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ABSTRACT: Ordinary differential equation (ODE) models are
widely used to describe chemical or biological processes. This
Article considers the estimation and assessment of such models on
the basis of time-course data. Due to experimental limitations, time-
course data are often noisy, and some components of the system
may not be observed. Furthermore, the computational demands of
numerical integration have hindered the widespread adoption of
time-course analysis using ODEs. To address these challenges, we
explore the efficacy of the recently developed MAGI (MAnifold-
constrained Gaussian process Inference) method for ODE
inference. First, via a range of examples we show that MAGI is
capable of inferring the parameters and system trajectories,
including unobserved components, with appropriate uncertainty
quantification. Second, we illustrate how MAGI can be used to assess and select different ODE models with time-course data based
on MAGI’s efficient computation of model predictions. Overall, we believe MAGI is a useful method for the analysis of time-course
data in the context of ODE models, which bypasses the need for any numerical integration.

■ INTRODUCTION
It is fair to say that the advances in single-molecule and single-
cell experiments have profoundly enhanced our understanding
of biological processes.1−9 These advances, in particular,
enable researchers to follow a system of interest over the
course of the biological/chemical process, generating time-
course data.10−15 These rich sources of data have propelled
scientific investigation: in chemistry, time-course analysis can
reveal the effects of products and intermediates on a reaction,
such would not be possible with rate measurements only;16 in
biology, time-courses have enabled the study of dynamic
changes in gene expression17 and the determinants of single-
cell outcomes,18 to list just a few examples.

This Article considers the analysis of time-course data. As
the dynamics of chemical or biological processes are often
modeled by ordinary differential equations (ODEs), this
Article focuses on analyzing time-course data in the context
of ODE models. Two broad questions are considered: (i)
given an ODE model, how to infer the unknown parameter
values as well as the unobserved components of the system;
(ii) how to assess whether a specific ODE model adequately
describes the underlying dynamics, or which one of the
competing models best describes the dynamics given the
available time-course data. These questions could be
challenging to answer, since (a) the time-course data generated
in the experiments are often quite noisy due to experimental

uncertainties and/or measurement error, (b) it is often the
case that due to various experimental limitations, not all the
system components are observed in the experiments (i.e., some
components are entirely unobserved during the course of the
experiment), and (c) models associated with time-course data
tend to be complex to analyze.

This Article explores a method to infer ODE models from
time-course data, which was called MAGI (MAnifold-con-
strained Gaussian process Inference).19 The method employs
two key ingredients: (i) a Gaussian process (GP) Bayesian
prior on the trajectories (either observed or unobserved) of the
ODE system, and (ii) placement of a manifold constraint on
the GP that satisfies the ODEs, which enable it to completely
bypass the need for any numerical integration. The next
section reviews the MAGI method.

To illustrate the MAGI method on the inference of ODE
models from time-course data, we consider the model for a
repressilator gene regulation network proposed by Elowitz and
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Leibler,20 which represented one of the first successful
attempts to engineer a de novo synthetic network that could
exhibit stable oscillatory behavior. The network was built as a
three-gene loop of the successive repressors lacI, tetR, and cI in
E. coli. A time-course experiment then measured the expression
of single cells (through multiple cell-division cycles) and
confirmed the occurrence of stable oscillations. The work
motivated subsequent studies on stochastic gene expression in
single cells, e.g., ref 21. An ODE model provides a simple and
useful description for the dynamics of mRNA and protein
levels corresponding to the three genes in the network, via six
coupled differential equations:20

where i = (lacI, tetR, cI), j = (cI, lacI, tetR), mi is the (scaled)
mRNA concentration of i, and pi is the (scaled) protein
concentration of i. The cyclic repressing behavior can be seen
from these equations and the accompanying diagram; i.e., a
large concentration of protein cI will inhibit the transcription
of lacI, and likewise proteins lacI and tetR inhibit transcription

of tetR and cI, respectively. The system parameters to be
estimated from the noisy observational data are the Hill
coefficient n, the ratio of protein-to-mRNA decay rate β, and
the rates α0, α that govern transcription. Note that α0 can be
interpreted as the transcription rate for mi when protein j is
saturated (pj → ∞), while α + α0 is the rate when pj = 0. To
mimic a realistic experimental scenario where typically either
the protein or the mRNA is not measured,22 we assume in the
simulation that noisy measurements of the mRNA levels are
taken at 50 time points, while the protein concentrations are
entirely unobserved. The black points in Figure 1 show an
example of the noisy observations of mRNA, simulated from
the system with parameter values and initial conditions that
mimic the setup of Elowitz and Leibler.20 The true trajectories
are shown in red. The goal is to infer the system trajectories
and parameter values based on the noisy observations of the
mRNAs only. The panels of Figure 1 show that MAGI is able
to infer the underlying trajectories (green curves) quite well,
including the unobserved protein concentrations, without the
use of any numerical integration (as the green curves largely
agree with the red curves). The (Bayesian) posterior
distributions of the parameters inferred from the data are

Figure 1. Inferred trajectories for a sample data set from the repressilator gene regulation model. The black points are the noisy measurements. In
this example, the protein concentrations are never observed. The red curves are the true trajectories. The inferred trajectories are shown by the
green curves, with the blue shaded areas representing 95% intervals. Both mRNA and protein concentrations are normalized as in ref 20.

Figure 2. Bayesian posterior probability densities of system parameters for a sample data set from the repressilator gene regulation model obtained
by MAGI. The prior distributions of the parameters were the Lebesgue measure over the positive real numbers. The red vertical lines show the true
parameter values used in the simulation. The shaded area represents the 95% interval estimate of each parameter.
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shown in Figure 2, which well recover the true parameter
values (represented by the red bars). We will come back to this
example in more detail in the Parameter Estimation and
Inference section.

The second general question considered by this Article is
model assessment in light of time-course data. It is often the
case that multiple mechanisms (represented by different ODE
models) are hypothesized for a process/reaction, and it is of
interest to determine which mechanism is most compatible
with the experimental data. This question could be difficult
because (i) some system components may not be observed
during the experiment, and (ii) different models might
generate similar trajectories despite their different underlying
mechanisms. The inference capability of MAGI leads to a
natural method for assessing ODE models. The basic idea is to
divide the observed time-course data into two parts: a training
set (for example, data in the first time period) and a test set
(for example, data in the second time period); then, apply
MAGI only on the training data to estimate the model
parameters, infer the system trajectories and generate
predictions under the different model specifications. The
models are then evaluated by comparing the model prediction
obtained by MAGI against the test data. In the Model
Assessment section, we will illustrate the method through an
example that compares the original Michaelis−Menten model
versus the Michaelis−Menten model with competitive
inhibitor:
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Related Work. Another research direction parallel to ODE
parameter inference and model assessment is the ODE
identification problem,23 where the explicit form of the
equations is unknown and needs to be inferred. One approach
is to represent the unknown equations using basis function
expansions. Subsequently, sparse regression techniques can be
used to regularize the coefficients toward zero. As a result,
identification methods are often limited to identifying ODEs or
partial differential equations (PDEs) that are linear in the
parameters.24−26 Deep learning methods have also been
recently proposed to learn the governing equations; the idea
is to represent the unknown ODE function as a neural
network.27,28 However, (i) these methods still rely on
numerical integration and are thus computationally intensive;
(ii) the identified ODE functions are also neural networks, and
while they might provide reasonable predictive performance,
they still fall short in providing interpretable scientific models
for the underlying mechanisms.

A central ingredient of the MAGI method is the GP, which
is a stochastic process with the property that the joint
distribution of the process at any finite collection of time
points is always multivariate Gaussian. Some well-known GPs
include the Ornstein−Uhlenbeck process and the Brownian
motion, both of which are also Markovian.29 In general, a GP is
fully specified by its mean function and covariance function,
and can be Markov or non-Markov. GPs have been previously
explored in the parameter inference of differential equation
models,30 where the GP is employed as a prior for the
solutions of ODEs or PDEs,31−33 but they all come with
various limitations. For example, to infer the parameters of

ODE models, refs 31 and 33 rely on an artificial parameter
governing the mismatch between the GP derivatives and the
ODE, which is ad hoc and lacks rigorous justification. The
approach adopted in ref 32 to study the PDE inverse problem
solely considers linear PDEs, where the GP is explicitly
conditional on the linear constraints.

Besides GPs, another popular surrogate-model approach for
problems involving differential equations is the physics-
informed neural network (PINN),34 owing to the rapid
development of deep learning. It has been proposed to solve
the forward problem,34 the inverse problem,35 and PDE
identification problems.36 However, PINNs for the inverse
problem face challenges in computational efficiency, where the
training of a complex neural network is necessary.
Furthermore, deep learning methods, including PINNs, cannot
properly address uncertainty quantif ication for parameter
estimation and ODE solutions without major Bayesian
modifications.37 They may also be sensitive to the specific
penalty terms used for the initial and boundary conditions,38

the neural network architecture,39 and the optimization
algorithm.40

Organization of the Article. The rest of the Article is
organized as follows. We start with a brief review of the MAGI
method. We then illustrate the general applicability of the
MAGI method on three examples of ODE models from
chemical kinetics. We next discuss model assessment with
MAGI, focusing on the comparison obtained via model
prediction. We conclude this Article with a general discussion.

■ METHODS
The MAGI method, proposed in Yang et al.,19 infers the
trajectories and parameters of dynamic systems from noisy
time-course data, without the need for any numerical
integration. The method can work well even when some
component trajectories of the dynamic system are entirely
unobserved (as shown in Figure 1, where all the protein
concentrations are unobserved). MAGI accomplishes the
inference goal by leveraging two key ideas: (i) using a
Gaussian process (GP) model for the trajectories of the
dynamic system; (ii) constraining the GP on a manifold that
satisfies the ODEs. This section provides a brief review of
MAGI.

Let x(t) denote the D-dimensional system of interest over
time t ∈ [0, T], whose dynamics are governed by the ODE

= =x
x

xt
t

t
t tf( )

d ( )
d

( ( ), , )
(2)

where ẋ(t) is shorthand for dx(t)/dt and f is a function that
involves unknown parameters θ. Let τ denote the vector of
time points at which time-course data are available for some
system components, and y(τ) the corresponding noisy
measurements.

MAGI is a Bayesian method. It begins by placing a prior
distribution π(θ) on the unknown parameters θ and a GP prior
on x(t) (we thus view θ as a realization from the distribution
π(θ) and x(t) as a realization of a Gaussian process X(t)).
Under the GP, the conditional probability distribution of the
derivative Ẋ(t) given X(t) has a closed-form expression when
the covariance function is twice-differentiable. This property
allows a manifold constraint to be imposed on the GP such
that X(t) satisfies the ODE eq 2. Mathematically, this manifold
constraint is defined by conditioning the GP on W = 0, where
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XW X t t tfsup ( ) ( ( ), , )
t T d D

d d
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where the subscript d refers to the d-th dimension of Ẋ and f.
In actual computation, the constraint of W = 0 is approximated
by WI = 0, where

= | |
{ }

XW X t t tfmax ( ) ( ( ), , )I
It d D

d d
, 1,..., (3)

and the maximum is over a set of discretization points I = {t1,
t2, ..., tn} in [0, T]. Following the Bayesian paradigm, MAGI
then considers the joint posterior distribution of θ and x(I)
(i.e., x at the points in I) given the manifold constraint WI = 0
and the noisy time-course data y(τ): p(θ, x(I)|WI = 0, y(τ)),
which is

| =

= | = |

x I y

X I x I y x I X I x I I x I

p W

p p p f

( , ( ) 0, ( ))

( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ( ), , ) ( ))
I

(4)

Here, π(θ) is the prior density of the parameters, p(X(I) =
x(I)) is the multivariate Gaussian density from the GP prior on
X(t) for X(t) to take the value x(I) at the time points I, p(y(τ)|
x(I)) is the likelihood of the noisy observations, and p(Ẋ(I) =
f(x(I), θ, I)|x(I)) is the multivariate Gaussian density for Ẋ(t)
conditioning on X(t), taking the value f(x(I), θ, I) at time
points I. Each of the terms on the right-hand side of eq 4 has a
closed-form expression as described in the Appendix.

With the posterior distribution specified, MAGI uses
Hamiltonian Monte Carlo (HMC) to draw samples of θ and
x(I) from eq 4. After sampling convergence, inference of θ and
x(I) can be drawn from the Monte Carlo samples. For
example, one can take the posterior means of θ and x(I) as the
parameter estimates and the inferred trajectories of x(t),
respectively. It is the combination of GP and the introduction
of manifold constraint in MAGI that leads to a principled
statistical framework for inference of ODE systems, which
completely bypasses the need for any numerical integration.

For additional details of the MAGI method, such as the
specification of the GP, we refer the reader to Yang et al.19

■ RESULTS AND DISCUSSION
Parameter Estimation and the Inference of System

Trajectories from Time-Course Data. This section applies
the MAGI method to three models. MAGI infers both the
parameter values and the system trajectories (including those
of the completely unobserved components) in each system.
The three examples, ranging from the repressilator gene
regulation network, the Michaelis−Menten model, to a gene
regulation network that contains more than 10 system
components, illustrate the versatility of the MAGI method.
Repressilator Gene Regulation Network. We continue the

gene represillator example presented in the Introduction.
Elowitz and Leibler20 used the following parameter values for
their theoretical study: α0 = 0.24, α = 240, n = 2, and β = 0.2.
In eq 1, the concentrations of mi and pi are respectively scaled
such that they are unitless, and time is also unitless after scaling
by mRNA lifetime.20 As a consequence, all four parameters α0,
α, n, and β are unitless. To mimic their system trajectories, the
initial conditions for the mRNA concentrations of lacI, tetR,
and cI in our simulation were taken to be 0.4, 20, and 40,
respectively (in terms of the number of proteins produced per
transcript), while the initial protein concentrations (in terms of
the number of copies needed to achieve half the maximum
repressor efficacy) are considered to be negligible (0.01).
(These initial conditions are only used in simulating the data
and are not known when applying MAGI, i.e., MAGI does not
assume knowledge of the initial conditions.) The experimental
examples of oscillatory behavior shown in Elowitz and
Leibler20 suggest that noise in fluorescence measurements is
approximately 10−15% of the mRNA levels. For our
illustration in Figure 1, we used a larger simulation noise,
namely 30% multiplicative error, to demonstrate the inference
capabilities of MAGI on noisy data. This was implemented by
applying a log-transform to the ODEs and adding white

Figure 3. Inferred trajectories over 100 simulation repetitions from the repressilator gene regulation model. The red curves are the true trajectories.
The green curves are the median of all inferred trajectories, with the blue shaded areas showing the 95% intervals given by the 2.5 and 97.5
percentile of all inferred trajectories. Both mRNA and protein concentrations are normalized as in ref 20.
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Gaussian noise with SD 0.3 to the true mRNA trajectories at
the times t = 6, 12, ..., 300 (mRNA lifetimes), yielding the
black points in Figure 1. We ran MAGI on the log-transformed
ODEs, assuming the noise SD to be known based on
knowledge about the experiment.

Figure 1 shows that the inferred trajectories for all six
components, including the trajectories for the three protein
concentrations, which are entirely unobserved, are largely
recovered for the example data set simulated from this setup:
the true trajectory (red) is well-contained within the 95%
posterior bands (blue shaded areas in Figure 1) for each
component. Figure 2, plotting the posterior distributions of the
parameters, shows that all the parameters are within the 95%
intervals (the gray shaded areas). Note that the prior

distributions of the parameters in this case were the Lebesgue
measure (i.e., uniform) over the positive real numbers; thus,
the inference is informed entirely by the data. To assess the
robustness of the inference, we generated 100 independently
simulated data sets based on this same setup and ran the
MAGI method for each. Figure 3 summarizes the results across
these 100 data sets. The median inferred trajectories (green
curves) capture the underlying system behavior for the
unobserved protein components and are very close to the
truth (red curves) for the mRNA components. We summarize
the parameter inference in Table 1, taking the posterior mean
as the parameter estimate for each data set. Over the 100 noisy
data sets, we see that α0 is recovered very accurately, while α, n,
and β have little to moderate errors in their recovery. (The
intuitive reason for these results is that α, n, and β are closely
tied to the behavior of the unobserved protein components
rather than the observed mRNAs as seen in eq 1.)
The Michaelis−Menten Model. The Michaelis−Menten

model, which originated from the pioneering work of Michaelis
and Menten41 in invertase experiments, has been foundational
for studies of enzyme catalysis.42 The corresponding
Michaelis−Menten mechanism for enzymatic reactions can
be depicted as

+ +

[ ] = [ ][ ] + + [ ]

[ ] = [ ][ ] + [ ]

[ ] = [ ][ ] + [ ]

[ ] = [ ]
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2

(5)

where the enzyme E binds reversibly with a substrate S,
forming an intermediate complex ES that decomposes into the
product P along with the original enzyme. The key quantities
that summarize the kinetics are the Michaelis constant KM and
the rate of catalysis kcat, which are related to the rate
parameters (k1, k−1, and k2) through KM = (k2 + k−1) /k1
and kcat = k2.

Time-course experiments can provide the data to estimate
KM and kcat for a particular reaction, by measuring the product
and substrate concentrations over time (known as progress

curves). There are two main approaches to utilizing progress
curve data:16,43,44 (i) extracting the initial reaction rate, as a
function of substrate concentration; and (ii) using measure-
ments at all available time points in the progress curve. The
first approach has a long history beginning from the original
Michaelis and Menten41 study, partly owing to its computa-
tional simplicity; e.g., simple linear regression of substrate and
rate (Lineweaver−Burk plots45) can be used to estimate KM
and kcat. However, this approach typically requires multiple
experiments over a range of substrate concentrations, and

Table 1. Parameter Estimates over 100 Simulated Data Sets
from the Repressilator Gene Regulation Modela

Parameter Truth MAGI estimate

α0 0.24 0.239 ± 0.022
α 240 186.7 ± 11.9
n 2 1.89 ± 0.02
β 0.2 0.194 ± 0.003

aThe average parameter estimate over the 100 simulation repetitions
is shown with its SD after the ± sign.

Figure 4. Inferred trajectories from the Michaelis−Menten model. Left-most panel: A sample data set of observations, where only P and S
components are observed at 20 time points {2.5, 4.5, 7, 9.5, 11, 13.5, 15, 16, 18, 20, 21.5, 24, 27, 29.5, 32.5, 35.5, 39.5, 45, 55, 69} (minute). The
initial conditions P = 0 mM, S = 1 mM, E = 0.1 mM are also known. Right three panels: Inferred trajectories over 100 simulated data sets from the
Michaelis−Menten model. The blue shaded area represents the 95% interval, which is magnified in the figure inset.
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extracting the initial reaction rates does not fully utilize the
experimental data collected in a time-course experiment.
Furthermore, deviations from the assumed kinetics may only
be evident when the full time-course is analyzed.2,4,16,46−51 In
contrast, the kinetic parameters KM and kcat may potentially be
estimated with only a single progress curve with the second
approach. With advances in computational analyses of
differential equations, analysis of full progress curves has
become more commonly practiced and is the approach we take
in this work using MAGI.

To numerically illustrate the MAGI method, we simulate the
Michaelis−Menten model at true parameter values k1 = 0.9
(min·mM)−1, k−1 = 0.75 (min)−1, k2 = 2.54 (min)−1, and initial
conditions P = 0 mM, S = 1 mM, and E = 0.1 mM. This setting
closely follows the experimental data in the hydrolysis of
phenylphosphate, catalyzed by prostate acid phosphatase
considered in Yun and Suelter,52 an early study with a progress
curve. To make the system more challenging, we suppose that
only 20 unevenly spaced observations are available for the P
and S components, which is more sparse than the experimental
data in Yun and Suelter.52 We further increase the inference
difficulty by doubling the noise level of the experimental data52

in our simulation study, which is implemented as additive
Gaussian noise with SD 0.02 mM. The left-most panel of
Figure 4 shows a sample data set of sparse and noisy
observations, where the figure caption lists the observation
time points. We also assume that the initial conditions (i.e., P,
S, E, at t = 0) are known without noise, as is the case in most
experimental settings.

In the implementation of MAGI, we used the relationship of
[ES] = [E]0 − [E] to reduce the original 4-component system
involving P, S, E, and ES into an equivalent 3-component
system involving only P, S, and E, where E is completely
unobserved beyond the initial condition. We set the
discretization points I in eq 3 to be evenly spaced from t =
0 to t = 70 at 0.5 min intervals, i.e., I = {0, 0.5, 1,..., 70}
(minute).

Figure 4 shows MAGI’s inferred trajectories over 100
simulated data sets. The P and S components are well
recovered from the noisy observations across the 100
simulation repetitions: the 95% interval band (the blue area)
is so narrow around the truth that we can only see the band
clearly after magnification (as shown in the figure inset). For
the unobserved E component, MAGI is able to recover it
reasonably well, albeit with some estimation error in the early
stages of the reaction, which could possibly be attributed to the
initial rapid changes and the sparse observations. The
unobserved E component is recovered well after that initial
period.

Figure 5 shows the posterior distribution of the kinetic
parameters kcat and KM inferred by MAGI from one sample
data set (this data set is presented in the left-most panel of
Figure 4). It is seen that the posterior distributions are well
centered around the true values of kcat and KM (the red bars),
where the 95% interval represented by the shaded area in each
panel provides the uncertainty quantification. Table 2 reports
the estimation of kcat and KM across the 100 simulation data
sets, where the MAGI estimate (which is the posterior mean)
recovers the true value well with small SD. Here we focus on
the estimation of kcat and KM for two reasons: (a) they are of
the most scientific interest, and (b) they are identifiable from
time-course data, whereas k1, k−1, and k2 are not identifiable
(meaning that there are multiple combinations of k1, k−1, and

k2 that can fit a time-course data set equally well and yield the
same kcat and KM).

53

Larger Reaction Networks: A Model for the lac Operon.
The lac operon has been studied for over a half-century, since
the Nobel prize-winning work of Jacob and Monod54 that
established the concept of gene regulation. As a representative
example of transcription negatively regulated by a repressor,
the lac operon only produces the enzymes necessary for the
metabolism of lactose in the presence of an inducer (lactose);
see Müller-Hill55 for a detailed historical account. Mechanistic
models of varying complexity have been proposed to provide
mathematical descriptions of the lac operon, which range from
modeling just a few key components56,57 to capturing the
dynamics of a larger network, e.g., 5−10 system compo-
nents.58−60

As an example of the application of MAGI to larger systems,
we consider the inference of a 10-component lac operon
model,60 which would pose a serious challenge for any
inference method due to its high dimensionality. A description
of this model is as follows. In the absence of lactose, an
inhibitor protein (denoted by I) binds to the lac operon
(denoted by Op), thereby blocking transcription of the operon
by RNA polymerase (denoted by RNAP). In contrast when
lactose is abundant, I favors binding to lactose rather than Op,
which enables RNAP to act on Op so that transcription
proceeds. The mRNA transcripts from the operon (denoted by
r) are translated into enzymes including β-galactosidase
(denoted by Z) that then metabolizes lactose. To complete a
mechanism that describes these steps, further let rI denote the
inhibitor mRNA and i its corresponding gene, ILactose the
inhibitor bound to lactose, IOp the inhibitor bound to the lac
operon, and RNAPo the RNAP-Op complex. Even in this
simplified form (e.g., degraded lactose and glucose mecha-
nisms are not included), the model contains more than 10
system components and 16 rate parameters, with an overall
scheme given by

Figure 5. Bayesian posterior probability densities of kcat and KM for a
sample data set from the Michaelis−Menten model obtained by
MAGI. The red vertical lines show the true parameter values used in
the simulation. The shaded area represents the 95% interval estimate
of each parameter.

Table 2. Parameter Estimates over 100 Simulated Data Sets
from the Michaelis−Menten Modela

Parameter Truth MAGI estimate

kcat 2.54 2.47 ± 0.17
KM 3.66 3.43 ± 0.26

aThe average parameter estimate is shown with its SD after the ±
sign.
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with k1, ..., k16 representing the parameters to be estimated, as
adapted from ref 61, where k12, k13, k15, and k16 are degradation
rates. To simulate from this system, we follow the parameter
values provided in ref 60 (shown in the second column of
Table 3) and the initial conditions given in ref 61: [rI] = 0, [I]
= 50, [Op] = 1, [IOp] = 0, [RNAP] = 100, [RNAPo] = 0, [r] =
0, [Z] = 0, [Lactose] = 1000, [ILactose] = 0. Each of these
levels is specified relative to [i], which is given a fixed unit
concentration. These initial conditions are only used in
simulating the data and are not known to MAGI. For
illustration, suppose the system is observed every 15 s from t
= 1 s to t = 361 s, and then every 30 s from t = 361 s to t = 601
s, and finally at t = 901 s and t = 1201 s, for a total of 35
observation times. Measurement noise with known SD equal
to 5% of the minimum level of each component is added. A
sample data set generated with this setup is shown via the black
points in Figure 6.

MAGI’s inferred trajectories for this data set are shown via
the green curves in Figure 6 together with blue 95% intervals,
where the true trajectories are plotted in red. There is larger
uncertainty in the 95% intervals when the observations are
sparse. Overall, the inferred trajectory closely follows the true
trajectory for each component. (To run MAGI on this
example, we use an evenly spaced discretization set I with
interval 15 s that includes all of the observation times.)

Next, we assess the recovery of the system parameters k1, ...,
k16. We generate 100 simulated data sets following the same
setup, running MAGI on each and taking the posterior mean as
the parameter estimate. The results across the 100 data sets are
summarized in Table 3. The parameters are largely well
recovered, with most parameters having a small estimation
error. Some estimation error is apparent for the parameters k2

to k8; the system, however, might not be sensitive to all of
these parameters as it is possible that different combinations of
the parameters might give quite similar system trajectories.
Thus, as a further check of the sensitivity of the system to
parameter values, we calculated a reconstructed trajectory for
each data set: taking MAGI’s estimates of the parameters and
the initial conditions, we used a numerical solver to reconstruct
the system trajectories implied by those estimates. When the
system is relatively insensitive to some parameters, different

Table 3. Parameter Estimates over 100 Simulated Data Sets
from the lac Operon Modela

Parameter Truth MAGI estimate

k1 0.02 0.0199 ± 0.0000
k2 0.1 0.0971 ± 0.0004
k3 0.005 0.0043 ± 0.0002
k4 0.1 0.0857 ± 0.0031
k5 1 0.9010 ± 0.0112
k6 0.01 0.0090 ± 0.0001
k7 0.1 0.0958 ± 0.0012
k8 0.01 0.0083 ± 0.0003
k9 0.03 0.0300 ± 0.0000
k10 0.1 0.1000 ± 0.0000
k11 0.001 0.0010 ± 0.0000
k12 0.01 0.0100 ± 0.0000
k13 0.002 0.0019 ± 0.0000
k14 0.002 0.0019 ± 0.0000
k15 0.01 0.0100 ± 0.0000
k16 0.001 0.0010 ± 0.0000

aThe average parameter estimate is shown with its SD after the ±
sign.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c08932
J. Phys. Chem. B 2023, 127, 2362−2374

2368

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c08932?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


sets of parameter values and initial conditions will possibly lead
to reconstructed trajectories that are close to each other and
also close to the true trajectories. A graphical summary of the
reconstructed trajectories across the 100 data sets is plotted in
Figure 7, which shows that (i) MAGI’s parameter estimates
recover the true trajectories (red curves) well and with only a
small amount of uncertainty as evidenced by the narrow 95%
intervals (gray bands), and (ii) the system is indeed relatively
insensitive to the parameter values as different combinations of
parameter values give trajectories that are close to the truth.
Note that this calculation of reconstructed trajectories is purely
for additional verification; the MAGI method infers trajectories

via posterior sampling (e.g., those plotted in Figure 6) and
does not use any numerical solver.
Model Assessment with Time-Course Data. In studying

a chemical reaction or a biological process, it is often the case
that different mechanisms are proposed. A natural question is
to determine which mechanism best explains or fits the
available time-course data. A proposed mechanism might be
rejected on the basis of kinetic data or might be shown to be
compatible with the data.62 Reciprocal plots are a simple tool
to assess the compatibility of data with enzyme mecha-
nisms.63,64 To use reciprocal plots, however, multiple experi-
ments with varied substrate concentrations would be needed.

Figure 6. Inferred trajectories for a sample data set from the lac operon model. The black points are the measurements. The red curves are the true
trajectories. The inferred trajectories are shown by the green curves, with the blue shaded areas representing 95% intervals. Concentrations are
given in arbitrary units, relative to [i].

Figure 7. Reconstructed trajectories over 100 simulated data sets from the lac operon model. The red curves are the true trajectories. The green
curves are the median of all reconstructed trajectories, with the shaded areas showing the 95% intervals given by the 2.5 and 97.5 percentile of all
reconstructed trajectories. Concentrations are given in arbitrary units, relative to [i].
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This section demonstrates how MAGI can serve as a more
powerful statistical approach to select the better model among
mechanistic alternatives, on the basis of a single (as opposed to
multiple) time-course experiment.

As an example, consider the competitive inhibition model of
enzyme kinetics.45 Enzyme catalysis follows the Michaelis−
Menten model but is hindered by the presence of an inhibitor I
that binds reversibly with enzyme E. When an enzyme
molecule is bound to I, forming the enzyme−inhibitor complex
EI, it can no longer bind to the substrate S and can no longer
facilitate the formation of product P. This competitive
inhibition model of enzyme kinetics is denoted as Scheme 1.
Competitive inhibitors have wide applications65−68 and their
identification often plays a key role in the drug discovery
process.69 In the absence of inhibitor I, or if a proposed
inhibitor is ineffectual, Scheme 1 reduces to the Michaelis−
Menten model in eq 5, which we denote as Scheme 2 in what
follows. Suppose we have data from a single time-course
experiment. Does the progress curve suggest the presence of an

effectual competitive inhibitor, i.e., does Scheme 1 provide
better agreement to the data than Scheme 2 when the two
models are compared?
Assessing Models with MAGI. The statistical inference

provided by MAGI leads to a natural method to assess a
proposed model. We divide the observed time-course data into
two parts: a training set (for example, data in the first time
period) and a test set (for example, data in the second time
period). Then we apply MAGI only on the training set to
estimate the model parameters and infer the system
trajectories, and finally, we evaluate the model by comparing
the model prediction on the test set. This idea of assessing a
model based on its prediction of a “future” time period has
been previously used in the context of numerical integration
methods.70 Here the MAGI method offers a way to completely
bypass numerical integrations for model assessment.

Operation-wise, we divide the observation time points τ into
the training part τtrain and the testing part τtest in chronological
order such that τ = τtrain ∪ τtest and max{τtrain} < min{τtest}. We
choose the discretization points I in eq 3 to cover the entire set
of observation time points (i.e., τ ⊂ I). Then, inference of x(I)
for both the training period (namely the fitting) and the testing

period (namely the prediction) can be achieved in one
integrated step through eq 4 but using only the training data
(i.e., conditioning only on the training data):

| =
= | = |

x I y

X I x I y x I X I x I I x I

p W

p p p f

( , ( ) 0, ( ))

( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ( ), , ) ( ))
I

train

train

(6)

The prediction at τtest, namely

= | =x x yW( ) E( ( ) 0, ( ))I
test test train

is the corresponding posterior mean of x(τtest). Note that,
throughout the MAGI computation, no numerical integration
is ever needed. The assessment of how compatible a proposed
model is to the observed data can be quantified by measuring
the discrepancy between the model prediction and the test
data, for example, by using the sum of squared errors (SSE) of
prediction:

= x ySSE ( ) ( )test test
2
2 (7)

When two or more models are being compared, we will
compute the SSE of prediction from each model. A smaller
SSE indicates a better compatibility between the model and
the data.
Comparing Two Models: Scheme 1 vs Scheme 2. For

illustration, we compare Scheme 1 with Scheme 2 with
simulated data: we simulate data from Scheme 1 (the
Michaelis−Menten model with competitive inhibitor) and
check if MAGI can correctly identify Scheme 1 as the right
model (as opposed to Scheme 2). The true parameter values
used in the simulation are k1 = 0.9 (min·mM)−1, k−1 = 0.75
(min)−1, k2 = 2.54 (min)−1, k3 = 1 (min·mM)−1, k−3 = 0.5
(min)−1; the true initial conditions are P = 0 mM, S = 1 mM, E
= 0.1 mM, I = 0.08 mM. Only P and S are observed at 20
sparse time points listed in the legend of Figure 4. The
measurement noise of P and S is taken to be additive Gaussian
noise with known SD equal to 0.02 mM. A visual illustration of
the simulated observation data is presented in Figure 8 (the
upper left panel). We assume the initial conditions of S and E
are known to MAGI without noise, along with the usual initial
experimental settings that P = ES = EI = 0 (the initial condition
of I is unknown).

When applying MAGI, we took the discretization points I in
eq 3 to be evenly spaced from t = 0 to t = 70 (minute) at 0.5
min intervals, i.e., I = { 0, 0.5, 1, ..., 70} (minutes). To assess a
given model (i.e., Scheme 1 or Scheme 2), we divide the time
into two periods. The first time period (0 to 20 min) was used
as the training period to fit a given model with MAGI, and
then the model prediction of the system trajectories in the
second time period (20 to 70 min), i.e., the test period, was
compared against the data in the test period. The model with

Scheme 1. Michaelis−Menten Model with Competitive Inhibitor

Scheme 2. Original Michaelis−Menten Model in Equation 5
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smaller prediction error (measured by SSE) is considered to be
more compatible with the observations.

Figure 8 shows the result obtained by MAGI for comparing
Scheme 1 to Scheme 2 on a sample data set. The two panels on
the top (center and right) show the inference result based on
this data set under Scheme 1 (inhibitor model), while the two
panels on the bottom show the inference result under Scheme
2 (original Michaelis−Menten). The inferred system trajecto-
ries are given by the green curves. The blue shaded area
corresponds to the 95% estimation interval within the training
period (0 to 20 min). The yellow shaded area corresponds to
the 95% prediction interval in the test period (20 to 70 min).

Comparing the top two panels to the bottom two panels, we
can visually see that Scheme 1 provides a better prediction
than Scheme 2: Scheme 2 underestimates the S component
(under Scheme 2 the substrate is consumed faster than seen in
the real data) and overestimates the P component (under
Scheme 2 the product is generated faster than seen in the real
data); in contrast, Scheme 1 gives a prediction that is closer to
the real data. The SSE under Scheme 2 is 0.035, which is more
than 3 times as large as the SSE of 0.009 under Scheme 1,
quantitatively agreeing with the visual impression. As the data
are generated from Scheme 1, for this data set MAGI is seen to
correctly select Scheme 1 over Scheme 2.

It is also noticeable from Figure 8 that, while the two models
appear to give similar quality of fit to the data within the
training period, it is the prediction for the (future) test period

that separates the two models, which highlights the importance
of comparing models based on their prediction. For further
assessment, we repeat this procedure 100 times, i.e., generate
the data sets from Scheme 1 100 times independently and
apply MAGI to select Scheme 1 vs Scheme 2 on each data set.
For 100 times out of 100, MAGI correctly selected Scheme 1
over Scheme 2. This result demonstrates the effectiveness of
MAGI for (ODE) model comparison.

■ CONCLUSION
This Article considered the analysis of time-course data using
the MAGI method. To illustrate the estimation of differential
equation models from data, we presented three examples from
chemistry and biology: the repressilator, the Michaelis−
Menten model, and a gene regulation network with more
than 10 system components. The models and time-course
setups pose various challenges for fitting to data: in the
repressilator, half of the system components are entirely
unobserved; for Michaelis−Menten, uncertainty quantification
for the key kcat and KM parameters, using sparse and noisy
measurements; in the lac operon model, handling a larger
number of system components and parameters. MAGI was
shown to be a capable method for inferring the parameters
(including interval estimates) and underlying system trajecto-
ries (including for unobserved components), without the need
for any numerical integration. We then considered the problem
of model assessment, to decipher whether one mechanism

Figure 8. Michaelis−Menten model comparison for a sample data set simulated with inhibitor. The observations are divided into two parts: the
training data are marked with solid dots, and the testing data are marked with hollow dots (the vertical gray line separates the training period and
the prediction period). Top-left panel: a sample data set of observations. Top-center and top-right panels: inference results from Scheme 1 (with
inhibitor). Bottom panels: inference results from Scheme 2 (original Michaelis−Menten model). The green curve is the inferred trajectory. The
blue shaded area indicates the 95% estimation interval for the training period, while the yellow area indicates a 95% prediction interval for the test
period. Both Scheme 1 and Scheme 2 can fit the data well in the training period, but the predicted S and P from Scheme 1 are closer to the
observations in the test period.
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supports the observed data better than another. After dividing
a single time-course data set into training and testing parts,
MAGI can simultaneously fit the data and generate predictions
under a given model, again without any numerical integration.
By comparing the prediction of each model against the test
data, the best model can be identified. The approach was
shown to be highly effective in the context of Michaelis−
Menten kinetics with a competitive inhibitor.

Overall, we believe MAGI can be a widely applicable
method for analyses involving ODE models. The Supporting
Information provides step-by-step code examples for each of
the models discussed in this Article. The MAGI software
package for R is available from CRAN (https://cran.r-project.
org/package=magi), and packages are also available for
MATLAB and Python (https://github.com/wongswk/magi).
A detailed usage guide for the software is provided in Wong et
al.71

In the study of chemical and biological processes, ODE
models are ubiquitous for describing the behavior of each
system component at the aggregate level. In contrast, when
interest lies in the behavior of single molecules, then models
such as stochastic differential equations (SDEs) can provide a
more realistic depiction of intrinsic noise.72 It would be
interesting to explore how MAGI could be extended to the
SDE setting in future research.

■ APPENDIX: DERIVATION OF THE MAGI METHOD
This appendix describes the derivation of eq 4 and the detailed
expressions of each term on the right-hand-side of eq 4.

We first introduce the notations needed: ∥v∥A
2 = vTAv, |I| is

the cardinality of I, fd,Ix, θ is the d-th component of f(x(I), θ, I)
evaluated at the time points I, Nd is the number of observations
for component d, σd is the noise level for component d, μd(t) is
the mean function of the GP for component d, s t( , )d is the
covariance function of the GP for component d, and the |I| ×
|I| matrices Cd, md, and Ψd that govern the covariance and
conditional covariances of the GP evaluated at I are given as
follows for each component d:
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where = | |l s t , Γ is the Gamma function and Bν is the
modified Bessel function of the second kind, and ν = 2.01 is
the degree of freedom. The values of ϕ1 and ϕ2 are tuned for
each component by fitting to the data.

To obtain the four terms on the right-hand-side of eq 4, we
begin by applying Bayes’ rule on the joint distribution of θ and
x(I), given the manifold constraint WI = 0 and the noisy
observations y(τ)
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Since the GP prior on X is independent of Θ, we have p(X(I)
= x(I)|Θ = θ) = p(X(I) = x(I)). Likewise, the noisy
observations do not depend on Θ, so p(Y(τ) = y(τ)|X(I) =
x(I), Θ = θ) = p(y(τ)|x(I)). Lastly
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by first substituting the definition of WI = 0 and then noting
that Ẋ conditioning on Y(τ), Θ, and X(I) only depends on
X(I) . Therefore, the four terms on the right-hand-side of eq 4
can be expressed as

1. π(θ) is the prior density of the parameters
2.

= [| | + +

]

=

l
mooo
nooo

|
}ooo
~ooo

X I x I I

I I

p C

x

( ( ) ( )) exp
1
2

log(2 ) logdet( )

( ) ( )

d

D

d

d d C

1

2
d

1

3.

|

[ +

]

=

l
mooo
nooo

|
}ooo
~ooo

y x Ip

N x

y

( ( ) ( ))

exp
1
2

log(2 ) ( )

( )

d

D

d d d d

d d

1

2

2
d

2

4.

= |

[| | + +

{ } ]

=

l
moo
noo

|
}ooo
~oo

X I x I I x I

I

I I I

p

m x

f

f

( ( ) ( ( ), , ) ( ))

exp
1
2

log(2 ) logdet( )

( ) ( ) ( )I
x

d

D

d

d d d d d

1

,
, 2

d
1

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c08932.

Complete step-by-step code in R for running MAGI on
each of the examples in the paper (PDF)

■ AUTHOR INFORMATION
Corresponding Author

S. C. Kou − Department of Statistics, Harvard University,
Cambridge, Massachusetts 02138, United States;

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.2c08932
J. Phys. Chem. B 2023, 127, 2362−2374

2372

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c08932/suppl_file/jp2c08932_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c08932/suppl_file/jp2c08932_si_001.pdf
https://cran.r-project.org/package=magi
https://cran.r-project.org/package=magi
https://github.com/wongswk/magi
https://pubs.acs.org/doi/10.1021/acs.jpcb.2c08932?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpcb.2c08932/suppl_file/jp2c08932_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="S.+C.+Kou"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1774-3316
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.2c08932?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


orcid.org/0000-0002-1774-3316; Email: kou@
stat.harvard.edu

Authors
Samuel W. K. Wong − Department of Statistics and Actuarial

Science, University of Waterloo, Waterloo, Ontario N2L 3G1,
Canada; orcid.org/0000-0002-7325-7267

Shihao Yang − H. Milton Stewart School of Industrial and
Systems Engineering, Georgia Institute of Technology,
Atlanta, Georgia 30332, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcb.2c08932

Author Contributions
§S.W.K.W. and S.Y. contributed equally to this work.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Professor Sunney Xie for many ground-
breaking contributions in single-molecule and single-cell
studies and for fruitful collaborations. We are grateful for the
inspirations and encouragement we received from Professor
Xie over the years. S.W.K.W. was partially supported by
Discovery Grant RGPIN-2019-04771 from the Natural
Sciences and Engineering Research Council of Canada.

■ REFERENCES
(1) Xie, X. S.; Trautman, J. K. Optical studies of single molecules at

room temperature. Annu. Rev. Phys. Chem. 1998, 49, 441−480.
(2) Xie, X. S.; Lu, H. P. Single-molecule enzymology. J. Biol. Chem.
1999, 274, 15967−15970.
(3) Moerner, W. A dozen years of single-molecule spectroscopy in

physics, chemistry, and biophysics. J. Phys. Chem. B 2002, 106, 910−
927.
(4) Sunney Xie, X. Single-molecule approach to dispersed kinetics

and dynamic disorder: Probing conformational fluctuation and
enzymatic dynamics. J. Chem. Phys. 2002, 117, 11024−11032.
(5) Chung, H. S.; McHale, K.; Louis, J. M.; Eaton, W. A. Single-

molecule fluorescence experiments determine protein folding
transition path times. Science 2012, 335, 981−984.
(6) Zong, C.; Lu, S.; Chapman, A. R.; Xie, X. S. Genome-wide

detection of single-nucleotide and copy-number variations of a single
human cell. Science 2012, 338, 1622−1626.
(7) Hou, Y.; Fan, W.; Yan, L.; Li, R.; Lian, Y.; Huang, J.; Li, J.; Xu,

L.; Tang, F.; Xie, X. S.; et al. Genome analyses of single human
oocytes. Cell 2013, 155, 1492−1506.
(8) Chen, C.; Xing, D.; Tan, L.; Li, H.; Zhou, G.; Huang, L.; Xie, X.

S. Single-cell whole-genome analyses by Linear Amplification via
Transposon Insertion (LIANTI). Science 2017, 356, 189−194.
(9) Wu, H.; Li, X.; Jian, F.; Yisimayi, A.; Zheng, Y.; Tan, L.; Xing,

D.; Xie, X. S. Highly sensitive single-cell chromatin accessibility assay
and transcriptome coassay with METATAC. Proc. Natl. Acad. Sci. U.
S. A. 2022, 119, e2206450119.
(10) Duggleby, R. G. Progress-curve analysis in enzyme kinetics.

Numerical solution of integrated rate equations. Biochem. J. 1986, 235,
613−615.
(11) Radmacher, M.; Fritz, M.; Hansma, H. G.; Hansma, P. K.

Direct observation of enzyme activity with the atomic force
microscope. Science 1994, 265, 1577−1579.
(12) Xue, Q.; Yeung, E. S. Differences in the chemical reactivity of

individual molecules of an enzyme. Nature 1995, 373, 681−683.
(13) Brehm-Stecher, B. F.; Johnson, E. A. Single-cell microbiology:

tools, technologies, and applications. Microbiol. Mol. Biol. Rev. 2004,
68, 538−559.

(14) Palmier, M. O.; Van Doren, S. R. Rapid determination of
enzyme kinetics from fluorescence: overcoming the inner filter effect.
Anal. Biochem. 2007, 371, 43−51.
(15) Locke, J. C.; Elowitz, M. B. Using movies to analyse gene circuit

dynamics in single cells. Nat. Rev. Microbiol. 2009, 7, 383−392.
(16) Duggleby, R. G. Quantitative analysis of the time courses of

enzyme-catalyzed reactions. Methods 2001, 24, 168−174.
(17) Van den Berge, K.; Roux de Bézieux, H.; Street, K.; Saelens, W.;

Cannoodt, R.; Saeys, Y.; Dudoit, S.; Clement, L. Trajectory-based
differential expression analysis for single-cell sequencing data. Nat.
Commun. 2020, 11, 1201.
(18) Spiller, D. G.; Wood, C. D.; Rand, D. A.; White, M. R.

Measurement of single-cell dynamics. Nature 2010, 465, 736−745.
(19) Yang, S.; Wong, S. W.; Kou, S. Inference of Dynamic Systems

From Noisy and Sparse Data via Manifold-Constrained Gaussian
Processes. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2020397118.
(20) Elowitz, M. B.; Leibler, S. A synthetic oscillatory network of

transcriptional regulators. Nature 2000, 403, 335−338.
(21) Elowitz, M. B.; Levine, A. J.; Siggia, E. D.; Swain, P. S.

Stochastic gene expression in a single cell. Science 2002, 297, 1183−
1186.
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