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Abstract We are witnessing the birth of a new variety of

pharmacokinetics where non-integer-order differential

equations are employed to study the time course of drugs in

the body: this is dubbed ‘‘fractional pharmacokinetics’’.

The presence of fractional kinetics has important clinical

implications such as the lack of a half-life, observed, for

example with the drug amiodarone and the associated

irregular accumulation patterns following constant and

multiple-dose administration. Building models that accu-

rately reflect this behaviour is essential for the design of

less toxic and more effective drug administration protocols

and devices. This article introduces the readers to the

theory of fractional pharmacokinetics and the research

challenges that arise. After a short introduction to the

concepts of fractional calculus, and the main applications

that have appeared in literature up to date, we address two

important aspects. First, numerical methods that allow us to

simulate fractional order systems accurately and second,

optimal control methodologies that can be used to design

dosing regimens to individuals and populations.

Keywords Fractional pharmacokinetics � Numerical

methods � Drug administration control � Drug dosing

Introduction

Background

Diffusion is one of the main mechanisms of various

transport processes in living species and plays an important

role in the distribution of drugs in the body. Processes such

as membrane permeation, dissolution of solids and dis-

persion in cellular matrices are considered to take place by

diffusion. Diffusion is typically described by Fick’s law,

which, in terms of the pharmacokinetics of drugs, gives rise

to exponential washout curves that have a characteristic

time scale, usually expressed as a half-life. However, in the

last few decades, strong experimental evidence has sug-

gested that this is not always true and diffusion processes

that deviate from this law have been observed. These are

either faster (super-diffusion) or slower (sub-diffusion)

modes of diffusion compared to the regular case [1, 2].

Such types of diffusion give rise to kinetics that are

referred to as anomalous to indicate the fact that they stray

from the standard diffusion dynamics [1]. Moreover,

anomalous kinetics can also result from reaction-limited

processes and long-time trapping. Anomalous kinetics

introduces memory effects into the distribution process that

need to be accounted for to correctly describe it. An dis-

tinctive feature of anomalous power-law kinetics is that it

lacks a characteristic time scale contrary to exponential
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kinetics. A mathematical formulation that describes such

anomalous kinetics is known as fractal kinetics [3–5]

where explicit power functions of time in the form of time-

dependent coefficients are used to account for the memory

effects replacing the original rate constants. In pharma-

cokinetics several datasets have been characterised by

power laws, empirically [6, 7], while the first article that

utilised fractal kinetics in pharmacokinetics was [4].

Molecules that their kinetics presents power law behaviour

include those distributed in deeper tissues, such as amio-

darone [8] and bone-seeking elements, such as calcium,

lead, strontium and plutonium [4, 9].

An alternative theory to describe anomalous kinetics

employs fractional calculus [10, 11], which introduces

derivatives and integrals of fractional order, such as half or

three quarters. Although fractional calculus was introduced

by Leibniz more than 300 years ago, it is only within the

last couple of decades that real-life applications have been

explored [12–14]. It has been shown that differential

equations with fractional derivatives (FDEs) describe

experimental data of anomalous diffusion more accurately.

Although fractional-order derivatives were first introduced

as a novel mathematical concept with unclear physical

meaning, nowadays, a clear connection between diffusion

over fractal spaces (such as networks of capillaries) and

fractional-order dynamics has been established [15–18]. In

particular, in anomalous diffusion the standard assumption

that the mean square displacement hx2i is proportional to

time does not hold. Instead, it is hx2i� t2=d, where d 6¼ 2 is

the associated fractal dimension [19–21].

Fractional kinetics [22] was introduced in the pharma-

ceutical literature in [23] and the first example of fractional

pharmacokinetics which appeared in that article was

amiodarone, a drug known for its power-law kinetics [7].

Since then, other applications of fractional pharmacoki-

netics have appeared in the literature. Kytariolos et al. [24]

presented an application of fractional kinetics for the

development of nonlinear in vitro-in vivo correlations.

Popović et al. have presented several applications of frac-

tional pharmacokinetics to model drugs, namely for

diclofenac [25], valproic acid [26], bumetanide [27] and

methotrexate [28]. Copot et al. have further used a frac-

tional pharmacokinetics model for propofol [29]. In most

of these cases the fractional model has been compared with

an equivalent ordinary PK model and was found superior.

FDEs have been proposed to describe drug response too,

apart from their kinetics. Verotta has proposed several

alternative fractional PKPD models that are capable of

describing pharmacodynamic times series with favourable

properties [30]. Although these models are empirical, i.e.,

they have no mechanistic basis, they are attractive since the

memory effects of FDEs can link smoothly the

concentration to the response with a variable degree of

influence, while the shape of the responses generated by

fractional PKPD models can be very flexible and parsi-

monious (modelled using few parameters).

Applications of FDEs in pharmacokinetics fall in the

scope of the newly-coined discipline of mathematical

pharmacology [31] to which this issue is dedicated.

Mathematical pharmacology utilises applied mathematics,

beyond the standard tools used commonly in pharmaco-

metrics, to describe drug processes in the body and assist in

controlling them.

This paper introduces the basic principles of fractional

calculus and FDEs, reviews recent applications of fractional

calculus in pharmacokinetics and discusses their clinical

implications. Moreover, some aspects of drug dosage reg-

imen optimisation based on control theory are presented for

the case of pharmacokinetic models that follow fractional

kinetics. Indeed, in clinical pharmacokinetics and thera-

peutic drug monitoring, dose optimisation is carried out

usually by utilising Bayesian methodology. Optimal control

theory is a powerful approach that can be used to optimise

drug administration, which can handle complicated con-

straints and has not been used extensively for this task. The

case of fractional pharmacokinetic models is of particular

interest for control theory and poses new challenges.

A problem that has hindered the applications of frac-

tional calculus is the lack of efficient general-purpose

numerical solvers, as opposed to ordinary differential

equations. However, in the past few years significant pro-

gress has been achieved in this area. This important issue is

discussed in the paper and some techniques for numerical

solution of FDEs are presented.

Fractional derivatives

Derivatives of integer order n 2 N, of functions f : R ! R

are well defined and their properties have been extensively

studied in real analysis. The basis for the extension of such

derivatives to real orders a 2 R commences with the def-

inition of an integral of order a which hinges on Cauchy’s

iterated (n-th order) integral formula and gives rise to the

celebrated Riemann-Liouville (RL) integral rl
0 I

a
t [32]:

rl
0 I

a
t f ðtÞ ¼ 0D�a

t f ðtÞ ¼ 1

CðaÞ

Z t

0

ðt � sÞa�1
f ðsÞds; ð1Þ

where C is the Euler gamma function. In Eq. (1) we

assume that f is such that the involved integral is well-

defined and finite. This is the case if f is continuous

everywhere except at finitely many points and left-boun-

ded, i.e., ff ðxÞ; 0� x� tg is bounded for every t� 0. Note

that for a 2 N, rl
0 I

a
t f is equivalent to the ordinary a-th order

integral. Hereafter, we focus on derivatives of order a 2
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½0; 1� as only these are of interest to date in the study of

fractional pharmacokinetics.

The left-side subscript 0 of the 0Da
t and rl

0 I
a
t operators,

denotes the lower end of the integration limits, which in this

case has been assumed to be zero. However, alternative lower

bounds can be considered leading to different definitions of the

fractional derivative with slightly different properties. When

the lower bound is �1, the entire history of the studied

function is accounted for, which is considered preferable in

some applications and is referred to as theWeyldefinition [12].

It is intuitive to define a fractional-order derivative of

order a via 0Da
t ¼ D1

0Da�1
t ¼ D1 rl

0 I
a�1

, (where D1 is the

ordinary derivative of order 1), or equivalently

0Da
t f ðtÞ ¼

d

dt

1

Cð1 � aÞ

Z t

0

f ðsÞ
ðt � sÞa ds

� �
: ð2Þ

This is the Riemann–Liouville definition—one of the most

popular constructs in fractional calculus. One may observe

that the fractional integration is basically a convolution

between function f and a power law of time, i.e.,

0D�a
t f ðtÞ ¼ ta�1 � f ðtÞ, where � denotes the convolution of

two functions. This explicitly demonstrates the memory

effects of the studied process. Fractional derivatives pos-

sess properties that are not straightforward or intuitive; for

example, the half derivative of a constant f ðtÞ ¼ k with

respect to t does not vanish and instead is 0D
1=2
t k ¼ k=

ffiffiffiffiffi
pt

p
.

Perhaps the most notable shortcoming of the Riemann–

Liouville definition with the 0 lower bound is that when

used in differential equations it gives rise to initial condi-

tions that involve the fractional integral of the function and

are difficult to interpret physically. This is one of the rea-

sons the Weyl definition was introduced, but this definition

may not be very practical for most applications either, as it

involves an initial condition at time �1 [12, 33].

A third definition of the fractional derivative, which is

referred to as the Caputo definition is preferable for most

physical processes as it involves explicitly the initial con-

dition at time zero. The definition is:

c
0Da

t f ðtÞ ¼
1

Cð1 � aÞ

Z t

0

df ðsÞ
ds

ðt � sÞa ds ð3Þ

where the upper-left superscript c stands for Caputo. The

Caputo derivative is interpreted as c
0Da

t ¼ rl
0 I

a�1
D1, that is

D1 and rl
0 I

a�1
are composed in the opposite way compared

to the Riemann-Liouville definition. The Caputo derivative

gives rise to initial value problems of the form

c
0Da

t xðtÞ ¼ FðxðtÞÞ; ð4aÞ

xð0Þ ¼ x0: ð4bÞ

This definition for the fractional derivative, apart from

the more familiar initial conditions, comes with some

properties similar to those of integer-order derivatives, one

of them being that the Caputo derivative of a constant is in

fact zero. Well-posedeness conditions, for the existence

and uniqueness of solutions, for such fractional-order ini-

tial value problems are akin to those of integer-order

problems [34], [11, Chap. 3]. The various definitions of the

fractional derivative give different results, but these are not

contradictory since they apply for different conditions and

it is a matter of choosing the appropriate one for each

specific application. All definitions collapse to the usual

derivative for integer values of the order of differentiation.

A fourth fractional derivative definition, which is of

particular interest is the Grünwald–Letnikov, which allows

the approximate discretisation of fractional differential

equations. The Grünwald–Letnikov derivative, similar to

integer order derivatives, is defined via a limit of a frac-

tional-order difference. Let us first define the Grünwald–

Letnikov difference of order a and step-size h of a left-

bounded function f as

glD
a
hf ðtÞ ¼

1

ha

Xt=hb c

j¼0

caj f ðt � jhÞ; ð5Þ

with ca0 ¼ 1 and for j 2 N[ 0

caj ¼ ð�1Þ j
Yj�1

i¼0

a� i

iþ 1
: ð6Þ

The Grünwald–Letnikov difference operator leads to the

definition of the Grünwald–Letnikov derivative of order a
which is defined as ([33], Sect. 20)

glD
a
t f ðtÞ ¼ lim

h!0þ
glD

a
hf ðtÞ; ð7Þ

insofar as the limit exists. This definition is of great

importance in practice, as it allows us to replace glDt with
glD

a
h provided that h is adequately small, therefore it serves

as an Euler-type discretisation of fractional-order continu-

ous time dynamics. By doing so, we produce a discrete-

time yet infinite-dimensional approximation of the system

since glD
a
hf ðtÞ depends on f ðt � jhÞ for all j 2 N[ 0.

However, we may truncate this series up to a finite history

m, defining

glD
a
h;mf ðtÞ ¼

1

ha

Xminfm; t=hb cg

j¼0

caj f ðt � jhÞ: ð8Þ

This leads to discrete-time finite-memory approximations

which are particularly useful as we shall discuss in what

follows.
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Fractional kinetics

The most common type of kinetics encountered in pharma-

ceutical literature are the so called ‘‘zero order’’ and ‘‘first

order’’. Here the ‘‘order’’ refers to the order of linearity and is

not to be confused with the order of differentiation, i.e., a

zero order process refers to a constant rate and a first order to

a proportional rate. The fractional versions of these types of

kinetics are presented below and take the form of fractional-

order ordinary differential equations. Throughout this pre-

sentation the Caputo version of the fractional derivative is

considered for reasons already explained.

Zero-order kinetics

The simplest kinetic model is the zero-order model where it

is assumed that the rate of change of the quantity q,

expressed in [mass] units, is constant and equal to k0,

expressed in [mass]/[time] units. Zero-order systems are

governed by differential equations of the form

dq

dt
¼ k0: ð9Þ

The solution of this equation with initial condition qð0Þ ¼
0 is

qðtÞ ¼ k0t: ð10Þ

The fractional-order counterpart of such zero-order kinetics

can be obtained by replacing the derivative of order 1 by a

derivative of fractional order a, that is

c
0Da

t qðtÞ ¼ k0;f ; ð11Þ

where k0;f is a constant with units [mass]/[time]a. The

solution of this equation for initial condition qð0Þ ¼ 0 is a

power law for t[ 0 [11]

qðtÞ ¼ k0;f

Cðaþ 1Þ t
a: ð12Þ

First-order kinetics

The first-order differential equation, where the rate of

change of the quantity q is proportional to its current value,

is described by the ordinary differential equation

dq

dt
¼ �k1qðtÞ: ð13Þ

Its solution with initial condition of qð0Þ ¼ q0 is given by

the classical equation of exponential decay

qðtÞ ¼ q0 expð�k1tÞ: ð14Þ

Likewise, the fractional-order analogue of such first-order

kinetics is derived by replacing d=dt by the fractional-order

derivative c
0Da

t yielding the following fractional differential

equation

c
0Da

t qðtÞ ¼ �k1;f qðtÞ; ð15Þ

where k1;f is a constant with [time]�a units. The solution of

this equation can be found in most books or papers of the

fast growing literature on fractional calculus [11] and for

initial condition qð0Þ ¼ q0 it is

qðtÞ ¼ q0Eað�k1;f t
aÞ; ð16Þ

where Ea is the Mittag-Leffler function [11] which is

defined as

EaðtÞ ¼
X1
k¼0

tk

Cðak þ 1Þ : ð17Þ

The function EaðtÞ is a generalisation of the exponential

function and it collapses to the exponential when a ¼ 1,

i.e., E1ðtÞ ¼ expðtÞ. Alternatively, Eq. (16) can be repar-

ametrised by introducing a time scale parameter with

regular time units, sf ¼ k
�1=a
1;f and then becomes

qðtÞ ¼ q0Eað�ðt=sf ÞaÞ. The solution of Eq. (15) basically

means that the fractional derivative of order a of the

function EaðtaÞ is itself a function of the same form, exactly

like the classic derivative of an exponential is also an

exponential.

It also makes sense to restrict a to values 0� a� 1,

since for values of a larger than 1 the solution of Eq. (15) is

not monotonic and negative values for q may appear,

therefore, it is not applicable in pharmacokinetics and

pharmacodynamics. Based on these elementary equations

the basic relations for the time evolution in drug disposition

can be formulated, with the assumption of diffusion of drug

molecules taking place in heterogeneous space. The sim-

plest fractional pharmacokinetic model is the one-com-

partment model with i.v. bolus administration and the

concentration, c, can be expressed by Eq. (16) divided by a

volume of distribution, as

cðtÞ ¼ c0Eað�k1;f t
aÞ; ð18Þ

with a� 1 and c0 is the ratio [dose]/[apparent volume of

distribution]. This equation for times t 	 1 behaves as a

stretched exponential, i.e., as � expð�k1;f t
a=Cð1 þ aÞÞ,

while for large values of time it behaves as a power-law,

� t�a=Cð1 � aÞ (see Fig. 1) [35]. This kinetics is, there-

fore, a good candidate to describe various datasets

exhibiting power-law-like kinetics due to the slow diffu-

sion of the drug in deeper tissues. Moreover, the relevance

of the stretched exponential (Weibull) function with the

Mittag-Leffler function probably explains the successful

application of the former function in describing drug

release in heterogeneous media [36]. Equation (18) is a

relationship for the simplest case of fractional

110 J Pharmacokinet Pharmacodyn (2018) 45:107–125

123



pharmacokinetics. It accounts for the anomalous diffusion

process, which may be considered to be the limiting step of

the entire kinetics. Classic clearance may be considered not

to be the limiting process here and is absent from the

equation.

The Laplace transform for FDEs

Fractional differential equations (FDEs) can be easily

written in the Laplace domain since each of the fractional

derivatives can be transformed similarly to the ordinary

derivatives, as follows, for order a� 1:

Lfc
0Da

t f ðtÞg ¼ saFðsÞ � sa�1f ð0þÞ; ð19Þ

where F(s) is the Laplace transform of f(t) [11]. For a ¼ 1,

Eq. (19) reduces to the classic well-known expression for

ordinary derivatives, that is, Lf _f ðtÞg ¼ sFðsÞ � f ð0þÞ.
Let us take as an example the following simple FDE

c
0D

1=2
t qðtÞ ¼ �qðtÞ; ð20Þ

with initial value qð0Þ ¼ 1 which can be written in the

Laplace domain, by virtue of Eq. (19), as follows

s1=2QðsÞ � s�1=2qð0Þ ¼ �QðsÞ; ð21Þ

where QðsÞ ¼ LfqðtÞgðsÞ is the Laplace transform of q.

After simple algebraic manipulations, we obtain

QðsÞ ¼ 1

sþ ffiffi
s

p : ð22Þ

By applying the inverse Laplace transform to Eq. (22) the

closed-form analytical solution of this FDE can be

obtained; this involves a Mittag-Leffler function of order

one half. In particular,

qðtÞ ¼ E1=2ð�t1=2Þ ¼ etð1 þ erfð�
ffiffi
t

p
ÞÞ: ð23Þ

Although more often than not it is easy to transform an

FDE in the Laplace domain, it is more difficult to apply the

inverse Laplace transform so as to solve it explicitly for the

system variables so that an analytical solution in the time

domain is obtained. However, it is possible to perform that

step numerically using a numerical inverse Laplace trans-

form (NILT) algorithm [37] as described above.

Fractional pharmacokinetics

Multi-compartmental models

A one-compartment pharmacokinetic model with i.v. bolus

administration can be easily fractionalised as in Eq. (15) by

changing the derivative on the left-hand-side of the single

ODE to a fractional order. However, in pharmacokinetics

and other fields where compartmental models are used, two

or more ODEs are often necessary and it is not as

straightforward to fractionalise systems of differential

equations, especially when certain properties such as mass

balance need to be preserved.

When a compartmental model with two or more com-

partments is built, typically an outgoing mass flux becomes

an incoming flux to the next compartment. Thus, an out-

going mass flux that is defined as a rate of fractional order,

cannot appear as an incoming flux into another compart-

ment, with a different fractional order, without violating

mass balance [38]. It is therefore, in general, impossible to

fractionalise multi-compartmental systems simply by

changing the order of the derivatives on the left hand side

of the ODEs.

One approach to the fractionalisation of multi-com-

partment models is to consider a common fractional order

that defined the mass transfer from a compartment i to a
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A
m
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q(
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Mittag-Leffler
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Fig. 1 Amount-time profile

according to Eq. (16) for a ¼
0:5 (solid curve) along with its

approximation at values of t

close to 0 by a stretched

exponential function

expð�t1=2=Cð1:5ÞÞ (bottom

dashed curve) and an

approximation at high values of

t by a power function

t�1=2=Cð0:5Þ (top dashed-dotted

curve). Note that the time axis is

logarithmic. The evolution of

the amount of drug starts as a

stretched exponential and

eventually shapes as a power

function
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compartment j: the outflow of one compartment becomes

an inflow to the other. This implies a common fractional

order known as a commensurate order. In the general case,

of non-commensurate-order systems, a different approach

for fractionalising systems of ODEs needs to be applied.

In what follows, a general form of a fractional two-

compartment system is considered and then generalised to

a system of an arbitrary number of compartments, which

first appeared in [39]. A general ordinary linear two-com-

partment model, is defined by the following system of

linear ODEs,

dq1ðtÞ
dt

¼ �k12q1ðtÞ þ k21q2ðtÞ � k10q1ðtÞ þ u1ðtÞ; ð24aÞ

dq2ðtÞ
dt

¼ k12q1ðtÞ � k21q2ðtÞ � k20q2ðtÞ þ u2ðtÞ; ð24bÞ

where q1ðtÞ and q2ðtÞ are the mass or molar amounts of

material in the respective compartments and the kij con-

stants control the mass transfer between the two compart-

ments and elimination from each of them. The notation

convention used for the indices of the rate constants is that

the first corresponds to the source compartment and the

second to the target one, e.g., k12 corresponds to the

transfer from compartment 1 to 2, k10 corresponds to the

elimination from compartment 1, etc. The units of all the kij
rate constants are (1/[time]). uiðtÞ are input rates in each

compartment which may be zero, constant or time depen-

dent. Initial values for q1 and q2 have to be considered also,

q1ð0Þ and q2ð0Þ, respectively.

In order to fractionalise this system, first the ordinary

system is integrated, obtaining a system of integral equa-

tions and then the integrals are fractionalised as shown

in [39]. Finally, the fractional integral equations, are dif-

ferentiated in an ordinary way. The resulting fractional

system contains ordinary derivatives on the left hand side

and fractional Riemann-Liouville derivatives on the right

hand side:

dq1ðtÞ
dt

¼ �k12;f 0D1�a12

t q1ðtÞ þ k21;f 0D1�a21

t q2ðtÞ

� k10;f 0D1�a10

t q1ðtÞ þ u1ðtÞ;
ð25aÞ

dq2ðtÞ
dt

¼ k12;f 0D1�a12

t q1ðtÞ � k21;f 0D1�a21

t q2ðtÞ

� k20;f 0D1�a20

t q2ðtÞ þ u2ðtÞ;
ð25bÞ

where 0\aij � 1 is a constant representing the order of the

specific process. Different values for the orders of different

processes may be considered, but the order of the corre-

sponding terms of a specific process are kept the same

when these appear in different equations, e.g., there can be

an order a12 for the transfer from compartment 1 to 2 and a

different order a21 for the transfer from compartment 2 to

1, but the order for the corresponding terms of the transfer,

from compartment 1 to 2, a12, is the same in both equa-

tions. Also the index f in the rate constant was added to

emphasise the fact that these are different to the ones of

Eq. (24a) and carry units [time]�a.

It is convenient to rewrite the above system Eqs. (25a,

25b) with Caputo derivatives. An FDE with Caputo

derivatives accepts the usual type of initial conditions

involving the variable itself, as opposed to RL derivatives

which involve an initial condition on the derivative of the

variable, which is not practical. When the initial value of q1

or q2 is zero then the respective RL and Caputo derivatives

are the same. This is convenient since a zero initial value is

very common in compartmental analysis. When the initial

value is not zero, converting to a Caputo derivative is

possible, for the particular term with a non-zero initial

value. The conversion from a RL to a Caputo derivative of

the form that appears in Eqs. (25a, 25b) is done with the

following expression:

0D
1�aij
t qiðtÞ ¼ c

0D
1�aij
t qiðtÞ þ

qið0Þtaij�1

CðaijÞ
: ð26Þ

Summarising the above remarks about initial conditions,

we may identify three cases: (i) the initial condition is zero

and then the derivative becomes a Caputo by definition. (ii)

The initial condition is non-zero, but it is involved in a term

with an ordinary derivative so it is treated as usual. (iii) The

initial condition is non-zero and is involved in a fractional

derivative which means that in order to present a Caputo

derivative, an additional term, involving the initial value

appears, by substituting Eq. (26). Alternatively, a zero

initial value for that variable can be assumed, with a Dirac

delta input to account for the initial quantity for that

variable. So, a general fractional model with two com-

partments, Eqs. (25a, 25b), was formulated, where the

fractional derivatives can always be written as Caputo

derivatives. It is easy to generalise the above approach to a

system with an arbitrary number of n compartments as

follows

dqiðtÞ
dt

¼ �ki0
c
0D1�ai0

t qiðtÞ �
X
j6¼i

kij
c
0D

1�aij
t qiðtÞ

þ
X
j 6¼i

kji
c
0D

1�aji
t qjðtÞ þ uiðtÞ;

ð27Þ

for i ¼ 1; . . .; n, where Caputo derivatives have been con-

sidered throughout since, as explained above, this is fea-

sible. This system of Eq. (27) is too general for most

purposes as it allows every compartment to be connected

with every other. Typically the connection matrix would be

much sparser than that, with most compartments being

connected to just one neighbouring compartment while

only a few ‘‘hub’’ compartments would have more than one

connections. The advantage of the described approach of

112 J Pharmacokinet Pharmacodyn (2018) 45:107–125

123



fractionalisation is that each transport process is fraction-

alised separately, rather than fractionalising each com-

partment or each equation. Thus, processes of different

fractional orders can co-exist since they have consistent

orders when the corresponding terms appear in different

equations. Also, it is important to note that dynamical

systems of the type (27) do not suffer from pathologies

such as violation of mass balance or inconsistencies with

the units of the rate constants.

As mentioned, FDEs can be easily written in the Laplace

domain. In the case of FDEs of the form of Eq. (27), where

the fractional orders are 1 � aij, the Laplace transform of

the Caputo derivative becomes

Lfc
0D

1�aij
t qiðtÞg ¼ s1�aijQiðsÞ � s�aij qið0Þ: ð28Þ

An alternative approach for fractionalisation of non-com-

mensurate fractional pharmacokinetic systems has been

proposed in [40], where the conditions that the pharma-

cokinetic parameters need to satisfy for the mass balance to

be preserved have been defined.

A one-compartment model with constant rate input

After the simplest fractional pharmacokinetic model with

one-compartment and i.v. bolus of Eq. (18), the same

model with fractional elimination, but with a constant rate

input is considered [39]. Even in this simple one-com-

partment model, it is necessary to employ the approach of

fractionalising each process separately, described above,

since the constant rate of infusion is not of fractional order.

That would have been difficult if one followed the

approach of changing the order of the derivative of the left

hand side of the ODE, however here it is straightforward.

The system can be described by the following equation

dqðtÞ
dt

¼ k01 � k10;f
c
0D1�a

t qðtÞ; ð29Þ

with qð0Þ ¼ 0 and where k01 is a zero-order input rate

constant, with units [mass]/[time], k10;f is a rate constant

with units [time]�a and a is a fractional order less than 1.

Eq. (29) can be written in the Laplace domain as

sQðsÞ � qð0Þ ¼ k01

s
� k10;f ðs1�aQðsÞ � s�aqð0ÞÞ: ð30Þ

Since qð0Þ ¼ 0, Eq. (30) can be solved to obtain

QðsÞ ¼ k01s
a�2

sa þ k10;f
: ð31Þ

By applying the following inverse Laplace transform for-

mula (Equation (1.80) in [11], page 21):

L�1 sl�m

sl þ k

� �
¼ tm�1El;mð�ktlÞ; ð32Þ

where El;m is the Mittag-Leffler function with two param-

eters. For l ¼ a and m ¼ 2, we obtain

qðtÞ ¼ k01tEa;2ð�k10;f t
aÞ: ð33Þ

In Theorem 1.4 of [11], the following expansion for the

Mittag-Leffler function is proven to hold asymptotically as

jzj ! 1:

El;mðzÞ ¼ �
Xp
k¼1

z�k

Cðm� lÞ þ Oðjzj1�pÞ: ð34Þ

Applying this formula to Eq. (33) and keeping only the first

term of the sum since the rest are of higher order, the limit

of Eq. (33) for t going to infinity can be shown to be

limt!1 qðtÞ ¼ 1 for all 0\a\1 [39].

The fact that the limit of q(t) in Eq. (33) diverges as t

goes to infinity, for a\1, means that unlike the classic

case, for a ¼ 1—where (33) approaches exponentially the

steady state k01=k10;f , for a\1—there is infinite accumu-

lation. In Fig. 2 a plot of (33) is shown for a ¼ 0:5

demonstrating that in the fractional case the amount grows

unbounded. In the inset of Fig. 2 the same profiles are

shown a 100-fold larger time span, demonstrating the effect

of continuous accumulation.

The lack of a steady state under constant rate adminis-

tration which results to infinite accumulation is one of the

most important clinical implications of fractional pharma-

cokinetics. It is clear that this implication extends to

repeated doses as well as constant infusion, which is the
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Fig. 2 Amount-time profiles for a ¼ 0:5: (solid line) amount of drug

versus time according to Eq. (33) with constant infusion where there

is unbounded accumulation of drug, (dashed line) time-profile

according to Eq. (35), with power-law infusion where the amount

of drug approaches a steady state. (Inset) The same profiles for 100

times longer time span
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most common dosing regimen, and can be important in

chronic treatments. In order to avoid accumulation, the

constant rate administration must be adjusted to a rate

which decreases with time. Indeed, in Eq. (29), if the

constant rate of infusion k01 is replaced by the term

f ðtÞ ¼ k01t
1�a, [32] the solution of the resulting FDE is,

instead of Eq. (33), the following

qðtÞ ¼ k01CðaÞtaEa;aþ1ð�k10;f t
aÞ: ð35Þ

The drug quantity q(t) in Eq. (35) converges to the steady

state CðaÞk01=k10;f as time goes to infinity, while for the

special case of a ¼ 1, the steady state is the usual k01=k10;f .

Similarly, for the case of repeated doses, if a steady state is

intended to be achieved, in the presence of fractional

elimination of order a, then the usual constant rate of

administration, e.g., a constant daily dose, needs to be

replaced by an appropriately decreasing rate of adminis-

tration. As shown in [32], this can be either the same dose,

but given at increasing inter-dose intervals, i.e.,

Ti ¼ ðTa
i�1 þ aDsaÞ1=a

, where Ti is the time of the i-th dose

and Ds is the inter-dose interval of the corresponding

kinetics of order a ¼ 1; or a decreasing dose given at

constant intervals, i.e., q0;i ¼ q0=aððiþ 1Þa � iaÞ. This

way, an ever decreasing administration rate is implemented

which compensates the decreasing elimination rate due to

the fractional kinetics.

A two-compartment i.v. model

Based on the generalised approach for the fractionalisation

of compartmental models, which allows mixing different

fractional orders, developed above, a two-compartment

fractional pharmacokinetic model is considered, shown

schematically in Fig. 3. Compartment 1 (central) repre-

sents general circulation and well perfused tissues while

compartment 2 (peripheral) represents deeper tissues.

Three transfer processes (fluxes) are considered:

elimination from the central compartment and a mass flux

from the central to the peripheral compartment, which are

both assumed to follow classic kinetics (order 1), while a

flux from the peripheral to the central compartment is

assumed to follow slower fractional kinetics accounting for

tissue trapping [23, 41].

The system is formulated mathematically as follows:

dq1ðtÞ
dt

¼ �ðk12 þ k10Þq1ðtÞ þ k21;f
c
0D1�a

t q2ðtÞ; ð36aÞ

dq2ðtÞ
dt

¼ k12q1ðtÞ � k21;f
c
0D1�a

t q2ðtÞ; ð36bÞ

where a\1 and initial conditions are q1ð0Þ ¼ q1;0, q2ð0Þ ¼
0 which account for a bolus dose injection and no initial

amount in the peripheral compartment. Note that it is

allowed to use Caputo derivatives here since the fractional

derivatives involve only terms with q2 for which there is no

initial amount, which means that Caputo and RL deriva-

tives are identical.

Applying the Laplace transform, to the above system the

following algebraic equations are obtained:

sQ1ðsÞ � q1ð0Þ ¼ �ðk12 þ k10ÞQ1ðsÞ þ k21ðs1�aQ2ðsÞ
� s�aq2ð0ÞÞ;

ð37aÞ

sQ2ðsÞ � q2ð0Þ ¼ k12Q1ðsÞ � k21;f ðs1�aQ2ðsÞ � s�aq2ð0ÞÞ:
ð37bÞ

Solving for Q1ðsÞ and Q2ðsÞ and substituting the initial

conditions,

Q1ðsÞ ¼
q1;0ðsa þ k21;f Þ

ðsþ k12 þ k10Þðsa þ k21;f Þ � k12k21;f
ð38aÞ

Q2ðsÞ ¼
q1;0s

a�1k12

ðsþ k12 þ k10Þðsa þ k21;f Þ � k12k21;f
ð38bÞ

Using the above expression for Q1 and Q2, Eqs. (38a) and

(38b), respectively, can be used to simulate values of q1ðtÞ
and q2ðtÞ in the time domain by an NILT method. Note that

primarily q1ðtÞ is of interest, since in practice we only have

data from this compartment. The output for q1ðtÞ from this

numerical solution may be combined with the following

equation

cðtÞ ¼ q1ðtÞ
V

; ð39Þ

where c is the drug concentration in the blood and V is the

apparent volume of distribution. Eq. (39) can be fitted to

pharmacokinetic data in order to estimate parameters V,

k10, k12, k21;f and a.

The closed-form analytical solution of Eqs. (36a, 36b),

can be expressed in terms of an infinite series of gener-

alised Wright functions as demonstrated in the book by

Fig. 3 A fractional two-compartment PK model with an i.v. bolus.

Elimination from the central compartment and a mass flux from the

central to the peripheral compartment, which are both assumed to

follow classic kinetics (order 1), while a flux from the peripheral to

the central compartment is assumed to follow slower fractional

kinetics, accounting for tissue trapping (dashed arrow)
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Kilbas et al. [42], but these solutions are hard to implement

and apply in practice. Moloni in [43] derived analytically

the inverse Laplace transform of Q1ðsÞ as:

q1ðtÞ ¼ q1;0

X1
n¼0

ð�1Þnkn21;f

Xn
l¼0

kl10n!

ðn� lÞ!l!�
tlþanEnþ1

1;lþanþ1ð�ðk10 þ k12ÞtÞ þ tlþaðnþ1ÞEnþ1
1;lþaðnþ1Þþ1ð�ðk10 þ k12ÞtÞ

�
;

ð40aÞ

while for Q2 the inverse Laplace transform works out to

be [43]:

q2ðtÞ ¼ q1;0k12

X1
n¼0

ð�1Þnkn21;f

Xn
l¼0

kl10n!

ðn� lÞ!l! t
lþanEnþ1

1;lþanþ2

ð�ðk10 þ k12ÞtÞ:
ð40bÞ

An application of the fractional two-compartment

model, the system of Eqs. (36a, 36b) to amiodarone PK

data was presented in [39]. Amiodarone is an antiarrhyth-

mic drug known for its anomalous, non-exponential phar-

macokinetics, which has important clinical implications

due to the accumulation pattern of the drug in long-term

administration. The fractional two-compartment model of

the previous section was used to analyse an amiodarone i.v.

data-set which first appeared in [44] and estimates of the

model parameters were obtained. Analysis was carried out

in MATLAB while the values for q1ðtÞ of Eq. (40a) were

simulated using a NILT algorithm [37] from the expression

of Q1ðsÞ in the Laplace domain. In Fig. 4 the model-based

predictions are plotted together with the data demonstrat-

ing good agreement for the 60 day period of this study. The

estimated fractional order was a ¼ 0:587 and the non-ex-

ponential character of the curve is evident, while the model

follows well the data both for long and for short times,

unlike empirical power-laws which explode at t ¼ 0.

Numerical methods for fractional-order systems

For simple fractional-order models, as we discussed pre-

viously, there may exist closed-form analytical solutions

which involve the one-parameter or two-parameters Mit-

tage-Leffler function, or are given by more intricate ana-

lytical expressions such as Eqs. (40a, 40b). Interestingly,

even for simple analytical solutions such as Eq. (16), the

Mittag-Leffler function itself is evaluated by solving an

FDE numerically [45]. This fact, without discrediting the

value of analytical solutions, necessitates the availability of

reliable numerical methods that allow us to simulate and

study fractional-order systems. The availability of accurate

discrete-time approximations of the trajectories of such

systems is important not only for simulating, but also for

the design of open-loop or closed-loop administration

strategies, based on control theory [46]. Time-domain

approximations are less parsimonious than s-domain ones,

but are more suitable for control applications as we discuss

in the next section.

There can be identified four types of solutions for

fractional-order differential equations: (i) closed-form

analytical solutions, (ii) approximations in the Laplace s-

domain using integer-order rational transfer functions, (iii)

numerical approximation schemes in the discrete time

domain and (iv) numerical inverse Laplace transforms.

Each of these comes with certain advantages as well as

limitations; for example, closed-form analytical solutions

are often not available, while the inverse Laplace function

requires an explicit closed form for uiðtÞ so it cannot be

used for administration rates that are defined implicitly or

are arbitrary signals. Approximations in the s-domain are

powerful modelling tools, but they fail to provide error

bounds on the concentration of the administered drug in the

time domain which are necessary in clinical practice.

In regard to closed-form analytical solutions, when

available, they involve special functions such as the Mit-

tag-Leffler function Ea;bðtÞ ¼
P1

k¼0 t
k=Cðak þ bÞ whose

evaluation calls, in turn, for some numerical approximation

scheme. Analytical closed-form solutions of fractional

differential equations are available for pharmacokinetic

systems [47]. Typically for the evaluation of this function

we resort to solving an FDE numerically [48–50] because

the series in the definition of Ea;bðtÞ converges rather

slowly and no exact error bounds as available so as to

establish meaningful termination criteria.

10 20 30 40 50 60
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Fig. 4 Concentration-time profile of amiodarone in the central

compartment. The solid line corresponds to the fractional-order

pharmacokinetic model of Eqs. (36a, 36b) with the parameter

estimates: a ¼ 0:587, k10 ¼ 1:49 days�1, k12 ¼ 2:95 days�1, k21;f ¼
0:48 days�a and q0=V ¼ 4:72ng=ml. The circles correspond to

experimental measurements
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Transfer functions and integer-order

approximations

Fractional-order systems, like their integer-order counter-

parts, can be modelled in the Laplace s-domain via transfer

functions, that is,

FijðsÞ ¼
QjðsÞ
UiðsÞ

; ð41Þ

where QjðsÞ and UiðsÞ are the Laplace transforms of the

drug quantity qjðtÞ and the administration rate uiðtÞ. If the

pharmacokinetics is described by linear fractional-order

models such as the ones discussed above, Fij will be a

fractional-order rational function (a quotient of polynomi-

als with real exponents).

Rational approximations aim at approximating such

transfer functions—which involve terms of the form sa,

a 2 R—by ordinary transfer functions of the form

~FijðsÞ ¼
PijðsÞ
SijðsÞ

; ð42Þ

where Pij and Sij are polynomials and the degree of Pij is no

larger than the degree of Sij. For convenience with notation,

we henceforth drop the subscripts ij.

Padé Approximation The Padé approximation of order

[m / n], m; n 2 N, at a point s0 is rather popular and leads

to rational functions with 
P ¼ m and 
S ¼ n [51].

Matsuda-Fujii continuous fractions approximation This

method consists in interpolating a function F(s), which is

treated as a black box, across a set of logarithmically

spaced points [52]. By letting the selected points be sk,

k ¼ 0; 1; 2; . . ., the approximation is written as the contin-

ued fractions expansion

FðsÞ ¼ a0 þ
s� s0

a1 þ s�s1

a2þ s�s2
a3þ...

ð43Þ

where, ai ¼ tiðsiÞ, t0ðsÞ ¼ HðsÞ and tiþ1ðsÞ ¼ s�si
tiðsÞ�ai

.

Oustaloup’s method Oustaloup’s method is based on the

approximation of a function of the form:

HðsÞ ¼ sa; ð44Þ

with a[ 0 by a rational function

bHðsÞ ¼ c0

YN
k¼�N

sþ xk

sþ x0
k

; ð45Þ

within a range of frequencies from xb to xh [53]. The

Oustaloup method offers an approximation at frequencies

which are geometrically distributed about the characteristic

frequency xu ¼
ffiffiffiffiffiffiffiffiffiffiffi
xbxh

p
—the geometric mean of xb and

xh. The parameters xk and x0
k are determined via the

design formulas [54]

x0
k ¼ xb

xh

xb

	 
kþNþ0:5ð1þaÞ
2Nþ1

; ð46aÞ

xk ¼ xb

xh

xb

	 
kþNþ0:5ð1�aÞ
2Nþ1

; ð46bÞ

c0 ¼ xh

xb

	 
�r
2 YN
k¼�N

xk

x0
k

: ð46cÞ

Parameters xb, xh and N are design parameters of the

Oustaloup method.

There are a few more methods which have been pro-

posed in the literature to approximate fractional-order

systems by rational transfer functions such as [55, 56], as

well as data-driven system identification techniques [57].

Time domain approximations

Several methods have been proposed which attempt to

approximate the solution to a fractional-order initial value

problem in the time domain.

Grünwald–Letnikov This is the method of choice in the

discrete time domain where glD
a
t xðtÞ is approximated by its

discrete-time finite-history variant ðglD
a
h;mxÞk which is pro-

ven to have bounded error with respect to ðglD
a
hxÞk [58].

The boundedness of this approximation error is a singular

characteristic of this approximation method and is suit-

able for applications in drug administration where it is

necessary to guarantee that the drug concentration in the

body will remain within certain limits [58]. As an example,

system (15) is approximated (with sampling time h) by the

discrete-time linear system

1

ha

Xminfm; t=hb cg

j¼0

caj qkþ1�j ¼ �k1;f qk; ð47Þ

where qk ¼ qðkhÞ.
The discretisation of the Grünwald–Letnikov derivative

suffers from the fact that the required memory grows

unbounded with the simulation time. The truncation of the

Grünwald–Letnikov series up to some finite memory gives

rise to viable solution algorithms which can be elegantly

described using triangular strip matrices as described

in [59] and are available as a MATLAB toolbox.

Approximation by parametrisation Approximate time-

domain solutions can be obtained by assuming a particular

parametric form for the solution. Such a method was pro-

posed by Hennion and Hanert [32] where q(t) is approxi-

mated by finite-length expansions of the formPN
j¼0 Aj/jðtÞ, where /j are Chebyshev polynomials and Aj

are constant coefficients. By virtue of the computability of

fractional derivatives of /j, the parametric approximation
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is plugged into the fractional differential equation which,

along with the initial conditions, yields a linear system.

What is notable in this method is that expansions as short

as N ¼ 10 lead to very low approximation errors. Likewise,

other parametric forms can be used. For example, [60]

used a Fourier-type expansion and [61] used piecewise

quadratic functions.

Numerical integration methods Fractional-order initial

value problems can be solved with various numerical

methods such as the Adams–Bashforth–Moulton predictor-

corrector (ABMPC) method [62] and fractional linear

multi-step methods (FLMMs) [63, 64]. These methods are

only suitable for systems of FDEs in the form

c
0Dc

t xðtÞ ¼ f ðt; xðtÞÞ; ð48aÞ

xðkÞð0Þ ¼ x0;k; k ¼ 0; . . .;m� 1 ð48bÞ

where c is a rational, and m ¼ dce. Typically in pharma-

cokinetics we encounter cases with 0\c� 1, therefore, we

will have m ¼ 1.

Let us give an example on how this applies to the two-

compartment model we presented above. In order to bring

Eqs. (36a, 36b) in the above form, we need to find a

rational approximation of two derivatives, 1 � a and 1. If

we can find a satisfying rational approximation of

1 � a u p=q, then the first order derivative follows

trivially. Now, Eqs. (36a, 36b) can be written as
c
0Dc

t x0 ¼ x1 ð49aÞ
c
0Dc

t x1 ¼ x2 ð49bÞ

..

.

c
0Dc

t xq�1 ¼ �ðk12 þ k10Þx0þk21;f xqþpþu
ð49cÞ

c
0Dc

t xq ¼ xqþ1 ð49dÞ

..

.

c
0Dc

t x2q�1 ¼ k12x0 � k21;f xqþp

ð49eÞ

with initial conditions x0ð0Þ ¼ q1ð0Þ, xqð0Þ ¼ q2ð0Þ and

xið0Þ ¼ 0 for i 62 f1; qg, and c ¼ 1=q. This system is in fact

a linear fractional-order system for which closed-form

analytical solutions are available ([45], Thm. 2.5). In par-

ticular, Eqs. (49a, 49b) can be written concisely in the form

c
0Dc

t xðtÞ ¼ AxðtÞ þ BuðtÞ ð50aÞ

xð0Þ ¼ x0; ð50bÞ

where x ¼ ðx0; x1; . . .; x2q�1Þ and x0 ¼ ðx0ð0Þ; . . .; x2q�1

ð0ÞÞ and matrices A and B can be readily constructed from

the above dynamical equations. This fractional-order initial

value problem has the closed-form analytical solu-

tion ([45], Thm. 2.5)

xðtÞ ¼ EcðAtcÞx0 þ
Z t

0

X1
k¼0

Akðt � sÞkc

Cððk þ 1ÞcÞBuðsÞds: ð51Þ

Evidently, the inherent complexity of this closed-form

analytical solution—which would require the evaluation of

slowly-converging series—motivates and necessitates the

use of numerical methods.

The number of states of system (49a, 49b) is 2q,

therefore, the rational approximation should aim at a small

q. Yet another reason to choose small q is that small values

of c render the system hard to simulate numerically

because they increase the effect of and dependence on the

memory.

Adams-Bashforth-Moulton predictor-corrector (ABMPC)

Methods of the ABMPC type have been generalised to solve

fractional-order systems. The key idea is to evaluate

ðrl
0 I

c
f Þðt; xðtÞÞ by approximating f with appropriately selec-

ted polynomials. Solutions of Eqs. (48a, 48b) satisfy the

following integral representation

xðtÞ ¼
Xm�1

k¼0

x0;k
tk

k!
þ rl

0 I
c
f

� �
ðt; xðtÞÞ; ð52Þ

where the first term on right hand side will be denoted by

Tm�1ðtÞ: This is precisely an integral representation of

Eqs. (48a, 48b). The integral on the right hand side of the

previous equation can be approximated, using an uniformly

spaced grid tn ¼ nh, by hc

cðcþ1Þ
Pnþ1

j¼0 aj;nþ1f ðtjÞ for suit-

able coefficients aj;nþ1 [65]. The numerical approximation

of the solution of Eqs. (48a, 48b) is

xðtnþ1Þ ¼ Tm�1ðtnþ1Þ þ hc

Cðcþ 2Þf ðtnþ1; xpðtnþ1ÞÞ

þ
Xn
j¼1

aj;nþ1f ðtj; xðtjÞÞ:
ð53aÞ

The equation above is usually referred to as the corrector

formula and xpðtnþ1Þ is given by the predictor formula

xPðtnþ1Þ ¼ Tm�1ðtnÞ þ 1

CðcÞ

Xn
j¼0

bj;nþ1f ðtj; xðtjÞÞ: ð53bÞ

Unfortunately, the convergence error of ABMPC when

0\c\1 is Oðh1þcÞ, therefore, a rather small step size h is

required to attain a reasonable approximation error. A

modification of the basic predictor-corrector method with

more favourable computational cost is provided in [66] for

which the MATLAB implementation fde12 is available.

Lubich’s method Fractional linear multi-step methods

(FLMM) [63] are a generalisation of linear multi-step

methods (LMM) for ordinary differential equations. The

idea is to approximate the Riemann-Liouville fractional-

order integral operator (1) with a discrete convolution,

known as a convolution quadrature, as
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rl
0 I

c
hf

� �
ðtÞ u hc

Xn
j¼0

xn�jf ðtjÞ þ hc
Xs

j¼0

wn;jf ðtjÞ; ð54Þ

for tj ¼ jh, where (wn;j) and (xn) are independent of h.

Surprisingly, the latter can be constructed from any linear

multistep method for arbitrary fractional order c [63].

FLMM constructed this way will inherit the same con-

vergence rate and at least the same stability properties as

the original LMM method [67].

A MATLAB implementation of Lubich’s method,

namely flmm2 [68] which is based on [64] is available.

However, these methods do not perform well for small c.

According to [69], for the case of amiodarone, it is

reported that values of c smaller than 0.1 give poor results

and often do not converge, while using a crude approxi-

mation given by c ¼ 1=5, flmm2 was shown to outperform

fde12 in terms of accuracy and stability at bigger step

sizes h.

Numerical inverse Laplace

The inverse Laplace transform of a transfer function F(s)—

on the Laplace s-domain—is given by the complex integral

f ðtÞ ¼ L�1fFgðtÞ ¼ lim
T!1

1

2pi

Z rþiT

r�iT

estFðsÞds; ð55Þ

where r is any real number larger than the real parts of the

poles of F. The numerical inverse Laplace (NILT)

approach aims at approximating the above integral

numerically. Such numerical methods apply also to cases

where F is not rational as it is the case with fractional-order

systems (55).

In the approach of De Hoog et al., the integral which

appears in Eq. (55) is cast as a Fourier transform which can

then be approximated by a Fourier series followed by

standard numerical integration (e.g., using the trapezoid

rule) [37]. Though quite accurate for a broad class of

functions, these methods are typically very demanding

from the computational point of view. An implementation

of the above method is available online [70].

In special cases analytical inversion can be done by

means of Mittag-Leffler function [71, 72]. A somewhat

different approach is taken by [73], where authors

approximate est, the kernel of the inverse Laplace trans-

formation, by a function of the form est

1þe�2ae2st and choose

a appropriately so as to achieve an accurate inversion.

In general, numerical inversion methods can achieve

high precision, but they are not suitable for control design

purposes, especially for optimal control problems. More-

over, there is not one single method that gives the most

accurate inversion for all types of functions. An overview

of the most popular inversion methods used in engineering

practice is given in [74].

Drug administration for fractional
pharmacokinetics

Approaches for drug administration scheduling can be

classified according to the desired objective into methods

where (i) we aim at stabilising the concentration in certain

organs or tissues towards certain desired values (set

points) [75] and (ii) the drug concentration needs to remain

within certain bounds which define a therapeutic

window [76].

Another level of classification alludes to the mode of

administration where we identify the (i) continuous

administration by, for instance, intravenous continuous

infusion, (ii) bolus administration, where the medicine is

administered at discrete time instants [76, 77] and (iii) oral

administration where the drug is administered both at dis-

crete times and from a discrete set of dosages (e.g.,

tablets) [78].

Drug administration is classified according to the way in

which decisions are made in regard to how often, at what

rate and/or what amount of drug needs to be administered

to the patient. We can identify (i) open-loop administration

policies where the patient follows a prescribed dosing

scheme without adjusting the dosage and (ii) closed-loop

administration where the dosage is adjusted according to

the progress of the therapy [75]. The latter is suit-

able mainly for hospitalised patients who are under moni-

toring and where drug concentration measurements are

available or the effect of the drug can be quantified. Such is

the case of controlled anaesthesia [79]. However, applica-

tions of closed-loop policies extend beyond hospitals, such

as in the case of glucose control in diabetes [80].

Despite the fact that optimisation-based methods are

well-established in numerous scientific disciplines along

with their demonstrated advantages over other approaches,

to date, empirical approaches remain popular [81–84].

In the following sections we propose decision making

approaches for optimal drug administration using as a

benchmark a fractional two-compartment model using,

arbitrarily and as a benchmark, the parameters values of

amiodarone. We focus on the methodological framework

rather than devising an administration scheme for a par-

ticular compound. We discuss three important topics in

optimal administration of compounds which are governed

by fractional pharmacokinetics. Next, we formulate the

drug administration problem as an optimal control problem

we prescribe optimal therapeutic courses to individuals

with known pharmacokinetic parameters. Lastly, we design

optimal administration strategies for populations of
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patients whose pharmacokinetic parameters are unknown

or inexactly known. We present an advanced closed-loop

controlled administration methodology based on model

predictive control.

Individualised administration scheduling

In this section we present an optimal drug administration

scheme based on the two-compartment fractional model of

Eqs. (36a, 36b) and assuming that the drug is administered

into the central compartment continuously. We will show

that the same model and the same approach can be modi-

fied to form the basis for bolus administration.

In order to state the optimal control problem for optimal

drug administration we first need to discretise the two-com-

partment model (36a, 36b) with a (small) sampling time tc

t�1
c ðxkþ1 � xkÞ ¼ Axk þ F glD

1�a

tc;m xk þ Buk ð56Þ

where xk ¼ q1ðktcÞ q2ðktcÞ½ �0 and uk is the administration

rate at the discrete time k. The left hand side of (56) cor-

responds to the forward Euler approximation of the first-

order derivative, and we shall refer to tc ¼ ½10�2�days as

the control sampling time. On the right hand side of (56),

glD
1�a

tc;m has replaced the fractional-order operator c
0D1�a

t .

Matrices A, F and B are

A ¼
�ðk12 þ k10Þ 0

k21;f 0

� �
;F ¼

0 k21;f

0 �k21;f

� �
;B ¼

1

0

� �
:

ð57Þ

The discrete-time dynamic equations of the system can

now be stated as

xkþ1 ¼ xk þ tc

	
Axk þ

F

t1�a
c

Xm

j¼0

c1�a
j xk�j þ Buk



; ð58Þ

where caj ¼ ð�1Þj a
j

	 

. By augmenting the system with

past values as xk ¼ ðxk; xk�1; . . .; xk�mþ1Þ we can rewrite

Eq. (58) as a finite-dimension linear system

xkþ1 ¼ Âxk þ B̂uk: ð59Þ

Matrices Â and B̂ are straightforward to derive and are

given in [58]. The therapeutic session will last for Nd ¼
Ntc ¼ 7 days in total, where N is called the prediction

horizon. Since it is not realistic to administer the drug to

the patient too frequently, we assume that the patient is to

receive their treatment every td ¼ 0:5 days. The adminis-

tration schedule must ensure that the concentration of drug

in all compartments never exceeds the minimum toxic

concentration limits while tracking the prescribed reference

value as close as possible. To this aim we formulate the

constrained optimal control problem [85]

min
u0;...;uNd�1

J ¼
XNd=tcþ1

k¼0

ðxref;k � xkÞ0Qðxref;k � xkÞ ð60aÞ

subject to the constraints

xkþ1 ¼ Âxk þ B̂uj; for ktc ¼ jtd ð60bÞ

xkþ1 ¼ Âxk; otherwise ð60cÞ

0 � xk � 0:5 ð60dÞ

0 � uj � 0:5 ð60eÞ

for k ¼ 0; . . .;N; j ¼ 0; . . .;Nd � 1.

In the above formulation xref;k is the desired drug con-

centration at time k and operator 0 denotes vector trans-

position. Any deviation from set point is penalised by a

weight matrix Q, where here we chose Q ¼ diagð½0 1�Þ.
Note that we are tracking only the second state. Our

underlying GL model has a relative history of tcm ¼ 5days.

Optimal drug concentrations are denoted by uHk , for k ¼
0; . . .;Nd � 1 and they correspond to dosages administered

intravenously at times ktd. In the optimal control formu-

lation we have implicitly assumed that td is an integer

multiple of tc, which is not restrictive since tc can be

chosen arbitrarily. In Fig. 5 we present the pharmacoki-

netic profile of a patient following the prescribed optimal

administration course.

Finally, the problem in Eqs. (60a–60e) is a standard

quadratic problem with simple equality and inequality con-

straints that can be solved at low computational complexity.

0 1 2 3 4 5 6 7
0
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0.6

q
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(t
)
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time [days]
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q
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Fig. 5 Drug administration scheduling via optimal control. The

behaviour of the controlled system was simulated using the ABMPC

method (dashed red line). The predicted pharmacokinetic profile

using the Grünwald-Letnikov approximation (solid blue line) and

fde12 are indistinguishable. The set-point on q2 (dashed orange

line) and the maximum allowed concentration (black solid lines) are

shown in the figure (Color figure online)
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Such problems can be easily formulated in YALMIP [86] or

ForBES [87] for MATLAB or CVXPY [88] for Python.

The optimal control framework offers great flexibility in

using arbitrary system dynamics, constraints on the

administration rate and the drug concentration in the var-

ious compartments, and cost functions which encode the

administration objectives.

The quadratic function which we proposed in Eqs. (60a–

60e) is certainly not the only admissible choice. For

instance, other possible choices are

1. J ¼
PNd=tcþ1

k¼0 ðxref;k � xkÞ0Qðxref;k � xkÞ þ bu2
k , where

we also penalise the total amount of drug that is

administered throughout the prediction horizon,

2. J ¼
PNd=tcþ1

k¼0 dist2ðxk; ½x; �x�Þ, where ½x; �x� is the thera-

peutic window and dist2ð�; ½x; �x�Þ is the squared

distance function defined as dist2ðxk; ½x; �x�Þ ¼
minzkfkxk � zkk2; x� zk � �xg.

Administration scheduling for populations

In the previous section, we assumed that the pharmacoki-

netic parameters are known aiming at an individualised

dose regimen. When designing an administration schedule

for a population of patients—without the ability to monitor

the distribution of the drug or the progress of the therapy—

then J becomes a function of the pharmacokinetic param-

eters (in our case k10, k12, k21;f and a). That said, J becomes

a random quantity which follows an—often unknown or

inexactly known—probability distribution. In order to

formulate an optimal control problem we now need to

extract a characteristic value out of the random quantity

J. There are two popular ways to do so leading to different

problem statements.

First, we may consider the maximum value of J, max J,

over all possible values of k10, k12, k21;f and a. This leads to

robust or minimax problem formulations which consist in

solving [85]

min
u0;...;uNd�1

max
k10;k12;k21;f ;a

J u0; . . .; uNd�1; k10; k12; k21;f ; a
� �

; ð61Þ

subject to the system dynamics and constraints. In Eq. (61),

the maximum is taken with respect to the worst-case values

of k10, k12, k21;f and a, that is, their minimum and maxi-

mum values. Apparently, the minimax approach does not

make use of any probabilistic or statistical information

which is typically available for the model parameters. As a

result, it is likely to be overly conservative and lead to poor

performance.

On the other hand, in the stochastic approach we min-

imise the [89] expected cost EJ

min
u0;...;uNd�1

Ek10;k12;k21;f ;a J u0; . . .; uNd�1; k10; k12; k21;f ; a
� �

;

ð62Þ

subject to the system dynamics and constraints. Open-loop

stochastic optimal control methodologies have been pro-

posed for the optimal design of regimens under uncertainty

for classical integer-order pharmacokinetics [90–92], yet,

to the best of our knowledge, no studies have been con-

ducted for the effectiveness of stochastic optimal control

for fractional pharmacodynamics.

The expectation in Eq. (62) can be evaluated empiri-

cally given a data-set of estimated pharmacokinetic

parameters ðkðiÞ10 ; k
ðiÞ
12 ; k

ðiÞ
21;f ; a

ðiÞÞLi¼1 by minimising the sam-

ple average of J, that is

min
u0;...;uNd�1

1

L

XL
i¼1

J u0; . . .; uNd�1; k
ðiÞ
10 ; k

ðiÞ
12 ; k

ðiÞ
21;f ; a

ðiÞ
� �

: ð63Þ

The effect of L on the accuracy of the derived optimal

decisions is addressed in [93] where probabilistic bounds

are provided. Simulation results with the stochastic optimal

control methodology on a population of 100 patients using

L ¼ 20 are shown in Fig. 6. Note that in both the minimax

and the stochastic approach, a common therapeutic course

u0; . . .; uNd�1 is sought for the whole population of patients.

In stochastic optimal control it is customary to adapt the

state constraints in a probabilistic context requiring that

they be satisfied with certain probability, that is

P½xk � xmax� � 1 � b; ð64Þ

where b 2 ½0; 1� is a desired level of confidence. Such

constraints are known as chance constraints or

Fig. 6 Drug administration to a population of 100 (randomly generated)

individuals by stochastic optimal control. The yellow thin lines

correspond to the predicted individual responses to the administration

and the black lines represent the average response (Color figure online)
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probabilistic constraints. Such problems, unless restrictive

assumptions are imposed on the distribution of xk, lead to

nonconvex optimisation problems and solutions can be

approximated by Monte Carlo sampling methods ([94],

Sect. 5.7.1) or by means of convex relaxations known as

ambiguous chance constraints where (64) are replaced by

AV@Rb½xk� � xmax, where AV@Rb½xk� is the average

value-at-risk of xk at level b ([94], Sect. 6.3.4).

The minimax and the expectation operator are the two

‘‘extreme’’ choices with the former relating to complete

lack of probabilistic information and the latter coming with

the assumption of exact knowledge of the underlying dis-

tribution of pharmacokinetic parameters. Other operators

can be chosen to account for imperfect knowledge of that

distribution, therefore, bridging the gap between minimax

and stochastic optimal control. Suitable operators for

optimal control purposes are the coherent risk measures

which give rise to risk-averse optimal control which is the

state of the art in optimisation under uncertainty [95].

Model predictive control

Model predictive control fuses an optimal control open-

loop decision making process with closed-loop control

when feedback is available. Following its notable success

and wide adoption in the industry, MPC has been proposed

for several cases of drug administration for drugs that

follow integer-order kinetics such as erythropoietin [96],

lithium ions [76], propofol for anaesthesia [97] and,

most predominantly, insulin administration to diabetic

patients [98–101].

In MPC, at every time instant, we solve an optimal

control problem which produces a plan of future drug

dosages over a finite prediction horizon by minimising a

performance index J. The future distribution of the drug in

the organism is predicted with a dynamical model such as

the ones based on the Grünwald-Letnikov discretisation

presented in the previous sections. Out of the planned

sequence of dosages, the first one is actually administered

to the patient. At the next time instant, the drug concen-

tration is measured and the same procedure is repeated in a

fashion known as receding horizon control [102].

A fractional variant of the classical PID controller,

namely a PIkDl fractional-order controller, has been pro-

posed in [103] for the controlled administration. However,

the comparative advantage of MPC is that it can inherently

account for administration rate, drug amount and drug

concentration constraints which are of capital importance.

In [46, 58], the truncated Grünwald-Letnikov approxima-

tion serves as the basis to formulate MPC formulations with

guaranteed asymptotic stability and satisfaction of the

constraints at all time instants. We also single out impulsive

MPC, which was proposed in [76], which is particularly

well-suited for applications of bolus administration where

the patient is injected the medication (e.g., intravenously),

thus abruptly increasing the drug concentration. In such

cases, it is not possible to achieve equilibrium, but instead

the objective becomes to keep the concentration within

certain therapeutic limits. Model predictive control can

further be combined with stochastic [104, 105] and risk-

averse [95] optimal control aiming at a highly robust

administration that is resilient to the inexact knowledge of

the pharmacokinetic parameters of the patient as well as

potential time varying phenomena (e.g., change in the PK/

PD parameter values due to illness, drug-drug interactions

and alternations due to other external influences).

Furthermore, in feedback control scenarios, state infor-

mation is often partially available. For example, when a

multi-compartment model is used, concentration measure-

ment from only a single compartment is available. As an

example, in the case of multi-compartment physiologically

based models, we would normally only have information

from the blood compartment. In such cases, a state

observer can be used to produce estimates of concentra-

tions or amounts of drug in compartments where we do not

have access. A state observer is a dynamical system which,

using observations of (i) those concentrations that can be

measures and (ii) amount or rate of administered drug at

every time instant, produces estimates q̂i of those

amounts/concentrations of drug to which we do not have

access. State observers are designed so that q̂iðtÞ � qiðtÞ !
0 as t ! 1, that is, although at the beginning (at t ¼ 0) we

only have an estimate q̂ið0Þ of qið0Þ, we shall eventually

obtain better results which converge to the actual concen-

trations. State observers, such as the Kalman filter, have

been successfully employed in the administration of com-

pounds following integer-order dynamics [75] including

applications of artificial pancreas [106, 107].

Observers are, furthermore, employed to filter out

measurement errors and modelling errors. When the system

model is inexact, the system dynamics in Eq. (59) becomes

xkþ1 ¼ Âxk þ B̂uk þ dk; ð65Þ

where dk serves as a model mismatch term. We may then

assume that dk follows itself some dynamics often as trivial

as dkþ1 ¼ dk. We may then formulate the following linear

dynamical system with state ðxk; dkÞ

xkþ1

dkþ1

� �
¼ Â I

0 I

" #
xk

dk

� �
þ B̂

0

" #
uk; ð66Þ

and build a state observer for ðxk; dkÞ jointly. The estimates

ðx̂k; d̂kÞ are then fed to the MPC. This leads to an MPC

formulation known as offset-free MPC [75] that can con-

trol systems with biased estimates of the pharmacokinetic

parameters.
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Model predictive control is a highly appealing approach

because it can account for imperfect knowledge of the

pharmacokinetic parameters of the patient, measurement

noise, partial availability of measurements and constraints

while it decides the amount of administered drug by opti-

mising a cost function thus leading to unparalleled per-

formance. Moreover, the tuning of MPC is more

straightforward compared to other control approaches such

as PID or fractional PID. In MPC the main tuning knob is

the cost function J of the involved optimal control problem

which reflects and encodes exactly the control objectives.

Conclusions

Fractional kinetics offers an elegant description of

anomalous kinetics, i.e., non-exponential terminal phases,

the presence of which has been acknowledged in

the pharmaceutical literature extensively. The approach

offers simplicity and a valid scientific basis, since it has

been applied in problems of diffusion in physics and

biology. It introduces the Mittag-Leffler function which

describes power law behaved data well, in all time scales,

unlike the empirical power-laws which describe the data

only for large times. Despite the mathematical difficulties,

fractional pharmacokinetics offer undoubtedly a powerful

and indispensable approach for the toolbox of the phar-

maceutical scientist.

Solutions of fractional-order systems involve Mittag-

Leffler-type functions, or other special functions whose

numerical evaluation is nontrivial. Several approximation

techniques have been proposed as we outlined above for

fractional systems with different levels of accuracy, par-

simony and suitability for optimal administration schedul-

ing or control. In particular, those based on discrete time-

domain approximations of the system dynamics with

bounded approximation error, such as the truncated Grün-

wald-Letnikov approximation, are most suitable for opti-

mal control applications. There nowadays exist software

that implement most of the algorithms that are available in

the literature and facilitate their practical use. Further

research effort needs to be dedicated in deriving error

bounds in the time domain for available approximation

methods that will allow their adoption in optimal control

formulations.

The optimal control framework is suitable for the design

of administration courses both to individuals as well as to

populations where the intra-patient variability of pharma-

cokinetic parameters needs to be taken into account. In

fact, stochastic optimal control offers a data-driven deci-

sion making solution that enables us to go from sample

data to administration schemes for populations. Optimal

control offers great flexibility in formulating optimal drug

dosing problems and different problem structures arise

naturally for different modes of administration (continuous,

bolus intravenous, oral and more). At the same time, fur-

ther research is necessary to make realistic assumptions

and translate them into meaningful optimisation problems.

MPC methodologies are becoming popular for con-

trolled drug administration. Yet, their potential for frac-

tional-order pharmacokinetics and their related properties,

especially in regard to stochastic systems and the charac-

terisation of invariant sets, needs to be investigated.

Overall, at the intersection of fractional systems theory,

pharmacokinetics, numerical analysis, optimal control and

model predictive control, spring numerous research ques-

tions which are addressed in the context of mathematical

pharmacology.
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