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SCIENTIFIC COMMENTARY

Rapid Method of Obtaining Area Under Curve for
Any Compartment of Any Linear Pharmacokinetic
Model in Terms of Rate Constants’

John G. Wagner?:?
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INTRODUCTION

The classical method of obtaining areas in terms of kinetic constants
involves the following steps: (a) writing the differential equations for the
model; (b) obtaining the Laplace transform (g;) for the amount in a given
compartment at time ¢ (4;); (¢) taking the antitransform which provides
the expression for 4; which is a polyexponential equation; (d) integrating
the polyexponential equation between the limits of t = 0 and ¢ = o0; and
(e) simplifying the result. The last step in this sequence often involves hor-
rendous algebra.

THEORETICAL

The Laplace transform of a function, F(¢), is obtained as indicated by
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LIF(t)] = a, = f F(t)e * dt 1)

0

When s = 0, then e ® = 1, and

(@)s=0 = Jm F(t)dt 2)

0

In linear pharmacokinetics, F(t) is given by

F(t) = VPJ C,«é”""'=f A et 3)
4]

0

for the plasma or reference compartment, where V, is the volume of that
compartment, the C;’s and A,;’s are coefficients with dimensions of concen-
tration and mass, respectively, and the 4,’s are either eigenvalues or micro-
scopic rate constants of the particular model.

Dost’s “law of corresponding areas” (1) may be stated as follows: the
ratio of the area beneath the blood level-time curve after oral administration
to that following intravenous administration of the same dose is a measure

of the absorption of the drug administered. This may be expressed mathe-

matically as
F =f Chodi /f C,vdt )
/ Jo

0

In equation 4, F symbolizes the fraction of the dose which is absorbed
(hence is the bioavailability factor due to incomplete absorption), C®* is
the plasma concentration at time ¢ after oral administration, and Ci¥ is the
plasma concentration at time ¢ after intravenous administration.

Now, Dost’s law should be replaced by

FF* =D, f Ccre- dt/ D,., f Civ-dt (5)
0 0

In equation 5, D; , represents the dose given intravenously, D, , represents
the dose given orally and F* is the bioavailability factor due to the so-called
first-pass effect. When dealing with linear pharmacokinetic models, the
value of F* is obtained by assuming F = 1 and D;, = D,, and then sub-
stituting the appropriate values for the two areas into equation 5 and sim-

plifying, if necessary.



Rapid Method of Obtaining Area Under Curve 283

EXPERIMENTAL

Figure 1 shows the schematic diagrams of 6 linear pharmacokinetic
models. Table I lists the Laplace transforms for the amounts in the designated
plasma compartment (signified by ¥, being written below that compartment)
after both oral, %, and 1ntravenous a‘p" , administration, the corresponding
areas, and the value of F*for the model. The areas obtained by the application
of equation 2 were all checked by the classical method of integrating the
polyexponential equation for the amount in the plasma compartment as a
function of time and agreement was obtained in each case.

Since the products of the 4;’s appearing in the area expressions cancel
when the ratio of the oral to the intravenous area is made to obtain F*, it
is not necessary to know what the 4;’s mean in terms of the microscopic rate
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Fig. 1. Schematic diagrams of six linear pharmacokinetic models.
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constants to obtain the value of F* for any particular model. However, for
the models shown in Fig. 1, the products are as follows:

Models I and I1: 1,4, = k 5k,q 6)
Model 111 4,4,45 = k,E,E5 — ky2kys3ks, — ki3k, E; N
where E, = k,, + k,; and E; = k3, + k3.
Model IV: A,4,435 = E\E,E5 — kysks, By — kioky Es — ky3k, ks,

- k12k23k31 - k13k31E2 (8)
Where El :klz +k13, E2=k21 +k23, and E3 =k30+k31 +k32.
Model V: A,4,4; = k,E.E5 — ki kysky, — kioky Es 9)

where E, = k,o + k,3 + kyy and E5 = k3o + k3,.
Model VI: A,A,4; = E Esky; — kioky ks — ky3ks E, (10)
where E; = ky, + ky;and E, = kyo + ks, .

DISCUSSION

The above method is clearer and more in keeping with acceptable
pharmacokinetic theory than the method proposed by Niiesch (2) to make
the correction (i.e., find F*) that makes Dost’s law valid for a given com-
partment model.

However, in the real world (as contrasted to the abstract world of
models) the only way to prove that Dost’s law is applicable to a particular
drug is to show that, with some type of dosage form, FF* = 1 when one
measures the drug in plasma after both oral and intravenous administration
and applies equation 5. Such a result implies that the oral dose was com-
pletely absorbed (i.e, F = 1) and that for conditions existing in the body
F* = 1. If the oral area is less than the intravenous area, one really cannot
determine whether this was caused by F < 1 or F* < 1 or both being less
than unity. This is because the bioavailability factors are confounded (i.e.,
appear as a product, FF*, in equation 5). It has been recognized for some
time that the value of F* can be so close to unity (e.g., when k,, » k,, in
models I and VI of Fig. 1) that, with the errors involved in plasma assays
and in estimating the areas, one cannot distinguish the value from unity.
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