
Graphical Approach for Determining Whether Absorption and 
Elimination Rate Constants are Equal in the One- 
Compartment Open Model with First-Order Processes 

PANAYOTIS E. MACHERAS 

Received May 14, 1984, from the Department of Pharmacy, Athens University, Athens 70680, Greece. Accepted for publication February 5, 1985. 

Abstract 0 An equation was developed which enables blood level data 
to be utilized for determining whether or not the first-order absorption 
and elimination rate constants are equal in the one-compartment open 
model. This equation was tested using simulated data with excellent 
results. 

The only available simple method for determining whether 
absorption ( k , )  and elimination (k , )  rate constants are equal in 
the one-compartment model with first-order processes was 
reported by Bialer.' This method uses Eq. 1 as the criterion for 
the equality or inequality of rate constants: 

where C,,, is peak drug concentration, t,,, is the time of peak 
drug concentration, (AUC): is area under the blood level curve 
between times 0 and infinity, and e is the base of the natural 
logarithm. However, this method has been characterized by 
Chan and Miller' as impractical since the accuracy of the 
determination or even the knowledge of the peak blood level 
C,,, is, in most cases, doubtful. Moreover, the sensitivity of the 
above criterion has been found to be 

Recently, nonlinear regression analysis was found' to be a 
suitable way for the determination of the equivalence of rate 
constants. It was proven that the 1974 version of NONLIN is 
capable of revealing the real common value of rate constants 
(for the cases where k, = k J .  The last method is entirely 
satisfactory if suitable computer programs and services are 
available. 

The objective of this study was to develop a method which 
does not require either computer assistance or knowledge of 
specific parameters, namely C,,, and t,.,. In this report one 
equation is derived which, when solved graphically, would re- 
veal the equivalence or nonequivalence of rate constants. In 
addition, when the equality of rate constants is justified, the 
graphical solution can also provide the real value of the unique 
rate constant. 

Theoretical Section 

The drug concentrations in blood for the linear one-com- 
partnient open model with unequal and equal absorption and 
elimination rate constants are described by eqs. 2 and 3, re- 
~pec t ive ly :~ .~  

where C is drug concentration at  time t ,  F is fraction of dose D 
absorbed, Vd is the apparent volume of distribution of drug, 
and k is either the absorption or elimination rate constant. 
Equations 2 and 3 show the normal behavior of such a biex- 
ponential function: the concentration is zero a t  time zero, rises 
to a maximum (C,,,), and thereafter declines. Thus, a given 
drug concentration, C*, lower than C,,, will be reached on both 
upward and downward limbs of the curve, a t  times t, and t2, 
respectively. It is obvious that the difference t2 - tl is the 
maintenance time At of blood level C*. Generalizing these 
definitions, the times of the data points on the absorptive phase 
will be symbolized with ( t]) , ,  while (t2)& will refer to the corre- 
sponding times on the downward limb of the curve for the same 
blood levels, defined as C,*. Analogous with the above, mainte- 
nance times of the blood levels C: will be denoted as (At), .  

Equal Rate Constants (k, = ke)-In this case, eq. 3 which 
describes the blood-drug concentration can be separately ex- 
pressed for a given concentration of drug C* in terms of times 
tl and tP: 

(4) 

Subtracting eq. 4 from eq. 5 ,  rearranging, and taking loga- 
rithms, eq. 6 can be obtained: 

tz - tl = At = -.ln ; (2) 
As can be seen from eq. 6, a plot of maintenance times (A t ) i  
for the various blood levels C l  versus In [ ( t2) i / ( t l ) , ]  gives a 
straight line which intercepts the origin of the axes and has a 
slope equal to the reciprocal of the unique rate constant k (Fig. 
1). 

Unequal Rate Constants (k, # ke)--In cases of nonequi- 
valence of rate constants, eq. 2 is applicable. Based on this 
equation the blood level C* can be separately expressed in 
terms of tl and t2 as above. Subtracting the resulting equations: 

Substituting tl = t 2  - At to the one exponential in the left- 
hand side of eq. 7, rearranging, taking logarithms, and subse- 
quent solution for At will result in the following: 

(3) The last equation, in contrast with eq. 6, shows a nonlinear 
relationship between (A th  and In [(t2)i/(tl)i]. However, a t  some 
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Figure 1-Plots of (At)i versus In [(tz)i/(tl)i] based on simulated data 
derived from eqs. 2 and 3 assuming FD/Vd = 50 units. Key (equation, 
curve, 16, &, ordinate): 3, A, 0.25, 0.25, left-hand; 2, 8, 0.25, 0.025, 
right-hand; 2, B, 0.025, 0.25, right-hand. The upper two data points, 
used for the back-extrapolation iii curve B, have values of (td, equal to 
4.2 and 5.5 times the half-life. 

time t z ,  it is plausible to state that the inequality: 

exp (-katl)  >> exp (-k,tz) >> exp (-katz) (9) 
starts to hold assuming k, > k,. The right-hand side of eq. 9 is 
the conventional assumption quoted when the method of resid- 
uals is used. The validity of the left-hand side of eq. 9 becomes 
operative when t2/tl >> k,/k,. Under these conditions it can be 
easily seen that eq. 8 is reduced to the following expression: 

or: 

which is valid for all the values of tz satisfying eq. 9 and shows 
that At is principally determined from the value of tz .  Hence, 
the plot of (At),  versus In [ ( t2) , / ( t l ) , ]  will progressively become 
linear (Fig. I). According to eq. 11, back-extrapolation of the 
linear region of the plot (At)i against In [ ( t2 ) r / ( t l ) z ]  will give for 
( A t ) ,  = 0: 

or the intercept of the In [(tz)i/(tl)i] axis equals In (ka/ke) .  
Similarly, the intercept of the back-extrapolated line with the 
(At) ,  axis can be easily derived from eq. 11. It is apparent that 
when In [ ( t2 ) i / ( t l ) i ]  = 0, then tl = tz = tmax; thus, eq. 11 can be 
written as: 

which leads to: 

intercept on the ( A t ) i  axis = t,,, (I-?) (14) 

It is rather apparent that in the flip-flop case (where ke > k,) 
the plot of (At), versus In [(t2),/(tl)r] is also curvilinear, while 
k. replaces k. and vice versa in the terms of the intercepts of 
Fig. 1. 

It should be noted, however, that Fig. 1 shows that the 
distinction of (in)equality of rate constants is based on the 
highest (At), estimates available. Therefore, the proper use of 
this method presupposes an accurate determination of drug 
concentrations at the commencement of the absorptive phase 
and at the termination of the postabsorptive phase. Since the 
drug concentrations are low in these regions, a sensitive and 
accurate method of analysis combined with a sampling protocol 
focusing on the phases mentioned above will enable the efficient 
application of the method. 

Discussion 
To illustrate the use of the proposed method the following 

examples were considered. Equation 3 was employed to simu- 
late plasma drug concentrations at times 0.25, 10, 11, 12, 13, 
14,15,16,17,18,19, and 20 h, assuming FD/Vd = 10 and k = 
0.33. Twelve additional sets of readings were also generated by 
adding normally distributed random error with an RSD of 
+5%. Error-free data and data that were also contaminated to 
the above order were generated by using eq. 2 with FDjVd = 
10 and k, = 0.33 while the value of k, ranged from 0.396 to 
0.594, i.e., 1.2 5 (k , /ke)  5 1.8. In all cases, linearity was assumed 
between zero and the first measurement at 0.25 h. This enabled 
the calculation of the (tl), values, needed to apply eq. 6, for 
each of the ( tz) ,  values corresponding to the times of the data 
points at the terminal phase. Subsequently, the data were 
analyzed according to eq. 6. To test the sensitivity of the 
method, the simulated data were evaluated in various ways 
(Tables 1-111). 

It is seen from Table I that for the error-free blood level 
data, the proposed method clearly reveals the (in)equality6 of 
rate constants in accordance with the values assigned to the 
ratio ka/ke in both data sets tested. The analysis of data set B, 
in cases where k. # k,,  supports the nonequivalence of rate 
constants more explicitly. This is in agreement with eq. 9 and 
Fig. 1 which both show that the later the samples have been 
collected, the more efficient the application of the method. 

The results of the method, as applied to data with error, are 
presented in Table 11. As can be seen, there is no considerable 
distinction between the two sets of data in relation to the 
analytical capability of the method. Its sensitivity in terms of 
the k,/ke value lies at  1.8 under the conditions of the experi- 

Table I-Estimates of Intercepts Using Eq. 6 with Two Sets of 
Simulated Error-Free Data Derived from Eas. 2 and 3 

Data Set" 
A 
B 
A 
B 
A 
B 
A 
B 
A 
B 

kJke 
1 .o 
1 .o 
1.2 
1.2 
1.4 
1.4 
1.6 
1.6 
1.8 
1.8 

interceptb 
0.0000 (0.0000) 
0.0000 (0.0000) 

-0.1 057 (0.01 11) 
-0.1 363 (0.01 75) 
-0.3750 (0.0147) 
-0.4769 (0.0207) 
-0.7379 (0.0403) 
-0.9204 (0.0371) 
-1.1355 (0.0476) 
-1.3875 (0.031 91 

a Data set A: plasma concentrations at 0.25, 12, 13, 14, 15, 16, 17, 
and 18 h. Data set 8: plasma concentrations at 0.25, 14, 15, 16, 17, 18, 
19, and 20 h. Standard deviation in parentheses. 
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Table Il-Estimates of Intercepts Using Eq. 6 with Two Sets of 
Eight Simulated Data Points with 25% Random Error Derived from 
Eqs. 2 and 3 

Data Set“ Equality k./k. Mean Interceptb 

A 
B 
A 
B 
A 
B 
A 
B 
A 
B 

1 .o 
1 .o 
1.2 
1.2 
1.4 
1.4 
1.6 
1.6 
1.8 
1.8 

-0.0528 (0.2935) 
-0.0572 (0.3324) 
-0.0101 (0.4146) 
-0.0352 (0.4716) 
-0.2806 (0.3720) 
-0.3676 (0.4250) 
-0.6328 (0.3716) 
-0.7940 (0.4270) 
-1.1 303 (0.3383) 
-1.3792 (0.39011 

8 
8 
8 
9 
6 
5 
2 
2 
0 
0 

See Table I for the sampling design of each set. Twelve data subsets 
with f5% random error were analyzed for sets A and B. * Average of 
intercepts and SDs (in parentheses) found for each subset. The number 
of cases conforming to the criterion of equality. 

mental error and the sampling design studied. However, a more 
satisfactory discrimination between equivalence and nonequi- 
valence of rate constants would be possible if more data points 
were used at  the terminal phase. To substantiate this argument, 
in Table I11 are listed the results obtained when two more data 
points for each set were incorporated into the analysis based 
on eq. 6. An inspection of the results quoted in Table I1 and 111 
indicates that the utilization of a greater number of data points 
enhanced the analytical power of the method remarkably by 
reducing the standard error of the intercept. 

In view of the foregoing results, it is advisable to collect two 
samples at  the commencement of the absorptive phase, as 
suggested by Bialer et  al.7 and to frequently collect sampling 
between 5 and 10 half-lives of the drug for an adequate testing 
of eq. 6. Such a sampling protocol will impose several data 
points to satisfy eq. 9 (if unequal rate constants are met), and 
the discrimination of (in)equality of rate constants will become 
accordingly feasible. In addition, the early data points of the 
absorption phase will clarify if lag-time corrections are neces- 
sary when performing the calculations. Undoubtedly, most of 

Table Ill-Estimates of Intercepts Using Eq. 6 with Two Sets of Ten 
Simulated Data Points with 25% Random Error Derived from Eqs. 2 
and 3 

Equality Data Set“ kJke Mean Interceptb 

C 1 .o 0.0266 (0.1 800) 8 
D 1 .o 0.0306 (0.2054) 7 
C 1.2 0.0482 (0.2356) 5 
D 1.2 0.0476 (0.2692) 5 
C 1.4 -0.2761 (0.2592) 5 
D 1.4 -0.3699 (0.2982) 4 
C 1.6 -0.6090 (0.2324) 0 
D 1.6 -0.7792 (0.2688) 0 
C 1.8 -1.0387 (0.2336) 0 
D 1.8 -1.2984 (0.2710) 0 

‘Data set C: plasma concentrations at 0.25, 10, 11, 12, 13, 14, 15, 
16.17, and 18 h. Data set D: plasma concentrations at 0.25,12, 13.14, 
15, 16, 17, 18, 19, and 20 h. Twelve data subsets with &5% random 
error were analyzed for sets C and D. Average of intercepts and S D  (in 
parentheses) found for each subset. The number of cases conforming 
to the criterion of equality. 

Table IV-Comparison of Real and Estimated Values Obtained by 
Ea. 15 Usina the Data of Chan and Miller’ 

FDIVd k R2 s,.: 

Real values 10.00 0.500 - - 
Data with only 9.99 0.499 0.999 0.004 

Data with 5% 10.15 0.504 0.999 0.046 
rounding error (1 .OO) (0.002) 

noise (1.02) (0.022) 
a Ref. 2; SD of the parameter estimates in parentheses. SEM of the 

estimate. 

the studies are not specifically designed to test the equivalence 
of rate constants and, therefore, data which are used in the 
proposed method are not usually collected. The commonly 
applied data, however, can be used for a rough estimation of 
the half-life of the drug. Thus, a decision about the sampling 
design of the terminal phase, which is indispensable for testing 
eq. 6, can be reached ad hoc during the process of the experi- 
ment. 

The data in Tables 1-111 indicate that the method presented 
is valid. Furthermore, since this method and the method relying 
on eq. 1 are utilizing different data, they can be employed as 
complementary to one another. 

As can be deduced from the aforementioned, in the case of 
equal rate constants the value of the constant term (FD)/Vd 
of eq. 3 cannot be determined from the plot of ( A t ) ,  versus In 
[ ( t 2 ) , / ( t l ) , ] .  Nevertheless, once the equality of rate constants is 
justified, the complete analysis of the system with equal rate 
constants can be determined by: 

In ( C / t )  = In [ (FDk) /Vd]  - kt 
This equation is derived from eq. 3 after rearrangement and 
logarithmic transformation. It shows that a plot of In (C / t )  
versus t gives a straight line with a slope equal to -K and an 
intercept equal to In [ (FDk) /Vd] .  Equation 15 was used to 
analyze the data given in Table I of the paper by Chan and 
Miller.’ By applying linear regression analysis, in accordance 
with eq. 15, the results listed in Table IV were obtained. As it  
can be seen from Table IV, the values of R2 and as well as 
the small standard deviation of the parameter estimates show 
clear proof of the goodness of fit of data to eq. 15. 

In conclusion, the described method based on eq. 6 appears 
to be a unique solution to the problem of whether absorption 
and elimination rate constants are equal in the one-compart- 
ment open model with first-order processes when computer 
facilities are unavailable or the knowledge of C,,, and t,,, is 
doubtful. Moreover, the utilization of eq. 15 offers a reliable 
graphical method of analysis of the one-compartment model 
with equal first-order processes. 
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