lambert W function used for the pharma-

cokinetic model with Michaelis–Menten elimination alone

depends on the relation between the infusion rate R and the

maximum change rate of Michaelis–Menten kinetics VmVd

in the unit of amount/time. For more detailed information,

the reader is referred to Appendix 4.

One advantage of a closed-form solution is it allows

easy access to a precise prediction of the values of several

pharmacokinetic surrogates, such as peak, trough concen-

trations as well as total or partial drug exposures. As we

have done for phenytoin, these parameters are computed

directly from a well defined mathematical function, which

avoids unnecessary uncertainty around numerical evalua-

tion processes in solving differential equations. Moreover,

for targeted safety and efficacy, estimations of these sur-

rogates are crucial for therapeutic drug monitoring or the

design of optimal drug regimens. It is not only the relia-

bility of numerical estimates provided by these formulas
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R=D/T<VmaxR=D/T>Vmax

Fig. 3 Drug concentration time courses directly calculated from

closed-form solutions. Model (25): dash line, Model (27): dot dash

line, Model (17): solid lines. (a) D ¼ 3mg, T ¼ 2 h and Vm ¼
0:8mg=ml=h where R ¼ D=T ¼ 1:5[VmVd ¼ 0:8; (b) D ¼ 1mg,

T ¼ 2 h and Vm ¼ 1:3mg=ml=h where R ¼ D=T ¼ 0:5\VmVd ¼ 1:3.

Other parameters are: Vd ¼ 1ml; kel ¼ 0:8 h�1; Km ¼ 1mg=ml

Table 2 Calculated exposure

surrogates of phenytoin for

constant infusion with a fixed

dose D ¼ 351:30mg and

different infusion time period

T ¼ 1; 2; 4; 8; 16 h

T ðhÞ R ðmg=hÞ Cmax ðmg=LÞ AUC0�T ðmg � h=LÞ AUCT�1 ðmg � h=LÞ AUC0�1 ðmg � h=LÞ

1 351.30 7.1092 3.5695 187.5475 191.1170

2 175.65 6.9877 7.0466 183.0764 190.1230

4 87.83 6.7494 13.7305 174.4398 188.1703

8 43.91 6.2923 26.0621 158.3426 184.4048

16 21.96 5.4555 46.9405 130.4857 177.4261
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but also the possibility to quantitatively analyze and study

their relationship to dosing and administration. For

instance, the numerical value of peak concentration can be

predicted with Eq. (20) as it is known to occur at the end of

constant infusion. For the total drug exposure (AUC0�1) of

the pharmacokinetics of linear elimination, it is common

knowledge that it is independent of the infusion time for a

fixed-dose, or changes proportionally to varying doses.

However, in the case of Model (17), this observation is no

more sustainable. In Fig. 4, we simulate the impact on the

total drug exposure in terms of infusion time or dose. This

dose-dependency of AUC0�1 is clearly observed. As

shown in Fig. 4a, for a fixed total drug amount D, AUC0�1
decreases remarkably when the infusion time T increases,

particularly from bolus (T ¼ 0) to infusion (T [ 0). While,

if we continually increase T, it looks like AUC0�1 tends to

a limited value that we guess it will reach the lower bound

D=ðVdke;totÞ. Meanwhile, if we consider a constant infusion

time T, the behavior of AUC0�1 is nonlinear though it

always monotonously increases with dose D (see Fig. 4b).

Since the introduction of X functions, the analytical

solutions of many pharmacokinetic models involving the

simultaneous first-order and Michaelis–Menten elimination

have been found. These include single/multiple intravenous

bolus administrations with or without the constant

endogenous production [14–16]. In fact, all these phar-

macokinetic profiles only concern the descending elimi-

nation phase. The current work has made significant

progress for the nontrivial drug intake: (1) With the

introduction of Y functions, we have been able to solve the

ascending absorption phase of pharmacokinetic model with

simultaneous first-order and Michaelis–Menten

elimination. Although the solved case is for the constant

infusion, it may help to open a new avenue for other

absorption forms, such as the first order oral administration,

etc.; (2) With the relatively simple algebraic forms, X and

Y functions can be easily programmed and implemented

into professional software for the purpose of numerical and

symbolic calculations. This will greatly reduce the uncer-

tainty around such kind of models; (3) To meet the current

needs in therapeutic drug design, the surrogates such as

Cmax and AUC can be not only directly computed using

defined mathematical formulas but also quantitatively

studied and analyzed.

Appendix 1: Proof of Lemma 1

Proof (i) It is clear that C1 is the unique positive equi-

librium of Model (8) since
dCðtÞ
dt

�
�
�
�
CðtÞ¼C1

¼ 0. Moreover, we

have C0ðtÞ[ 0 as long as 0�CðtÞ\C1, resulting in C(t)

is monotonically increasing as t increases. Hence, C1 is an

upper bound for C(t) for t[ 0. As well, when

0�CðtÞ\C1, the second order derivative

d2CðtÞ
dt2

¼ � kel þ
VmKm

ðKm þ CðtÞÞ2

 !

� dCðtÞ
dt

\0;

implying C0ðtÞ decreases to zero as t ! 1. By the

monotone bounded convergence theorem, we can deduce

that C1 is the upper limit for C(t).

(ii) Denote a function by f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p
þ x ða[ 0Þ

for a real variable x. It follows f 0ðxÞ ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a

p
þ 1[ 0
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Fig. 4 Impact of infusion time T and dose D on the total drug exposure AUC0�1, (a) D = 1350 mIU; (b) T = 1 h. Model parameters (adapted

from [10]) for simulation: kel ¼ 0:21 h-1, Vd ¼ 61:18 ml, Vm ¼ 32:58 mIU/ml/h, Km ¼ 67:23 mIU/ml

Journal of Pharmacokinetics and Pharmacodynamics (2021) 48:495–508 505

123



that f(x) is strictly increasing with respect to x. Let

a ¼ 4 r
kel
Km [ 0, then we obtain

C1
b ¼ 1

2
f Cb �

r

kel

� �

[
1

2
f Km � r

kel

� �

¼ Km

since Cb [Kmh.

Appendix 2: Illustration of X0 and Y0
for different values of p1, p2, q1 and q2

In Fig. 5, we plot how parameters p1, p2, q1 and q2 change

the appearance of X and Y functions in the first quadrant,

where p1 þ p2 ¼ 1 and q1 þ q2 ¼ 1 are considered. As

shown in Fig. 5a, when p1 varies from a small value of

1/500 to a large value of 1/2, we observe that X0ðs; p1; p2Þ
tends to increase faster for a larger value of p1, and when p1
is close to unity, X0ðs; p1; p2Þ is close to the identity line as

X0ðs; p1; p2Þ ¼ s. In Fig. 5b, Y0ðs; q1; q2Þ shows a similar

property as a faster increase of Y0ðs; q1; q2Þ can be

observed for a larger q1. Meanwhile, the Yðs; q1; q2Þ is also
close to the identity line as Y0ðs; q1; q2Þ ¼ s when q1
is close to unity. The range of Y0ðs; q1; q2Þ is

ð0; q1=ðq1 þ q2ÞÞ that depends on the choice of q1 and q2.

Appendix 3: Proof of Proposition 1

Proof (i) By checking the explicit expressions of C1 and

C1
b , it is easy to see C1 ¼ 0 and C1

b ¼ Cb when r ¼ 0.

(ii) If Cb ¼ r

kel
, namely r ¼ kelCb ¼ ke;totKm, then we

have C1 ¼ C1
b ¼

ffiffiffiffiffiffiffiffiffi
ke;tot
kel

r

Km. If Cb [
r

kel
, namely

r\kelCb, then we obtain C1
b [C1. If Cb\

r

kel
, we have

r\kelCb and C1
b \C1.

(iii) Consider the derivatives of C1 and C1
b with respect

to variable r. With straightforward calculations and denote

x ¼ r

kel
, we obtain

dC1ðrÞ
dr

¼ Km þ C1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCb � xÞ2 þ 4Kmx
q

1

kel
[ 0

and

dC1
b ðrÞ
dr

¼
Km � C1

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCb � xÞ2 þ 4Kmx
q

1

kel
\0

due to Km\C1
b by Lemma 1. Therefore with respect to r,

C1 is an increasing function and C1
b is a decreasing

function.

Now we consider the limit of C1
b as r tends to infinity.

Multiplying by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCb �
r

kel
Þ2 þ 4

r

kel
Km

r

� ðCb �
r

kel
Þ

at both the numerator and denominator for expression of

C1
b if we write C1

b as C1
b =1, we obtain
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Fig. 5 Illustration of how parameters p1, p2, q1 and q2 affect the graphs of principal real branches X0 and Y0 transcendent functions in the first

quadrant, where p1 þ p2 ¼ q1 þ q2 ¼ 1, X0 2 ð0;1Þ for all s[ 0 and Y0 2 ð0; q1Þ � ð0; 1Þ for all s 2 ð0; qq11 qq22 Þ � ð0; 1Þ
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lim
r!þ1

C1
b ¼ lim

r!þ1

2
kel
Km

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðCb

r � 1
kel
Þ2 þ 4 Km

kelr

q

� ðCb

r � 1
kel
Þ
¼ Km:

lim
r!þ1

C1 ¼ þ1 is obvious. h

Appendix 4: Explicit solutions of one-
compartment models with a single
elimination pathway, linear or Michaelis–
Menten, in the case of constant infusion

One-compartment pharmacokinetic model with a single

linear elimination pathway for a constant infusion:

C0ðtÞ ¼ f ðtÞ � kelCðtÞ; t[ 0

Cð0Þ ¼ 0;

�

ð25Þ

where f(t) is given by Eq. (18). Its explicit solution is

CðtÞ ¼
D

TVdkel
1� e�kelt
� �

; 0� t� T ;

CðTÞe�kelðt�TÞ; t� T :

8
<

:
ð26Þ

One-compartment pharmacokinetic model with a single

Michaelis–Menten elimination pathway for a constant

infusion:

C0ðtÞ ¼ f ðtÞ � Vm � CðtÞ
Km þ CðtÞ ; t[ 0

Cð0Þ ¼ 0;

8
<

:
ð27Þ

where f(t) is given by Eq. (18). Its explicit solution is

(i) If 0� t� T , we have

(ii) If t� T , we have

CðtÞ ¼ Km �W 0;
CðTÞ
Km

exp
CðTÞ � Vm � ðt � TÞ

Km

� �� �

:

ð29Þ
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