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We have re-examined the random release of particles from fractal polymer matrices using Monte
Carlo simulations, a problem originally studied by Bundeet al. @J. Chem. Phys.83, 5909~1985!#.
A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries
of the structure they are removed from the system. We find that the number of particles that escape
from the matrix as a function of time can be approximated by a Weibull~stretched exponential!
function, similar to the case of release from Euclidean matrices. The earlier result that fractal release
rates are described by power laws is correct only at the initial stage of the release, but it has to be
modified if one is to describe in one picture the entire process for a finite system. These results
pertain to the release of drugs, chemicals, agrochemicals, etc., from delivery systems. ©2003
American Institute of Physics.@DOI: 10.1063/1.1603731#

INTRODUCTION

The problem of particle release from a matrix1 has many
applications in several areas, including pharmaceutics, par-
ticularly for the drug release from delivery systems. The ba-
sic question posed here is how do the drug molecules escape
from a tablet or capsule that is taken orally and how are they
delivered to the gastrointestinal~GI! tract. It is well known
that the release mechanism is dependent on the device used,
and thus there is no single answer to the question posed here.
For immediate release formulations the entire quantity of
solid drug particles becomes available for dissolution in the
GI fluids upon disintegration of the device. On the other
hand, for controlled release formulations, meaning a con-
trolled release rate of drug over a time period, there are sev-
eral mechanisms that can be envisaged.2 According to the
simplest mechanism the release device is gradually dissolved
inside the GI tract and the drug molecules follow the same
pattern. This is a simplified description of the model that
describes release from swellable polymer devices known in
the literature as case II release, a model that has been
studied3–6 by several groups, and recently by us7 for the case
of cylindrical devices with both axial and radial release. A
second mechanism for the escape of drug molecules from the
release device is through Fickian diffusion before the device
is dissolved. For detailed studies of this model, see, for ex-
ample, Refs. 8–10, and references included therein. This
model has also been studied by means of Monte Carlo
simulations.1,11 A third possibility is that the release devise,
as it is immersed in the GI tract fluids, it is penetrated by
these fluids, creating areas of high diffusivity. Thus, the drug
molecules can escape from the release device through diffu-
sion from these high diffusivity ‘‘channels.’’ Now, the domi-
nant release mechanism is diffusion, but in a complex disor-
dered medium. The same is true when the polymer inside the
release device is assuming a configuration resembling a dis-
ordered medium. This is a model proposed for HPMC

matrices.12 This last interesting possibility was first studied
by Bundeet al.1 and is also the subject of the present study.
Of course, in realistic situations for controlled release formu-
lations, it is expected that the above mechanisms coexist si-
multaneously. This fact usually complicates the analysis of
experimental data. In such cases Monte Carlo simulations
may be particularly useful.

In spite of the complexity of the phenomena involved in
drug release mechanisms, the mathematical expressions used
in pharmaceutics to describe the kinetics of drug release
from a large variety of devices are rather simple, and they
can be summarized briefly in three basic laws:

~a! The Higuchi law,8

Mt5AAD~2co2cs!t, ~1!

whereMt is the cumulative amount of drug released at
time t, A is the surface area of the controlled release
device exposed to the release medium,D is the drug
diffusivity, and co and cs are the initial drug concen-
tration and the drug solubility, respectively. This law is
valid for systems where the drug concentration is much
higher than the drug solubility.

~b! The Peppas equation or the so-called power law,9,10

Mt

M`
5ktn, ~2!

whereMt andM` are the amounts of drug released at
timest and infinity, respectively.k is an experimentally
determined parameter, andn is an exponent that de-
pends on the geometry of the boundary of the system
which can be related to the drug release mechanisms.

~c! The Weibull model,13

Mt

M`
512exp~2atb!, ~3!

wherea, b are constants. This model has the form of a
stretched exponential and it is sporadically used in drug
release studies in spite of its extensive empirical use in
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dissolution studies. It was recently used by us7 to de-
scribe release results from Monte Carlo simulations
with higher accuracy than any of the other semiempir-
ical models.

An interesting problem comes up when the geometry of
the release device is not a homogeneous, Euclidean space,
but some irregular space, as, for example, a fractal. Several
diffusion properties have to be modified when we move from
Euclidean space to fractal and disordered media. The prob-
lem of the release rate from devices with fractal geometry
was first studied by Bundeet al.1 They specifically reported
that the release rate follows a power law. An attempt to ex-
plain experimental results using the above result can be
found in Rinaki et al.14 In the present study, however, we
show that the above approach of a power law is valid only in
the initial stages of the release process. Our results show that
the Weibull function is more appropriate for the entire dura-
tion of the release, and additionally it can describe release
both from fractal as well as from Euclidean matrices, thus
providing a more generalized picture. Furthermore, this func-
tional form for the release is consistent with the theoretical
predictions under the frame of fractal kinetics.

THEORY OF THE RELEASE PROBLEM

Our main goal is to study the escape of particles from a
release device of fractal geometry. As such structure we use
a percolation cluster at the critical point, assuming cyclic
boundary conditions, embedded on a two-dimensional square
lattice, as shown schematically in Fig. 1. The concentration
of open sites is known to be approximately aroundp
50.593. Particles are randomly placed with a given concen-
tration on the open sites only, and they perform independent
random walks on the sites of the cluster. Our intent is to
derive the details of the release problem, which can be used
to describe release when particles escape not from the entire

boundary but just from a portion of the boundary of the
release device under different interactions between the par-
ticles that are present.

The release problem can be seen as a study of the kinetic
reaction A1B→B, where the A particles are mobile, the B
particles are static, and the scheme describes the well known
trapping problem.15 For the case of a Euclidean matrix the
entire boundary~i.e., the periphery! is made of the trap sites,
while for the present case of a fractal matrix only the por-
tions of the boundary that are part of the fractal cluster con-
stitute the trap sites. See Fig. 1 for a schematic. The differ-
ence between the release problem and the general trapping
problem is that in release, the traps are not randomly distrib-
uted inside the medium but are located only at the medium
boundaries. This difference has an important impact in real
problems for two reasons:

~1! Segregation is known to play an important role in diffu-
sion in disordered media. In the release problem the
traps are ‘‘segregated’’ from the beginning, so we expect
to observe important effects related to this segregation.

~2! The problem is inherently a finite size problem. Results
that otherwise would be considered as ‘‘finite size ef-
fects’’ and should be neglected are in this case essential.
At the limit of infinite volume there will be no release at
all. Bundeet al.1 found a power-law also for the case of
trapping in a model with a trap in the middle of the
system, i.e., a classical trapping problem. In such case,
which is different from the model examined here, it is
meaningful to talk about finite size effects. On the con-
trary, release from the surface of an infinite medium is
impossible.

The fractal kinetics treatment of the release problem goes as
follows: The number of particles present in the system~ves-
sel! at timet is N. We expect that the particle escape rate will
be proportional to the fractionf of particles that are able to
reach an exit in a time intervaldt, i.e., the number of par-
ticles that are sufficiently close to an exit. Initially all mol-
ecules are homogeneously distributed over the percolation
cluster. Later, due to the fractal geometry of the release sys-
tem segregation effects will become important.16 We expect
that f will be a function of time, so thatf (t) will be used to
describe the effects of segregation~generation of depletion
zones! which is known to play an important role when the
medium is disordered instead of homogenous.16

We thus expect a differential equation of the form,

dN

dt
52a f~ t !N ~4!

to hold, wherea is a proportionality constant,f (t)N denotes
the number of particles that are able to reach an exit in a time
interval dt, and the negative sign denotes thatN decreases
with time. This is a kinetic equation for an A1B→B reac-
tion. We have absorbed the constant trap concentration@B# in
the proportionality constanta. The basic assumption of frac-
tal kinetics16 is that f (t) has a formf (t);t2m.

In this case Eq.~4! will be

FIG. 1. A percolation fractal embedded on a two-dimensional square lattice
of size 50350. Cyclic boundary conditions were used. We observe, espe-
cially on the boundaries, that there are some small isolated clusters, but
these are not isolated as they are actually part of the largest cluster because
of the cyclic boundary conditions. Exits~release sites! are marked with dark
color, while all gray color areas are blocked areas.
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dN

dt
52a

N

tm
,

dN

N
52at2mdt. ~5!

Integrating both sides we find that lnN52atb1c, whereb
512m and the above is written also as

N5N0 exp~2atb!, ~6!

where we have used the initial condition thatN(t50)
5N0 .

The form of Eq.~6! is a stretched exponential. In cases
where a system can be considered as infinite~for example,
release from percolation fractals from an arbitrary site lo-
cated at the middle of the volume! then the number of par-
ticles N inside the system is practically unchanged. Treating
N as constant in the right-hand side of Eq.~4! will lead to a
power law for the quantitydN/dt. Since most physical prob-
lems belong to this class it is widely believed that release
rate from fractal matrices follows a power law. In the case of
release from the periphery and if we want to study the sys-
tem until all particles have escaped, as it is often the case for
practical applications, then Eq.~6! is of practical importance.

The above reasoning shows that the stretched exponen-
tial function Eq.~6!, or Weibull function as it is known, may
be considered as an approximate solution of the release prob-
lem. An alternative derivation of the Weibull function in dis-
solution studies has also been given.17 The advantage of this
choice is that it is general enough to allow us to describe
release from vessels of various shapes, in the presence or
absence of different interactions, by adjusting the values of
the parametersa andb. We will use Monte Carlo simulation
methods to calculate the values of the parametersa and
~mainly! the exponentb.

METHODS

Following the procedure proposed by Bundeet al.,1 we
consider partially encapsulated percolation fractals on a
square lattice, for which the percolation threshold18 is pc

50.593. The fractal dimension of the percolation fractal is
known to be 91/48. Calculations were preformed as de-
scribed below. For each run we generate a new fractal matrix
using the method of Hoshen and Kopelman,19 assuming cy-
clic boundary conditions. We start with a known initial drug
concentrationc50.5 and with randomly distributed drug
molecules inside the fractal matrix. We assume here that the
drug molecules move inside the fractal matrix by the mecha-
nism of diffusion. We also assume excluded volume interac-
tions between the particles, meaning that two molecules can-
not occupy the same site at the same time. The matrix can
leak from the intersection of the percolation fractal with the
boundaries of the square box where it is embedded~Fig. 1!.

The diffusion process is simulated by selecting a particle
at random and moving it to a randomly selected nearest
neighbor site. If the new site is an empty site, then the move
is allowed and the particle is moved to this new site. If the
new site is already occupied, the move is rejected~since we
assume excluded volume interactions!. A particle is removed
from the lattice as soon as it migrates to a site lying within
the leak area. After each particle move~one Monte Carlo

microstep! time is incremented. The increment is chosen to
be 1/N, whereN is the number of particles remaining in the
system. This is a typical approach in Monte Carlo simula-
tions, and is necessary because the number of particles con-
tinuously decreases, and thus, the time unit~one Monte Carlo
step! characterizing the system is the mean time required for
all N particles present to move one step. We monitor the
number of particles that are present inside the matrix as a
function of time until a fixed number of particles~50 par-
ticles! remains in the matrix. Unless otherwise mentioned,
we average our results using different initial random configu-
rations over 100 realizations. We monitor the release rate
dQ/dt by counting the number of particles that diffuse into
the leak area in the time interval betweent and t11. This
quantity is used to directly compare our results with those
derived by Bundeet al.1

RESULTS AND DISCUSSION

Figure 2 shows simulation results~line! for the release of
particles from a fractal matrix with initial concentrationc
50.50, on a lattice of size 50350. The simulation stops
when more than 90% of the particles have been released
from the matrix. We see that this takes about 20 000 MCS. In
the same figure we include the data by Bundeet al.1 ~sym-
bols! which cover the range 50–2000 MCS. Because of the
limited range examined in that study, the conclusion was
reached1 that the release ratedQ/dt is described by a power
law, with an exponent value between 0.65 and 0.75. With the
extended range examined here we see that this conclusion is
not true, as in longer timesdQ/dt deviates strongly from
linearity, as a result of the finiteness of the problem.

In Fig. 3 we plot N(t)/N0 as a function of time for
several different lattice sizes. We fit the data with a Weibull
function @Eq. ~6!# where the parametera ranges from 0.05 to

FIG. 2. Plot of the release ratedQ(t)/dt vs time. Lattice size is 50350 and
the initial concentration of particles isc50.50. Points are the results given
in Ref. 1, while the line is the result of the current simulation.
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0.01 and the exponentb from 0.35 to 0.39. In all cases we
have performed nonlinear curve fitting using the Levenberg–
Marquardt algorithm.20 In a previous publication11 we have
shown that Eq.~6! also holds in the case of release from
Euclidean matrices. In that case the value of exponentb was
found to beb'0.70.

Bundeet al. report that ‘‘the nature of drug release dras-
tically depends on the dimension of the matrix and is differ-
ent depending on whether the matrix is a normal Euclidean
space or a fractal material such as a polymer, corresponding
to the fact that the basic laws of physics are quite different in
a fractal environment.’’1 This conclusion is accurate for infi-
nite problems but has to be modified in case of problems
where the finite size is inherent. The present results reveal
that the same law describes release both from fractal as well
as from Euclidean matrices. In the previous work the conclu-
sion was reached by monitoring the release rate up to 2000
time steps. But in the fractal release case,1 due to the slowing
down of the diffusion process in the disordered medium the
system was not monitored for sufficiently long times in order
to reveal the complete nature of the release law. The release
rate is given by the time derivative of Eq.~6!. For early
stages of the release calculating the derivative of Eq.~6! and
performing a Taylor series expansion of the exponential will
result in a power law for the release rate, just as Bundeet al.1

have observed. In the present paper and in a previous publi-
cation concerning Euclidean matrices11 we demonstrate that
in all lattices the behavior can be approximated with a
Weibull function. If we oversimplify the release problem by
treating it as a classical kinetics problem, we would expect a
pure exponential function instead of a stretched-exponential
~Weibull! function.@The classical kinetics solution is derived
by solving Eq.~4! in case off (t)51.] The stretched expo-
nential arises due to the segregation of the particles because
of the fractal geometry of the environment. Concerning the
release from Euclidean matrices11 we have demonstrated that
the stretched exponential functional form arises due to the
creation of a concentration gradient near the releasing bound-

aries. Note, however, that although the functional form de-
scribing the release is the same in Euclidean and fractal ma-
trices, the value of the exponentb is, of course, different
reflecting the slowing down of the diffusion process in a
disordered medium.

In Fig. 4 we present an additional way to investigate the
validity of the fractal kinetics assumption directly from Eq.
~4!. Let us indicate asQ(t) the number of particles that are
released from the matrix up to timet. Then, Q(t)5N0

2N(t), whereN0 is the number of particles in the vessel at
time t50. Using the above notation Eq.~4! can be written as

dQ

dt
5a f~ t !N~ t !⇒ ~7!

k~ t ![a f~ t !5
dQ/dt

N~ t !
, ~8!

where we have defined a functionk(t)5a f (t). We can use
Eq. ~8! in order to check the basic assumption of fractal
kinetics, i.e., thatf (t) can indeed be approximated by a
power law. We use the same Monte Carlo simulation data for
N(t). We perform a linear interpolation of these data fol-
lowed by a numerical differentiation in order to calculate
dQ/dt and plot the ratiodQ/dt/N(t) as a function of time in
logarithmic scale. The results for 1003100 and 2003200
lattices are shown in Fig. 4. To a large extent it can be re-
garded as a straight line and this supports the idea that choos-
ing f (t) as a power law is a good assumption.21

Our results reconcile with the approach of Bundeet al.1

if we consider the following: We assume that the pre-
exponential parametera of the Weibull function is decreas-
ing when the size of the lattice increases. The reason for this
is explained in detail elsewhere,11 but we can also see di-
rectly that Mt→0 as a→0 for an infinite lattice or for a
lattice with no leak sites at all, independently of the value of
exponentb. Suppose that we consider release from two frac-
tal lattices of different size, say 50350 and 1003100, just as
in the case of Fig. 4 of Bundeet al.1 From what is stated
above, we expect that in both casesN(t) will be described by

FIG. 3. Plot of the number of particles~normalized! remaining in the per-
colation fractal as a function of timet for lattice sizes 1003100, 1503150,
and 2003200. N(t) is the number of particles that remain in the lattice at
time t andN0 is the initial number of particles. Simulation results are rep-
resented by points. The solid lines represent the results of nonlinear fitting
with a Weibull function.

FIG. 4. Log–log plot of the functionk(t) @defined by Eq.~8!# as a function
of time. The data describe fractal release from a percolation fractal embed-
ded in square lattices of sizes 1003100 and 2003200 sites.
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Eq. ~6!. We expect that thea values will differ, but the value
of b will be approximately the same in both cases, of the
order of b50.37. We use the data of Bundeet al.1 and fit
them to the functiondQ/dt ~which is equal to2dN/dt)
calculated using Eq.~6!, and consideringa to be an adjust-
able parameter. From the fit we find thata50.04 for the
503500 anda50.02 for the 1003100 lattice. In Fig. 5 we
include the data of Bundeet al.1 as points, and the quantity
dQ/dt using the above parameter values. We observe that
dQ/dt follows a power law for the time ranget
550– 2000 MCS and that the exponents of the power law are
within the range 0.65–0.75, exactly as in Bundeet al.1 This
is due to the fact that both results come from the derivative
of a Weibull function with the same exponent but different
pre-exponential terms.

CONCLUSIONS

We have described a model for drug release from a frac-
tal matrix as a result of a diffusion process assuming ex-
cluded volume interactions between the drug molecules. Our
work showed that:

~1! Similarly to the case of release from Euclidean
matrices11 release from a fractal matrix as a function of
time is approximated by a Weibull~stretched exponen-
tial! function, which is theoretically predicted using the
basic assumptions of fractal kinetics.16

~2! This behavior is similar to the release from a Euclidean
matrix, apparently pointing to a universal release law
given by the Weibull distribution. The difference be-
tween the two cases is only in the two prefactors.

~3! The power law@Eq. ~2!# may be considered as an ap-
proximation of Eq.~6! for short times.

The above considerations substantiate the use of the
Weibull function as a more general form for drug release
studies. They may provide a valuable tool in decision making
in pharmaceutics and other related fields, when facing the
dilemma of whether one should invest in expensive micro or
nanotechnology in order to achieve controlled release and
importance of the trade off when decreasing the length of the
release devices.
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