A Simple Method for Determining Whether Absorption and Elimination Rate Constants Are Equal in the One-Compartment Open Model with First-Order Processes

Meir Bialer ${ }^{1,2}$

Received July 20, 1979—Final September 18, 1979

Abstract

A simple method is presented by which one may determine if the absorption and the elimination rate constants are equal (in the one-compartment body model) using only plasma drug data. This method suggests the pertinent equation to calculate the relevent pharmacokinetic parameters.

KEY WORDS: first-order process; equal absorption and elimination rate constants; onecompartment body model.

In a one-compartment open body model with first-order processes, the determination of the absorption and elimination rate constants (k_{a} and k_{e}, respectively) using only plasma drug concentration data is dependent on the magnitude of the differences between k_{a} and k_{e}.

In the case where $k_{a} \gg k_{e}, k_{e}$ can be determined from the slope of the terminal phase of the $\log C_{b}$ vs. t plot (C_{b} is concentration of the drug in the body and t is time) and k_{a} can be determined by the method of residuals (the "feathering" technique). Similarly, when $k_{e} \gg k_{a}$ (the so-called flip-flop case) k_{a} can be determined from the slope of the terminal phase of a $\log C_{b}$ vs. t plot and k_{e} can be determined by the method of residuals (1,2).

However, in the case where k_{a} is equal or close to k_{e}, absorption continues throughout the elimination phase, and the terminal slope of the $\log C_{b}$ vs. t plot is not linear and therefore cannot be used to determine a rate constant. Obviously the method of residuals cannot be used.

[^0]In the special case where the absorption rate constant $\left(k_{a}\right)$ is equal to the elimination rate constant $\left(k_{e}\right)$, the general Bateman equation (equation 1) for a one-compartment body model with first-order absorption and elimination is indeterminable (mathematically cannot be determined) and therefore cannot be used to determine the relevant pharmacokinetic parameters (1,2).

$$
\begin{equation*}
C_{b}=\frac{F D k_{a}}{V\left(k_{a}-k_{e}\right)}\left(e^{-k_{e} t}-e^{-k_{a} t}\right) \tag{1}
\end{equation*}
$$

where C_{b} is the concentration of drug in the body, D is the dose administered, F is the fraction of dose absorbed, and V is the apparent volume of distribution.

When $k_{a}=k_{e}=k$, the drug concentration in the body is characterized by equation $2(1,2)$:

$$
\begin{equation*}
C_{b}=F D k t e^{-k t} / V \tag{2}
\end{equation*}
$$

This communication presents a simple method for determining, from a single linear plot of C_{b} vs. t data following drug administration by any first-order processes e.g., oral, intramuscular, or sustained release administration, whether absorption and elimination rate constants are equal (assuming a one-compartment open body model).

From equation 2, relationships can be derived for the parameters $t_{\text {max }}$ (time of peak drug concentration) and $C_{b \max }$ (peak drug concentration) $(1,2)$.

$$
\begin{gather*}
t_{\max }=1 / k \tag{3}\\
C_{b \max }=F D / V e \quad e=\text { base of natural logarithms } \tag{4}
\end{gather*}
$$

The product of $t_{\max } \cdot C_{b \max }$ is equal to AUC/e as is shown in equation 5:

$$
\begin{equation*}
t_{\max } \cdot C_{b \max }=F D / k V e=F D / \mathrm{CL} e=\mathrm{AUC} / e \tag{5}
\end{equation*}
$$

where CL is total body clearance and AUC is the area under the curve of C_{b} vs. t.

From a plot of C_{b} vs. $t, t_{\text {max }}$ and $C_{b \max }$ can be determined by inspection and AUC can be calculated by the trapezoidal rule.

Thus, whenever $t_{\max } \cdot C_{b \max }$ can be shown to be equal to AUC/e, the rate constants k_{a} and k_{e} must be equal and the Bateman equation (equation 1) cannot be used; in this case, k can be calculated using equation 6 , which is derived from equation 3 :

$$
\begin{equation*}
k=k_{a}=k_{e}=1 / t_{\max } \tag{6}
\end{equation*}
$$

This method is demonstrated in Fig. 1, where a hypothetical curve was

Fig. 1. Hypothetical curve generated by an analog computer.
generated by an analog computer (PACE model TR-9, Electronics Associated, Inc., Long Branch, New Jersey) with initial conditions set at $k_{a}=$ $k_{e}=0.5 \mathrm{~min}^{-1}$.

By inspection, $t_{\max }=2.1 \mathrm{~min}, C_{b \max }=3.7 \mu \mathrm{~g} / \mathrm{ml}$, and AUC, calculated by the trapezoidal rule, was found to be $20.6 \mu \mathrm{~g}-\mathrm{min} / \mathrm{ml}$.

The product $C_{b \text { max }} \cdot t_{\text {max }}$ equals $(2.1 \min)(3.7 \mu \mathrm{~g} / \mathrm{ml})=7.77 \mu \mathrm{~g}-$ $\mathrm{min} / \mathrm{ml}$. The quotient AUC/e equals $20.6 \mu \mathrm{~g}-\mathrm{min} / \mathrm{ml} / 2.718=7.58 \mu \mathrm{~g}-$ $\mathrm{min} / \mathrm{ml}$. The fact that these two values, as predicted by equation 5 , are equal, demonstrates that k_{a} must be equal to k_{e}.

In summary, a simple scheme is suggested to determine the equivalence of k_{a} to k_{e} using only plasma drug data, which in turn determines which equation (equation 1 or equation 2) must be used to calculate the relevant pharmacokinetic parameters.

ACKNOWLEDGMENTS

I would like to thank Drs. E. R. Garrett and G. L. Henderson for their assistance in the preparation of this communication.

REFERENCES

1. F. H. Dost. Grundlagen der Pharmakokinetik, 2. Gufl., G. Thieme, Stuttgart 1968, pp. 38-47.
2. M. Gibaldi and D. Perrier. Pharmacokinetics, Dekker, New York, 1975, pp. 33-43.

[^0]: ${ }^{1}$ Pharmacy Department, College of Pharmacy, University of Florida, Gainesville, Florida 32610.
 ${ }^{2}$ Present address: Department of Pharmacy, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506.

