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The pharmacokinetics of cyclosporin (CsA) are unusual because of seûeral heterogeneous features
which include the presence of more than one conformer, considerable accumulation in erythrocytes
and lipoproteins, extensiûe plasma protein binding, distribution into deep tissues, biliary secretion
and hepatic clearance inûolûing a large number of metabolites. In this study, a stochastic compart-
mental model was deûeloped to describe the heterogeneous elimination kinetics of CsA. This new
approach relies on a probabilistic transfer model with a gamma distributed probability intensity
coefficient for drug elimination. For comparatiûe purposes both the stochastic model and compart-
mental deterministic models were fitted to real post infusion data from patients receiûing CsA as
a 2-hr intraûenous infusion. The criteria for selecting the best model showed that the stochastic
model, although simpler than the compartmental deterministic models, is more flexible and giûes
a better fit to the kinetic data of CsA than the compartmental deterministic models. The stochastic
model with a random rate intensity coefficient adequately describes the heterogeneous pharmaco-
kinetics of CsA.
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INTRODUCTION

Cyclosporin A (CsA), a cyclic polypeptide of fungal origin, has been
widely used for the last 20 years as a potent immunosuppressive agent (1).
The drug is indicated for the prophylaxis of organ rejection in allogenic
transplants and for the treatment of some autoimmune diseases (2). Unfor-
tunately, there are difficulties associated with the use of a therapeutic con-
centration range for routine therapeutic monitoring because CsA induces
renal dysfunction and to a lesser extent hepatic toxicity (3).
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The purpose of pharmacokinetic (PK) modeling is to describe, predict
and in some circumstances understand the fate of drugs in the body. Mathe-
matical models are used to describe the administration, distribution, metab-
olism, and elimination processes of drugs in the organism (4). The model
is identified through the time-concentration data observed and it supplies
estimates of the PK parameters in a given mathematical structure. It is cru-
cial to reliably describe the time-concentration data that yield accurate PK
parameters to optimize pharmacotherapy by computing the optimal dosage
regimen.

Deterministic compartmental models are generally used to describe the
time-concentration data of CsA. These models are based on the concept of
homogeneous well-stirred compartments in which the drug is considered to
be uniformly distributed. The most suitable model seems to be a three-
compartment model (5–7) but it remains inaccurate with regard to the slow-
est elimination phase. To date, none of these models is commonly accepted
because they lack predictive power in several clinical applications.

Our experimental findings indicate that CsA PKs do not follow
exponential decay described with linear compartmental modeling. Indeed, a
linear relationship was found when time-post-infusion concentration CsA
data were plotted on log–log axes. Linear log–log plots are indicative of
power-of-time laws which usually arise from fractal processes (8). Wise (9)
has used power functions of time as alternatives to the sum of exponentials
models and he has validated these approaches on many sets of data. Like
other researchers (10) in the field of kinetic data analysis, Wise criticized the
notion of ‘‘homogeneous compartment’’ and used ‘‘power-of-time’’ models
without the hypothesis of homogeneous distribution. On the other hand,
stochastic compartmental models have been applied extensively (11–14) in
many fields of research, and ‘‘power-law’’ models, similar to ‘‘power-of-
time’’ models, have been derived to describe non-homogeneous processes.

The reasons for using stochastic models in PKs are mainly the non-
instant mixing and the compartment heterogeneity. Non-instant mixing is a
physiologically-sound concept not only for solutes distributed extravascu-
larly but also for the solutes confined in the intravascular space (15). Non-
homogeneous compartments, on the other hand, are a natural consequence
of the lumping inherent in the division of the body into two, three, or more
compartments. These heterogeneous characteristics of the human body,
both in structure and function, in conjunction with the complicated PKs of
CsA and our experimental observations, prompted us to develop stochastic
compartmental models for describing the heterogeneous nature of the CsA
elimination process. The new model established herein is sufficiently flexible
to fit the available time-concentration CsA data and it opens new perspec-
tives in PK modeling.
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THE REAL DATA

CsA was given intravenously to 52 patients aged 17–47 years (5). Each
patient received a 2-hr infusion of CsA (4 mg kg−1) with constant infusion
rate, 15 days before allogenic bone marrow graft. Blood samples were col-
lected just before the end of infusion and then at 5, 10, 20, and 30 min and
1, 2, 3, 6, and 12 hr after the end of the infusion. The concentration levels
were measured by HPLC (16). Here, we have mG10 time-concentration
pairs (ti , yi ), iG1, . . . , m per patient.

METHODS

Probabilistic Transfer Models

Stochastic compartmental models assume that, at the molecular level,
the process can be described only in terms of a probability that a molecule
will enter or exit the compartment at any time. These models are called
probabilistic transfer models and involve the probability intensity coef-
ficients instead of the deterministic transfer rate constants (14). Probabilistic
transfer models are expressed by the Chapman–Kolmogorov differential
equations of the compartmental structure.

Random Rate Stochastic Models

Random rate stochastic models are extensions of probabilistic transfer
models in which the heterogeneity of molecules is introduced through ran-
dom probability intensity coefficients. The molecules are assumed to differ
in their passage probabilities because of inherent variability in such charac-
teristics as molecular weight, conformations, or chemical composition. The
random variable is the probability intensity coefficient, which is distributed
according to a given probability density function (pdf).

Stochastic Modeling of CsA

Using the methodology of Matis (17), we considered the single com-
partment case, where the drug amount D is given over a period T by a
constant rate infusion and data are available only after the end of infusion.

(1) The Probabilistic Transfer Model

For the above experimental context, the probabilistic transfer model
predicts the probability of a CsA molecule being in the compartment at
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time t (TFt):

p(t, k)G
1

Tk
[e −k(tAT )Ae −kt ] (1)

where k is the elimination probability intensity coefficient. Full details are
given in the Appendix.

(2) The Stochastic CsA Elimination

Let us assume that k is a random variable regarding molecules. Several
pdfs can be used to express the statistical variability of k, leading to several
stochastic one-compartment models. The distribution used here is the
gamma distribution, k ∼γ (k; a, b) (18) with positive a and b, the shape and
scale parameters, respectively. The resulting probability transfer model is
this mixture:

p(t)G�
k

p(t, k)γ(k; a, b) dk

G
1

T(aA1)b
{[1Cb(tAT )]−(aA1)A(1Cbt)−(aA1)} (2)

The pdf of CsA Molecules

Because of the independence of the n molecules contained in the infused
amount D, the number of drug molecules n(t) present in the compartment
at time t follows the n(t) ∼ B[n(t); n, p(t)] binomial distribution, with expec-
tation and variance equal to np(t) and np(t)[1Ap(t)], respectively.

(4) The Stochastic Characteristics of CsA Concentration

Given the gram-molecular weight of the drug and using Avogadro’s
number, one converts the number of molecules n and n(t) to the equivalent
amounts D and q(t), respectively. Assuming a constant volume of distri-
bution V and dividing q(t) by V, one obtains the expectation E [y(t)] and
variance Var[y(t)] of the drug concentration y(t) at time t. Its expectation
and variance are:

E [y(t)]G
D

V
p(t) and Var[y(t)]G

D2

nV2
p(t)[1Ap(t)] (3)

respectively. From these relations, the coefficient of variation CV is:

CVG
1V [q(t)]

E [q(t)]
G11

n

1Ap(t)

p(t)
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CV is not a small number only for drugs administered at very low doses;
otherwise, CV[1 as in PKs (19,20). From a mechanistic point of view, if
the number of molecules present is not large, the concentration as function
of time will show the random fluctuations we expect from chance occur-
rences. However, if the number is very large as in PKs, these fluctuations
will be negligible and, for purposes of estimation, the stochastic error may
be omitted in comparison with the measurement error.

It is important to note that, in the general case, the stochastic errors
have slight serial correlation and hence are not independent. In the PK
context, since only the measurement error is taken into account, the analysis
is unaffected by the time-wise dependency.

The one-compartment stochastic model leads to a ‘‘power-law’’
expression involving 3 parameters V, a, and b. Clinical relevant parameters
can be derived from V, a, and b. For example, the stochastic clearance CLS

can be derived as:

CLSG
D

�S

0 E [y(t)] dt
GVb�aA1�

Deterministic Models

For comparative purposes, we used 2- and 3-compartment determin-
istic models with 4 and 6 parameters, respectively:

y(t)G
D

T
∑
N

iG1

Ai

ai

[eaiA1i (tAT )AeaiA1i t] (4)

where N is the number of compartments. From the estimates for Ai and ai ,
relevant PK parameters can be computed, e.g., the deterministic clearance
CLD , the volume of distribution of the central compartment V1, etc.

Data Fitting and Parameter Estimation

Since the stochastic error is negligible in comparison with the measure-
ment error ei , the discrepancy yiAE [y(ti )] between observation and predic-
tion is attributed only to ei . Measurement errors are assumed to be
independent and normally distributed, with zero mean and heteroscedastic
variance, i.e., Var[ei ]GK2E2 [y(ti )], where K is the coefficient of variation of
the measurement error.

All models and complementary techniques were programmed within
MATLAB (21). Fitting and parameter estimation were done by BFGS (22),
a quasi-Newton algorithm maximizing the likelihood function (23). In all
these nonlinear models, parameters can be unidentifiable because of the
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redundancy of parameters in the model structure. A consequence is ill-
conditioned confidence contours in the parameter space (23). Ill-condition-
ing may be determined by examining the eigenvalues λ 1¤λ 2¤ · · ·¤λ p of
the Fisher information matrix: the condition number (cn), defined as cnG
λ 1�λ p , measures the parameter redundancy. In practice, the parameter
redundancy also leads to abnormally high or low estimates of model
parameters.

For each model, the CsA time-concentration profiles were evaluated
in terms of the estimated model parameters. Among the well-conditioned
estimates, the best model was selected by means of Akaike Information
Criterion (AIC) (24). The root mean squared error (RMSE) was also
reported to compare the goodness of fit of the models used.

RESULTS

Figure 1 is a log–log plot of the observed time-concentration data nor-
malized by the total administered amount for the 52 patients. After a quick
decline of concentrations just at the end of infusion, all data seem to follow
a linear decrease, suggesting a ‘‘power-of-time’’ model. Inspection of Eq. (2)
reveals that for t close to T, the model is actually the difference of two
‘‘power-law’’ terms explaining the quick decline of concentration just after
the end of infusion, Fig. 1. For tZT, the model produces a ‘‘power-of-time’’
behavior.

The cn and RMSE over the 52 kinetic profiles were represented by
smoothed histograms (25). Relative to the mean, the histogram better
describes the model performances over all the kinetic profiles.

Parameter Redundancy

For the three models, Fig. 2A illustrates the histogram of log(cn). The
3-compartment deterministic model shows higher log(cn) values, and it is
presumed to be parameter redundant. Indeed, this model causes conver-
gence problems and 28 data sets led to unreliable estimates. In contrast, the
stochastic model gives the lowest log(cn) values; it is the best conditioned.
Even with this model, redundancy is observed for 5 data sets: these data
could be described by a model even simpler than the stochastic one. The
2-compartment model is an intermediate case between the previous ones.
Consequently, the 3-compartment model was excluded for subsequent
analysis and the stochastic and the 2-compartment models were further
compared.
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Fig. 1. The time-concentration curves reduced to the doses. Raw data on the 52 patients (A)
and median curve with interquartile range (B).
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Fig. 2. Smoothed histograms for log(cn) (A) and RMSE (B). GAM: stochastic
model, 2CPT: two compartment model, 3CPT: three compartment model.



Stochastic Modeling of Cyclosporin Pharmacokinetics 453

The Best Model Selection

Given the number of model parameters, AIC compares the adequacy
of models on data. The goal of AIC is to discriminate among fitted models
with a different number of parameters. The rule of parsimony tends to select
models with lower numbers of parameters having an acceptable fitting.
Values of AIC for the stochastic model were lower than those for the 2-
compartment deterministic model in 38 out of 52 cases (Fig. 2B). Thus,
the stochastic model fits the CsA data better than does the 2-compartment
deterministic model. The median of RMSE and the associated interquartile
range were 8.28 and 5.29% for the stochastic model and, 9.19 and 6.09%
for the deterministic model. Figure 3 shows the best, the median, and the
worst fitted data with the stochastic model.

Dispersion of the Model Parameters

After removing the 5 data sets leading to parameter redundancy in the
stochastic model, we determined the median values, interquartile ranges and
indices of skewness for V, a, and b estimates, and for the computed CLS ,
CLD , and V1 parameters (Table I). For the median values of a and b, Fig.
4 represents the γ pdf of the random probability intensity coefficient k. The
first two moments of this pdf are:

Eγ Ga · bG3.638 hr−1 and Vγ Ga · b2G11.942 hr−2

Figure 5 shows the dispersion of 47 data sets. In the diagonal elements
are plotted the smoothed histograms of the 3 parameters and in the lower
triangular part the scatter diagrams. Dispersion for V is nearly uniform; it
is normal for a and asymmetric for b. Also, weak correlations were found
between these parameters.

DISCUSSION

In this study, the 3-compartment model is parameter redundant and
the stochastic model, although it has one parameter less than the 2-compart-
ment model, fits the CsA data better. The stochastic model is obtained by
associating a probabilistic transfer model with a gamma distributed prob-
ability intensity coefficient for the drug elimination. The model established
has only 3 adjustable parameters and it is flexible enough to fit the available
time-concentration CsA data. In the limit as a approaches 1, the γ pdf
becomes an exponential pdf and the model can be further simplified with
only two adjustable parameters. Obviously, this is the case for some of CsA
kinetic data sets for which parameter redundancy was observed since the
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Fig. 3. The best (A), median (B), and worst (C) fit of data with the stochastic model.
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Fig. 4. For the median values of a and b, the γ pdf of the random probability
intensity coefficient k.

estimate for a is close to unity, Table I. By comparing the respective param-
eters for the stochastic and deterministic models, it seems that V is of the
same magnitude as V1, but CLD is twice higher than CLS . However, the
areas under the concentration–time curve for the observation interval (from
0 up to 14 hr) derived from the two models and used for the calculation of
CLD and CLS are similar and close to the experimental value calculated
using the log trapezoidal rule (median value 0.0350 hr L−1 for the areas
reduced to the administered dose). This result indicates that the difference
between CLD and CLS is most likely associated with the calculations of the
extrapolated areas from the end of the observational interval to infinity.
Indeed, the extrapolated areas for the stochastic model were found to be
much higher than the corresponding areas for the deterministic model
(median values 0.0587 vs. 0.0033 hr L−1). Thus, given the relatively short
observational period in this study, CLD is rather overestimated while CLS

is highly influenced by the extreme values of the scale parameter b (large
interquartile range with respect to the median value, 4.499 vs. 3.283 hr−1).
Although a longer observation interval would improve the clearance esti-
mates, the reported in the literature CsA clearance values obtained by non-
compartmental analysis of steady-state data using either long-term infusions
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Table I. Statistical Summary of the Estimated Parameters for the Stochastic and Deterministic
Model

Stochastic model 2-cpt deterministic model

V (L) a b (h−1) CLS (L hr−1) V1 (L) CLD (L hr−1)

median 30.83 1.108 3.283 13.06 36.12 28.49
iqr 25.72 0.219 4.499 12.27 26.94 9.84
iskew 1.813 0.437 3.21 6.47 1.663 −0.310

iqr: interquartile range; iskew: index of skewness.

(26) or multiple oral administration (27) (assuming an average bioavail-
ability of 0.3 for Sandimmune (28)) lie between the estimates for CLS and
CLD found in this study.

In compartmental analysis, it is common practice to fit the kinetic data
by a sum of exponentials and then postulate that the number of compart-
ments in the system is at least as large as the number of exponential terms
required to achieve an acceptable fitting. This practice, however, is inappro-
priate and may be very misleading when a random elimination rate coef-
ficient, k, is present. Indeed, a stochastic one-compartment model with k
having two possible outcomes behaves like a biexponential function. When
the number of outcomes of k becomes high, the sum of exponentials is
reduced to a ‘‘power-of-time’’ function. For this reason, Matis (29) emphas-
ized that one cannot imply on the basis of observed data alone that a multi-
exponential fitting is sufficient evidence of a multicompartmental system.

Due to the small number of its parameters, the developed stochastic
model could be used for population analyses. Covariates can be readily
incorporated into this model to explain the interindividual variability of
parameters. Needless to say, that this model can be also used for simulation
and dosage adjustment purposes.

CONCLUSION

Several features of CsA PKs contribute towards heterogeneity in the
kinetic behavior: extensive protein binding, considerable accumulation in
erythrocytes and lipoproteins of free and bound forms, distribution into
deep tissues, biliary secretion and hepatic clearance involving a large num-
ber of metabolites. Thus, the CsA molecules can differ in their kinetic
behavior because of inherent variability in such characteristics. Moreover,
CsA is a cyclic peptide of eleven residues with several backbone confor-
mations which may exhibit different biotransformation rates contributing
towards the random character of the elimination process. These hetero-
geneous features prompted us to develop a stochastic model in order to
empirically describe the observed time-concentration CsA data. Our model
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can be considered as an alternative to the physiologically based pharmacoki-
netic models (30,31). In the latter, heterogeneity in kinetic behavior is
implemented by representing the body as a series of compartments, each
with physiological blood flow, volume and tissue partition coefficient.
Although the stochastic model does not explain the source of heterogeneity,
it is flexible enough to provide reliable estimates for PK parameters of com-
mon clinical data.

The term ‘‘compartment’’ was introduced in compartmental analysis to
define a kinetically homogeneous amount of material (32). In PKs, the con-
cept of ‘‘homogeneous compartment’’ was used in order to simplify the
prototype system and make the mathematical analysis feasible. Later on,
due to the complexity and the diversity of observed data, more complex
multicompartmental models were developed. Again, homogeneity in the
drug concentration for each one of the compartments of the model is the
prevailing concept. Today, there are alternative approaches to the analysis
of complex phenomena. For example, one can describe the heterogeneous
character of the processes in the body using the compartmental notion in
conjunction with statistical tools (stochastic approaches). This is
accomplished by considering heterogeneity in the compartments, which is a
more realistic concept. Our approach relies on the so-called ‘‘heterogeneous
compartment’’ in an attempt to represent a set of more complex structures
with numerous underlying compartments. This approach is against the
unrealistic notion of the ‘‘well-stirred’’ system and is simpler mathematically
than homogeneous multicompartment models. At first glance, this seems to
be a paradox since the conventional approaches rely on a simpler hypoth-
esis, i.e., homogeneity. Plausibly, this paradox arises from the analytical
power of stochastic approaches.

Our more realistic model is in agreement with recent observations sup-
porting the heterogeneous character of drug processes in the human body
(33–36). The common denominator of these studies is the realization that
the non-homogeneous understirred spaces affect the drug diffusion charac-
teristics and produce deviations from the classic behavior. In this context,
Weiss challenged the concept of the homogeneous volume of distribution
for amiodarone and proposed a more physiologically-based model using
fractal description of drug kinetics and a time-varying volume of distri-
bution inside a biological space (35).

It is clear that the ‘‘power-law’’ models developed here differ from the
‘‘power-of-time’’ models both in their justification and in their mathematical
form. However, the two concepts are relevant since the γ pdf belongs to the
family of Weibull distribution which has been used to describe fractal pro-
cesses obeying ‘‘power-of-time’’ laws (37). Stochastic modeling with random
rate coefficients is a rich theoretical tool for describing complex kinetic data
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and stochastic models may be regarded as a broad class of alternatives to
the exponential decay model (38). The stochastic model has proved simpler
and more flexible than the classic deterministic models for CsA PKs and we
encourage its use for performing more realistic and reliable PK studies with
other drugs.

APPENDIX: THE PROBABILISTIC TRANSFER MODEL

We developed a probabilistic transfer model that includes one compart-
ment for drug distribution and is associated with a constant rate infusion.
In Fig. 6, indices 1 and 2 denote the infusion balloon and the single com-
partment of distribution, respectively.

The parameters h and k in the model are the probability intensity coef-
ficients. They are defined through the conditional probability that any ran-
dom molecule present at time t leaves a compartment by tC∆t :

Pr{leave 1 by tC∆t�present in 1 at t} ≡ h ∆t

and

Pr{leave 2 by tC∆t�present in 2 at t} ≡ k ∆t

for small ∆t.

Probability Intensity Coefficient for the Constant Rate Infusion

The leaving process from the infusion balloon with constant rate is
given by:

Pr{leave 1 before t}G�t�T

1

t⁄T

TFt

and
h ∆t ≡ Pr{leave 1 by tC∆t�present in 1 at t}

G
Pr{present in 1 at t, leave 1 by tC∆t}

Pr{present in 1 at t}

Fig. 6. Compartmental model for CsA administration
by infusion.
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where Pr{present in 1 at t, leave 1 by tC∆t} is the joint probability that a
molecule is present in 1 at t and leaves by tC∆t; it is equal to Pr{leave 1 before
tC∆t}APr{leave 1 before t}. Also, Pr{present in 1 at t}G1APr{leave 1
before t} and the previous definition becomes:

hG
1

TAt
[u(t)Au(tAT )] (A1)

where u(t) is the Heaviside step function.

Chapman–Kolmogorof Equations for the System

(1) Let p11(t) be the probability that a particular molecule introduced
at time 0 in 1 is still in 1 at time t. The necessary events for a molecule to
be present in 1 at time tC∆t are:

Pr{present in 1 at tC∆t}GPr{present in 1 at t}

BPr{present in 1 from t to tC∆t}

or

Pr{present in 1 at tC∆t}GPr{present in 1 at t}

B[1APr{leave 1 by tC∆t�present in 1 at t}]

or using the mathematic notations:

p11(tC∆t)Gp11(t)[1Ah ∆t]

Rearranging and taking the limit as ∆t approaches 0, one has the differential
equation:

dp11(t)

dt
G−hp11(t) p11(0)G0

Given Eq. A1, the analytic solution is:

p11(t)G�(TAt)�T

0

t⁄T

TFt
(A2)

(2) Let p12(t) be the probability that a particular molecule introduced
at time 0 in 1 is in 2 at time t. The necessary events for a molecule to be set
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in 1 at time 0 and present in 2 at tC∆t are:

Pr{set in 1 at 0, present in 2 at tC∆t}

GPr{set in 1 at 0, present in 1 at t}

BPr{leave 1 by tC∆t�present in 1 at t}

CPr{set in 1 at 0, present in 2 at t}

BPr{present in 2 between t and tC∆t�present in 2 at t}

or using the mathematic notations:

p12(tC∆t)Gp11(t)h ∆tCp12(t)[1Ak ∆t]

Taking the limit as ∆t approaches 0, one has:

dp12(t)

dt
Ghp11(t)Akp12(t) p12(0)G0 (A3)

By reporting Eq. (A2) into Eq. (A3) and solving the so obtained differential
equation:

p12(t)G
1

Tk �1Ae −kt

e −k(tAT )Ae −kt

t⁄T

TFt

This equation computes the probability that a molecule, set in balloon at
time 0, is present in distribution compartment at time t.
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7. B. Charpiat, I. Falconi, V. Bréant, R. W. Jelliffe, J. M. Sab, C. Ducerf, N. Fourcade, A.
Thomasson, and J. Baulieux. A population pharmacokinetic model of cyclosporine in the
early postoperative phase in patients with liver transplants, and its predictive performance
with Bayesian fitting. Ther. Drug Monit. 20:158–164 (1998).

8. J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West. Fractal Physiology. New York:
Oxford University Press, 1994.



Claret, Iliadis, and Macheras462

9. M. E. Wise. Negative power functions of time in pharmacokinetics and their implications.
J. Pharmacokin. Biopharm. 13:309–346 (1985).

10. K. H. Norwich and S. Siu. Power functions in physiology and pharmacology. J. Theor.
Biol. 95:387–398 (1982).

11. P. Purdue. Stochastic theory of compartments: One and two compartment systems. Bull.
Math. Biol. 36:577–587 (1974).

12. A. H. Marcus. Power laws in compartmental analysis. Part I: A unified stochastic model.
Math. Biosci. 23:337–350 (1975).

13. J. H. Matis, T. E. Wehrly, and C. M. Metzler. On some stochastic formulations and related
statistical moments of pharmacokinetic models. J. Pharmacokin. Biopharm. 11:77–92
(1983).

14. J. H. Matis. An introduction to stochastic compartmental models in pharmacokinetics. In
Pharmacokinetics–Mathematical and statistical approaches in metabolism and distribution
of chemicals and drugs (A. Pecile and A. Rescigno, eds.), Plenum Press, New York, 1988,
pp. 113–128.

15. P. Vicini, R. C. Bonadonna, M. Lehtovirta, L. C. Groop, and C. Cobelli. Estimation of
blood flow heterogeneity in human skeletal muscle using intravascular tracer data: Import-
ance for modeling transcapillary exchange. Ann. Biomed. Eng. 26:764–774 (1998).

16. F. Serre-Debeauvais, S. Benzekri, J. L. Alix, P. Vialtel, and M. Gavend. Cyclosporine A
blood pharmacokinetic parameters: Interest for follow-up of transplanted patients and
diagnosis of nephrotoxicity. Therapie. 43:9–13 (1988).

17. J. H. Matis, T. E. Wehrly, and W. C. Ellis. Some generalized stochastic compartment
models for digesta flow. Biometrics. 45:703–720 (1989).

18. M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. New York: John Wiley,
1993.

19. B. McInnis, S. A. El-Asfouri, and S. A. Kapadia. On stochastic compartmental modeling.
Bull. Math. Biol. 41:611–613 (1979).

20. A. Rescigno and J. H. Matis. On the relevance of stochastic compartmental models to
pharmacokinetic systems. Bull. Math. Biol. 43:245–247 (1981).

21. MATLAB. High-performance Numeric Computation and Visualization Software. 5.2 ed.
Natick MA: The Math Works, 1998.

22. HARWELL. Harwell subroutine library. 10 ed. Oxfordshire, UK: Advanced Computing
Department, Harwell Laboratory, AEA, 1992.

23. G. A. F. Seber and C. J. Wild. Nonlinear Regression Analysis. New York: John Wiley,
1989.

24. H. Akaike. A new look at the statistical model identification. IEEE T. Automat. Contr.
19:716–723 (1974).

25. B. W. Silverman. Density Estimation for Statistics and Data Analysis. London: Chapman
and Hall, 1992.

26. S. A. Myre, T. J. Schroeder, D. B. Melvin, C. W. Clardy, A. J. Pesce, N. K. Wadhwa, J.
A. Collins, R. K. Wolf, L. L. Brown, G. W. Stephens, and M. R. First. Use of cyclosporine
by constant-rate intravenous infusion immediately after heart transplantation. Transplant
Proc 20: 316–322 (1988).

27. J. Grevel, B. K. Post, and B. D. Kahan. Michaelis–Menten kinetics determine cyclosporine
steady-state concentrations: A population analysis in kidney transplant patients. Clin.
Pharmacol. Therap. 53:651–660 (1993).

28. K. Parfitt. Martindale. The Complete Drug Reference. London: Pharmaceutical Press, 1999.
29. J. H. Matis and H. D. Tolley. Compartmental models with multiple sources of stochastic

variability: The one compartment, time invariant hazard rate case. Bull. Math. Biol.
41:491–515 (1979).

30. A. Bernareggi and M. Rowland. Physiologic modeling of cyclosporin kinetics in rat and
man. J. Pharmacokin. Biopharm. 19:21–50 (1991).

31. R. Kawai R, D. Mathew, C. Tanaka, and M. Rowland. Physiologically based pharmaco-
kinetics of cyclosporine A: Extension to tissue distribution kinetics in rats and scale-up to
human. J. Pharmacol. Exp. Ther. 287:457–468 (1998).



Stochastic Modeling of Cyclosporin Pharmacokinetics 463

32. J. A. Jacquez. Compartmental Analysis in Biology and Medicine. Ann Arbor: The Univer-
sity of Michigan Press, 1985.

33. J. H. Matis and T. E. Wehrly. Generalized stochastic compartmental models with Erlang
transit times. J. Pharmacokin. Biopharm. 18:589–607 (1990).

34. P. Macheras. A fractal approach to heterogeneous drug distribution: Calcium pharmaco-
kinetics. Pharm. Res. 13:663–670 (1996).

35. M. Weiss. The anomalous pharmacokinetics of amiodarone explained by nonexponential
tissue trapping. J. Pharmacokin. Biopharm. 27:383–396 (1999).

36. P. Macheras and A. Dokoumetzidis. On the heterogeneity of drug dissolution and release.
Pharm Res 17:108–112 (2000).

37. L. S. Liebovitch and J. M. Sullivan. Fractal analysis of a voltage-dependent potassium
channel from cultured mouse hippocampal neuron. Biophys. J. 52:979–988 (1987).

38. J. H. Matis and T. E. Wehrly. A general approach to non-Markovian compartment
models. J. Pharmacokin. Biopharm 26:437–456 (1998).


