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Abstract We explore the use of fractional order differential equations for the

analysis of datasets of various drug processes that present anomalous kinetics, i.e.

kinetics that are non-exponential and are typically described by power-laws.

A fractional differential equation corresponds to a differential equation with a

derivative of fractional order. The fractional equivalents of the ‘‘zero-’’ and ‘‘first-

order’’ processes are derived. The fractional zero-order process is a power-law while

the fractional first-order process is a Mittag–Leffler function. The latter behaves as a

stretched exponential for early times and as a power-law for later times. Applica-

tions of these two basic results for drug dissolution/release and drug disposition are

presented. The fractional model of dissolution is fitted successfully to datasets taken

from literature of in vivo dissolution curves. Also, the proposed pharmacokinetic

model is fitted to a dataset which exhibits power-law terminal phase. The Mittag–

Leffler function describes well the data for small and large time scales and presents

an advantage over empirical power-laws which go to infinity as time approaches

zero. The proposed approach is compared conceptually with fractal kinetics, an

alternative approach to describe datasets with non exponential kinetics. Fractional

kinetics offers an elegant description of anomalous kinetics, with a valid scientific

basis, since it has already been applied in problems of diffusion in other fields, and

describes well the data.
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Introduction

Diffusion is one of the main mechanisms of various processes in living organisms

and as such, plays an important role in the course of drugs in the body. Processes

like membrane permeation, dissolution of solids and dispersion in cellular matrices

are considered to be governed by diffusion. Diffusion is classically described by

Fick’s law and is based on the fact that a molecule makes a random walk, where its

mean squared displacement is proportional to time. However, in the last few

decades, strong experimental evidence has suggested that this is not always true and

diffusional processes that deviate from this law have been observed. These are

either faster (super-diffusion) or slower (sub-diffusion) than the classic case and the

mean square displacement is a power of time, with exponent greater, or less than 1,

respectively [1]. This type of diffusion gives rise to kinetics that are referred to as

anomalous, to indicate the fact that deviate from the classic description [1].

Moreover, anomalous kinetics can also result from reaction-limited processes and

long-time trapping. It is thought that anomalous kinetics introduces memory effects

in the process that need to be accounted for to correctly describe it. A theory that

describes such anomalous kinetics is the so called fractal kinetics [2] where explicit

power functions of time, in the form of time-dependent coefficients, are used to

account for the memory effects. In the pharmaceutical literature several datasets

have been described by empirical power-laws [3], gamma functions [4] or fractal

kinetics [5–9] and their use has been justified by the presence of anomalous

diffusion. These include mainly pharmacokinetics of drugs that are distributed in

deeper tissues [10] and bone seeking elements [7, 11]. Applications of fractal

kinetics have also appeared in drug dissolution [12, 13].

An alternative theory to describe anomalous kinetics uses fractional calculus [14,

15], which introduces derivatives and integrals of fractional order, such as half or 3

quarters. Although fractional calculus was introduced by Leibniz more than 300 years

ago, it is only within the last couple of decades that real-life applications have been

explored [16–18]. It has been shown that differential equations with fractional

derivatives describe experimental data of anomalous diffusion more accurately. In

this work, we attempt to introduce these concepts in the pharmaceutical literature with

two simple applications in drug dissolution and pharmacokinetics.

Theory

Fractional kinetics

Since expressions involving fractional derivatives have not been reported in the

pharmaceutical literature before, a brief definition and two applications to the

widely used zero- and first-order kinetics are given below.

Derivatives of integer order n, dnf(t)/dtn of a function f(t) are well defined. For a

fractional order of differentiation a, where for simplicity we assume that 0 \ a \ 1,

the a-th derivative is defined through fractional integration and successive ordinary
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differentiation. Fractional integration of order a is defined, according to the

Riemann–Liouville integral [16]:

0D�a
x f tð Þ ¼ 1

C að Þ

Z t

0

t � sð Þa�1f sð Þds

where C(.) is the gamma function. Consequently, fractional differentiation is defined

as:

0Da
t f tð Þ ¼ d

dt

1

C 1� að Þ

Z t

0

f sð Þ
t � sð Þa ds

2
4

3
5

This is the Riemann–Liouville definition of the fractional derivative. We can

notice that the fractional integration, is basically a convolution integral between

the function and a power-law of time, i.e. 0D�a
x f tð Þ ¼ ta�1 � f tð Þ; where the star

‘‘*’’ denotes convolution, accounting for the memory effects of the studied pro-

cess. The fractional derivatives have properties that are not intuitive and take

some time to get used to, for example, the half derivative of a constant k in

respect to x, does not vanish and instead is k=
ffiffiffiffiffiffiffiffiffi
p � x
p

: The left-side index ‘‘0’’ of

the D operator, denotes the lower end of the integration which in this case has

been assumed to be zero. However, alternative lower bounds can be considered

leading to different definitions of the fractional derivative with slightly different

properties. An alternative lower bound which has been considered is ‘‘-?’’ and is

referred to as the Wyel definition [15], which accounts for the entire ‘‘history’’ of

the studied function, and is considered preferable in some applications. In fact one

of the disadvantages of the definition with the ‘‘0’’ lower bound is that when used

in differential equations it gives rise to initial conditions that involve the fractional

integral of the function and are difficult to interpret physically. This is one of the

reasons the Wyel definition has been introduced, but this definition may not be

very practical for most applications either, as it involves an initial condition at

time -?. An alternative definition of the fractional derivative which is referred to

as the Caputo definition is preferable for most physical processes as it involves

explicitly the initial condition at time zero. The definition is:

C
0 Da

t f tð Þ ¼ 1

C 1� að Þ

Z t

0

f 0 sð Þ
t � sð Þa ds

where the upper-left index ‘‘C’’ stands for Caputo and the prime denotes classic

differentiation. This definition for the fractional derivative, apart from the more

familiar initial conditions, gives rise to more familiar properties, one of them being

that the Caputo derivative of a constant is in fact zero as usual. The different

definitions of the fractional derivative give different results but these are not

contradicting, since they apply for different conditions and it is a matter of choosing
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the appropriate one for each specific application. All definitions collapse to the usual

derivative for integer values of the order of differentiation. For a nice introduction to

fractional calculus and various applications in physics the article of Sekolov et al.

[14] is recommended, while the review by Magin [16] gives more details and also

some biologically oriented applications. More rigorous, but still addressed to the

applied scientist is the book by Podlubny [15].

The fractional versions of the most commonly encountered in pharmaceutical

literature types of kinetics are presented below and take the form of fractional order

ordinary differential equations. The solutions of this type of equations are usually

pursued by appropriate versions of the Laplace transform [15], since the Laplace

transform of the 0D�a
t operator has the simple form L 0D�a

t f tð Þ; s
� �

¼ s�aF sð Þ:
Throughout this presentation, we are considering the Caputo version of the

fractional derivative for the reasons already explained.

Zero-order kinetics

The classical zero-order kinetics equation, where the rate of change of quantity X,

expressed in mass units, is considered to be constant and equal to k0, expressed in

mass/time units, is given by:

dX

dt
¼ k0

Its solution is a linear function of time and when the initial condition is zero, it has

the form:

X ¼ k0t

The fractional expression for the zero-order kinetics equation can be obtained by

replacing the derivative of order 1 by a derivative of fractional order a:

daX

dta
¼ k0f

where k0f is a constant with units (mass)/(time)a. The solution of this equation for

initial condition X(0) = 0 is a power law [15].

X ¼ k0f

C aþ 1ð Þ t
a ð1Þ

First-order kinetics

The first-order differential equation, where the rate of change of quantity X is

proportional to its current value, is given by:

dX

dt
¼ �k1X

Its solution by considering an initial condition of X(0) = X0 is given by the classical

equation of exponential relaxation:
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X ¼ X0exp �k1 � tð Þ

In fractional terms, however, the first-order equation can be written by replacing the

derivative of order 1 by a fractional one,

daX

dta
¼ �k1f X ð2Þ

where k1f is a constant with (time)-a units. The solution of this equation can be

found in most books or papers of the fast growing literature on fractional calculus

[14, 16] and for initial condition X(0) = X0 it has the form:

X ¼ X0Ea �k1f � ta
� �

ð3Þ

where Ea(x) is a Mittag–Leffler function [15] which is defined as

EaðxÞ ¼
X1
k¼0

xk

Cða � k þ 1Þ: ð4Þ

The function Ea(x) is a generalization of the exponential function and it collapses to

the exponential when a = 1, i.e. E1 xð Þ ¼ exp xð Þ:
The solution of Eq. 2 basically means that the fractional derivative of order a of

the function Ea(xa) is itself a function of the same form, exactly like the classic

derivative of an exponential is also an exponential. It also makes sense to restrict a
to values 0 \ a B 1, since for values of a larger than 1 the solution of Eq. 2 is non-

monotonous and negative values for X appear.

From these elementary equations the basic relations for the time evolution in

drug dissolution and drug disposition can be formulated, with the assumption of

diffusion of drug species taking place in heterogeneous space. Two examples are

considered, namely, drug release or dissolution and drug disposition.

Drug release or dissolution

For the two processes of interest, we assume that under homogeneous conditions,

mostly found in vitro, a zero-order differential equation describes the release

kinetics while dissolution kinetics follows the classical first-order Noyes–Whitney

equation [19]. Due to the heterogeneous structure and function of the GI tract [20],

one can argue that the dissolution or release of drug takes place in a disordered,

under stirred medium of unknown dimensionality. Since diffusion is the principal

mechanism for both processes, fractional derivatives can be used to describe the

kinetics under the heterogeneous in vivo conditions. The fractional derivative of

zero-order release can be written as:

daC

dta
¼ k0f ð5Þ

where k0f is the rate constant with units (concentration)/(time)a. The fractional form

of the Noyes–Whitney equation, using the notation of Ref. [21] for the concen-

tration term can be written as follows:
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da Cs � Cð Þ
dta

¼ �kd Cs � Cð Þ ð6Þ

where C is the drug concentration in the GI fluids, Cs is the saturation solubility, t is

time, kd is a rate constant with units (time)-a and 0 \ a B 1. Equations 5 and 6

upon integration give Eqs. 7 and 8, respectively

C ¼ k0f

C aþ 1ð Þ t
a; ð7Þ

C ¼ CS 1� Ea �kd � tað Þð Þ ð8Þ

where C(x) is the gamma function and Ea(x) is the Mittag–Leffler function, Eq. 4. It

is worth mentioning that power-laws like Eq. 7 have been used extensively to

describe drug release [19, 22, 23]. Also, as we will see further on, Eq. 8, behaves as

a Weibull function for small times, a function used extensively to model drug

dissolution curves [19, 24], and for larger times it behaves as a power-law.

Pharmacokinetics

In the simplest pharmacokinetic relationship, the iv bolus injection with first-order

elimination, in a one compartment model, the drug concentration, C, follows the

common expression

dC

dt
¼ �kelC

where kel is the elimination rate constant. The fractional version of this equation can

be written as

daC

dta
¼ �k1f � C ð9Þ

where k1f is a constant with units (time)-a. The solution of Eq. 9, as already

mentioned, can be written as:

C ¼ C0Ea �k1f � ta
� �

for a� 1 ð10Þ

where C0 is the ratio (dose)/(apparent volume of distribution). This equation for

small times behaves as a stretched exponential, i.e. *exp(-k1f � ta), as we will see

further on, while for large values of time as a power-law. It is therefore a good

candidate to describe various datasets exhibiting power-law-like kinetics due to the

slow diffusion of the drug in deeper tissues.

Equation 9 is a relationship for the simplest case of fractional kinetics. It

accounts for the anomalous diffusion process, which may be considered to be the

limiting step of the entire kinetics. Classic clearance may be considered not to be the

limiting process here and is absent from the equation. More complex cases can be

devised including systems of fractional differential equations, although the

analytical solution in these cases may not be available. However, algorithms for

the numerical solution of fractional differential equations exist [15]. Fractional
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calculus is a live area of research in Mathematics and progress in made

continuously, motivated also by the increasing number of applications.

Results and discussion

Plots of Eqs. 1 and 3 for various values of a are shown in Fig. 1a, b, respectively.

In the special case of classical diffusion, a = 1, Eqs. 1 and 3 provide the linear

and mono-exponential increase or decrease with time, of zero- and first-order

kinetics, respectively, while for different values of a, the curves deviate from the

special case. In Fig. 2, a plot of Eq. 3 is shown in log–log scale together with a

stretched exponential function and a power-law function for a = 1/2. One can

observe from the figure that for a \ 1 and small values of time, Eq. 3 overlaps

with the stretched exponential function while for large values of time it follows

the power-law.

A

B

Fig. 1 a Plot of the Eq. 1 for k0f = 1 and various values for a, from a = 0.3 to a = 1 (top straight line).
b Plot of the Eq. 3 for X0 = 1, k1f = 0.5 and various values of a, from a = 0.3 to a = 1 which is the
exponential function exp(-0.5t) (bottom curve)
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Drug dissolution

In drug dissolution the classic Noyes–Whitney law does not always provide good

fits to the data while alternative functions such as the Weibull function may perform

better [19]. Equation 8 for small times behaves as a Weibull (stretched exponential)

while for large times as power-law and therefore, it may be appropriate for the

description of dissolution data. To investigate this, we fitted a version of Eq. 8 to

seven datasets of in vivo dissolution data, which have been produced by

deconvolution of plasma data of remoxipride capsules (100 mg), taken from

literature [25]. A lag-time parameter, tlag, was introduced and the model was

expressed as fraction of dose dissolved, U:

U ¼ F � 1� Ea �kd � t � tlag

� �a� �� �
ð11Þ

where F is a parameter corresponding to the plateau of the dissolution curve or the

final fraction dissolved. The analysis was done in MATLAB using the subroutine

‘‘lsqnonlin’’ while for the calculation of the Mittag–Leffler function, the subroutine

‘‘MLF’’ by Podlubny and Kacenak, was used [26]. The parameter estimates and

their standard errors are shown in Table 1. Figure 3 shows the fits of the model to

the data and visual inspection reveals that this is adequate. R2 values are also

included in Table 1 and seem to be close to the unit. Also, from Table 1, we can see

that the parameter a, which corresponds to the order of the process, is in some cases

significantly smaller than 1, suggesting that for these datasets heterogeneous

conditions prevail, while for some cases the estimate of a is close to 1 indicating

that these processes can effectively be described by a simple exponential and

therefore correspond to classic kinetics.

A benefit of describing the data with the fractional equation is that it is a simple,

elegant representation which corresponds to a mathematical generalisation of a

commonly used equation. Further, it has a solid scientific basis which has been

demonstrated in a wide range of applications across different disciplines. The

1.000.50 5.000.10 10.000.05

0.50

0.20

0.30

0.15

0.70

t

X

Fig. 2 Log-log plot of Eq. 3 for a = 0.5 (middle curve), the stretched exponential function exp(-t0.5)
(bottom curve) and the power function t-0.5/C(0.5), (top curve). Equation 3 starts close to the stretched
exponential and finishes close to the power function
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heterogeneous conditions that the fractional approach applies to, are of particular

importance under in vivo conditions, in the gastrointestinal system. Ideally, one

could envisage that the degree of heterogeneity is described by parameter a and

therefore, the same drug formulation will give different values under different

conditions, i.e. in vivo versus in vitro. In this case, an IVIVC approach could

employ these new equations to establish a valid correlation.

Table 1 Estimated parameters of Eq. 11 when fitted to the datasets from Ref. [25]

Dataset F a kd (hours-a) tlag (hours) R2

A 0.884 (0.062) 0.929 (0.233) 0.750 (0.382) 1.251 (0.639) 0.986

B 0.860 (0.056) 0.960 (0.191) 0.734 (0.182) 0.856 (0.079) 0.975

C 1.356 (1.574) 0.672 (0.900) 0.349 (0.206) 1.578 (1.463) 0.946

D 0.871 (0.025) 0.975 (0.071) 0.620 (0.057) 0.889 (0.074) 0.993

E 0.868 (0.013) 0.916 (0.034) 0.733 (0.026) 0.898 (0.019) 0.998

G 1.011 (0.073) 0.649 (0.263) 1.432 (0.498) 1.353 (0.380) 0.997

H 0.980 (0.008) 0.946 (0.024) 1.000 (0.029) 0.923 (0.011) 0.999

The numbers in parentheses are the standard errors. The letters correspond to the dataset names in the

original paper. Goodness of fit R2 values are also included

Time (hours)

Fr
ac

ti
o

n
 d

is
so

lv
ed

A

D

H

E

B

G

C

Fig. 3 Seven plots corresponding to the datasets of in vivo dissolution of remoxipride capsules,
produced by deconvolution, from Ref. [25], together with the fitted curves of Eq. 11 (the letters
correspond to the ones in the original paper). The best fit parameter values for Eq. 11 are shown in
Table 1
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Pharmacokinetics

As already mentioned, in pharmacokinetics several drugs are known to follow

distribution kinetics that deviate from the linear compartmental approach and are best

described by power-laws. This is attributed physically to slow diffusion in deeper

tissue spaces and the bone. Indeed, important such examples are bone seeking

elements like calcium [7], plutonium [11], strontium [27], etc. However, another

known example of a drug which follows power-law kinetics is amiodarone [4, 10].

Fractional kinetics allows an alternative description of the anomalous kinetics of such

drugs. We analysed, using Eq. 10, amiodarone data taken from literature [10], in order

to demonstrate that this approach can describe datasets that follow power-law

kinetics. In Fig. 4 semi-log and log–log plots of the data together with the best fit of

Eq. 10 are shown. Also the estimates for the parameter values were as follows:

a = 0.84 (0.012), k1f = 5.49 (1.06) days-a, C0 = 5.49 (0.89) ng/ml, where the
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Fig. 4 Semi-log (a) and Log–log (b) plots of the amiodarone kinetic data from Ref. [10], together with
the fitted curve of Eq. 10
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numbers in brackets correspond to the standard errors of the estimates. Visual

inspection of Fig. 4 reveals that the fit is adequate, which is expectable as amiodarone

data are known to follow anomalous kinetics. This is clearer in the log–log plot

(Fig. 4b) where the terminal phase is well described by a straight line. But as opposed

to the simple power-law that goes to infinity when time approaches zero, the Mittag–

Leffler function describes the initial part of the curve too. Also as before, we can see

that the value of parameter a, that gives the best fit to the data is significantly different

to 1. Of course it is wrong to compare the goodness of fit of this approach with the one-

compartment classical model as one would use a multi-compartmental model to fit

this dataset. But in the classic compartmental approach the solution always gives rise

to a sum of exponentials, the slower of which survives for large times and shapes the

terminal decay, so the behaviour is always exponential. The difference with power-

law kinetics is that it is always slower than any exponential kinetics, regardless of how

large the half-life is. This is because in power-law kinetics there is no constant half-

life and the concentration is halved in ever increasing time intervals. Using multi-

compartmental kinetics to account for power-law kinetics would give rise to a high

number of compartments that would increase with the time-span of the data. So for

longer times, one would need more compartments, i.e. more exponential phases to

describe the data. The power-law kinetics and more specifically the Mittag–Leffler

kinetics accounts for that, with a simple solution that contains a small number of

parameters. Power-law kinetics, when present, have important clinical implications,

including infinite AUC and accumulation without reaching a steady state. Also a

clearance value (Dose/AUC) may not be a meaningful parameter to describe the

elimination of drug from the body since the rate limiting process is the anomalous

diffusion.

The present approach provides an alternative to empirical power-laws [3] or other

methods suggested to study this type of data [10, 11]. An advantage of the Mittag–

Leffler function of the simple power-law is that while the power-law becomes

infinite as time approaches zero, Eq. 10 behaves as a stretched exponential when

time approaches zero and as power-law for large times, describing the data correctly

in all time scales. It presents an elegant formulation with physical relevance and

builds on the simple compartmental analysis of the classical pharmacokinetics.

Beyond this simple example, presented here, more complex models can be

formulated with this approach but these probably require the utilisation of numerical

methods for the solution of the system as an analytical solution may not be tractable.

Comparison of fractional and fractal kinetics

The approach of the fractal kinetics, as introduced by Kopelman in chemical

reaction kinetics [2], and then applied also in pharmaceutical topics [5–9, 12, 13]

addresses the same issue of anomalous kinetics in heterogeneous media. It is

tempting to compare it with the concepts of fractional kinetics, in terms of the

formulation of equations and their solutions.

In fractal kinetics a first-order process is expressed using a time dependant rate

coefficient K(t)
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dX tð Þ
dt
¼ �K tð ÞX tð Þ ð12Þ

The coefficient usually takes the form of a power function

K tð Þ ¼ b � t�h ð13Þ

The power time function is considered to account for the memory effects of such a

process. The solution of Eq. 12 for the initial condition X(0) = X0 is a stretched

exponential function.

X tð Þ ¼ X0exp � b

1� h
t1�h

� 	
ð14Þ

On the other hand, if we represent the memory effects of the process following

anomalous kinetics, by an equation which includes the convolution of the studied

function with a time varying function, we have:

dX tð Þ
dt
¼ �K tð Þ � X tð Þ ð15Þ

where the star symbol ‘‘*’’ stands for the convolution operator and

K tð Þ � X tð Þ ¼
Z t

0

K t � sð ÞX sð Þds

Then if we let the kernel K(t) of the memory integral to be a power function similar

to Eq. 13, namely,

K tð Þ ¼ k1f � ta�2 with 0\a\2

we can derive a first-order fractional differential equation, where in this case the

fractional derivative follows the Riemann–Liouville definition. This equation has

for solution a Mittag–Leffler function [15].

So there is a resemblance of the two approaches, as far as the formulation of the

equations is concerned (Eqs. 12 and 15). However, the main difference is

the explicit presence of the memory effects in the fractional approach through the

convolution integral, while in the fractal approach the memory effects are

introduced through the time dependant coefficients. These memory effects play a

key role in anomalous kinetics. The results (solutions) of the two approaches are

also similar, as we have discussed above, i.e. Mittag–Leffler versus stretched

exponential, but not identical.

Conclusions

Fractional kinetics offers an elegant description of anomalous kinetics, i.e. non-

exponential terminal phases, the presence of which has been acknowledged in

pharmaceutical literature extensively. Giving first a small introduction on the

subject, we presented two applications, on drug dissolution and the
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pharmacokinetics of amiodarone. The approach offers simplicity, a valid scientific

basis, since it has already been applied in problems of diffusion in physics and

biology. It introduces the Mittag–Leffler function which describes well the data in

all time scales unlike the empirical power-laws which describe the data only for

large times. Despite the mathematical difficulties, we believe that fractional kinetics

is an interesting approach for the toolbox of the pharmaceutical scientist.
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