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A B S T R A C T

We compare two of the most successful models for the description and analysis of drug release data. The fractal
kinetics approach leading to release profiles described by a Weibull function and the fractional kinetics approach
leading to release profiles described by a Mittag-Leffler function. We used Monte Carlo simulations to generate
artificial release data from euclidean and fractal substrates. We have also used real release data from the lit-
erature and found that both models are capable in describing release data up to roughly 85% of the release. For
larger times both models systematically overestimate the number of particles remaining in the release device.

1. Introduction

Modeling the processes involved in controlled drug release is vital
for the development of new pharmaceutical products (Macheras and
Iliadis, 2016). Although several models have been proposed for the
description of drug release (Siepmann and Peppas, 2001; Siepmann and
Peppas, 2001;Savageau, 1995; Savageau, 1995;Savageau, 1998; Marsh
and Tuszyński, 2006;Nygren, 1993; Kosmidis et al., 2004), the main
mathematical expressions used in pharmaceutics to describe the ki-
netics of drug release from a large variety of devices are 1. The Peppas
equation or the so-called power law (Ritger and Peppas, 1987)

=

∞

M
M

ktt n
(1)

where Mt and ∞M are the amounts of drug released at times t and in-
finity, respectively. In the above k is an experimentally determined
parameter, and n is an exponent that depends on the geometry of the
boundary of the system which can be related to the drug release me-
chanisms. The power law model is probably the most commonly used
model of drug release since it is rather easy to implement and is widely
used to macroscopically classify the characteristics of the release ki-
netics. It is usually the starting point of any release study.2. The Weibull
model,

= − −

∞
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M
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where a, b are constants. This model has the form of a stretched

exponential and it is used in drug release studies as well as in dis-
solution studies. This functional form (as well as alternative forms
based on it) is derived as an approximation in the framework of fractal
kinetics (Kopelman, 1988; Kosmidis et al., 2003; Macheras and
Dokoumetzidis, 2000; Hadjitheodorou and Kalosakas, 2013;
Hadjitheodorou and Kalosakas, 2014; Christidi and Kalosakas, 2016;
Villalobos et al., 2006; Villalobos et al., 2017).

Recently, an alternative way has been proposed to mathematically
describe anomalous diffusion. Diffusion in constrained and fractal
topologies is studied by the use of fractional calculus. Fractional cal-
culus (Sokolov et al., 2002; Podlubny, 1998; Macheras and
Dokoumetzidis, 2000; Dokoumetzidis and Macheras, 2009) introduces
derivatives and integrals of fractional order, such as half or 3 quarters.
Differential equations with fractional derivatives can be used to de-
scribe anomalous kinetics without introducing time-dependent coeffi-
cients as in fractal kinetics. Such equations have been shown to describe
experimental data of anomalous diffusion more accurately (Sokolov
et al., 2002). When applying fractional calculus to the classical kinetic
models one practically replaces the usual derivatives with fractional
ones. Thus, in the classical zero-order kinetics model after replacing the
derivative of order 1 by a derivative of fractional order a we derive the
following equation:

=
d X
dt

k
a

a 0 (3)

where k0 is the kinetic constant.
The same process applied to first-order kinetics will lead to the so-
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called Mittag Leffler – Fractional kinetics model.
A fractional differential equation for the drug release problem gives

rise to the expression (Dokoumetzidis and Macheras, 2009)

= − −

∞

M
M

E k t1 ( )t
a

a
1 (4)

where k1 is a constant, and E x( )a is the Mittag- Leffler (ML) function of
order a. This last function is a generalization of the exponential function
whose exact behavior is obtained for =a 1.

In this paper we compare the fractal kinetics approach leading to
release profiles described by Eq. (2) with the fractional kinetics ap-
proach leading to release profiles described by Eq. (4). We compare the
functions to each other, to their performance in describing the release
from Monte Carlo simulation data of euclidean and fractal substrates
and to their description of real data release profiles. We find that both
functional forms are capable in describing release data up to 80–85% of
the release. Then they both systematically overestimate the number of
particles remaining in the release device. From a purely practical point
of view the Weibull model performs a little better than the Mittag-
Leffler model and fitting the release curve to the data is considerably
faster for the Weibull function compared to the ML function whose
“complex” form (a large sum of Gamma functions is required) is com-
putationally more expensive.

It should be noted that all the above described models are based on
kinetic considerations. There is also the large class of, so called, me-
chanistic models that are very useful when a detailed description of the
underlying physical processes is required. Mechanistic models use
partial differential equations to quantify the mechanisms involved in
drug release such as water transport in polymer tablets, swelling, drug
diffusion and erosion and numerical methods to solve the resulting
equations (Caccavo et al., 2014; Caccavo et al., 2015; Kaunisto et al.,
2010; Lamberti et al., 2011).

2. Methods

2.1. Simulation of drug release from a cylinder

Following (Kosmidis et al., 2003), we assume here that the drug
molecules move inside the cylinder by the mechanism of Fickian dif-
fusion. Moreover, we assume excluded volume interactions between the
particles, meaning that each molecule occupies a volume V where no
other molecule can be at the same time. We start with randomly dis-
tributed drug molecules and a known initial drug concentration inside
the cylinder. We first consider a three-dimensional cubic lattice with L3

sites. We next define inside this cubic lattice a cylinder. A site is un-
iquely defined by its 3 coordinates i j k, , . If r is the radius of the cylinder
and + < −i j r( 1)2 2 2 then the site belongs to the interior of the cylinder
and it can host drug molecules. If, on the other hand, + >i j r2 2 2 then it
is outside the cylinder and it is a restricted area, and particles are not
allowed to go there. Finally, we label leak sites. We choose to label as
leak sites the sites with indices − < + <r i j r( 1)2 2 2 2 , thus defining a
cylinder leaking from its round surface but not from its top or bottom.
Reflective boundary conditions are used for the top and bottom surface.
Next, we place a number of particles randomly on the sites of the cy-
linder, according to an initial particle concentration =c 0.5, avoiding
double occupancy. This means that 50% of the sites are initially occu-
pied by particles, and the rest are empty. The diffusion process is si-
mulated by selecting a particle at random and moving it to a randomly
selected nearest neighbor site. If the new site is an empty site, then the
move is allowed, and the particle is moved to this new site. If the new
site is already occupied, the move is rejected. A particle is removed
from the lattice as soon as it migrates to a site lying within the leak
area. After each particle move the time is incremented. The increment is
chosen to be N1/ , where N is the number of particles remaining in the
system. This is a typical approach in Monte Carlo simulations, and is
necessary because the number of particles continuously decreases, and

thus, the time unit characterizing the system is the mean time required
for all N particles present to move one step. We average our results
using different initial random configurations but the same parameters.

2.2. Simulation of drug release from a the percolation fractal

Following (Kosmidis et al., 2003) and references therein, we con-
sidered percolation fractals encapsulated on a square lattice at the
percolation threshold =p 0.593c . The fractal dimension of the perco-
lation fractal is known to be 91/48. Calculations were performed as
described below. For each run we generate a new fractal matrix as-
suming cyclic boundary conditions. We start with a known initial drug
concentration =c 0.5 and with randomly distributed drug molecules
inside the fractal matrix. We again assume excluded volume interac-
tions between the particles, meaning that two molecules cannot occupy
the same site at the same time. The matrix can leak from the intersec-
tion of the percolation fractal with the boundaries of the square box
where it is embedded. The diffusion process is simulated in the same
way as for the release from the cylinder. We monitor the number of
particles that are present inside the matrix as a function of time until a
fixed number of particles (50 particles) remains in the matrix. We
average our results using different initial random configurations over at
least 500 realizations.

3. Results and discussion

In Fig. 1 we compare the two basic functions i.e. the Weibull Eq. (1)
resulting from the fractal kinetics frameworks and the ML Eq. (4) re-
sulting from fractional calculus considerations.

Fig. 1 (Top Left) shows a Weibull function (wb) with =a 1 and =b 1
(blue line) and a Mittag-Leffler function (ml) with =k 11 and =a 1 (red
line) and an exponentially increasing function(black line). The three
functions are identical in this case. Fig. 1 (Top Right) shows with a blue
line a Weibull function (wb) with =a 1 and =b 0.8, with black a
Mittag-Leffler function (ml) with =k 11 and =a 0.8 and an ex-
ponentially increasing function(black line). We notice that the two
functions begin to diverge. In Fig. 1 (Bottom Left) we present a Weibull
function with =a 1 and =b 0.5 (blue line), an ML function with =k 11
and =a 0.5 (red) and an exponential function(black line). We observe
that the two functions diverge more for decreasing values of the ex-
ponent.In Fig. 1 (Bottom Right) we use points to show a Mittag-Leffler
function with =n1 1 and =a 0.5. The solid line is a fitting of a Weibull
function with =a 1.08 and =b 0.29 to the points. Observe the de-
scriptive power of the Weibull that leads to an almost “perfect” fitting.
This actually confirms that fractal and fractional kinetics considerations
are both valid starting points for the description of the release problem
and lead to equations that are rather close from a numerical point of
view.

Fig. 2 shows Monte Carlo simulation results for the number of drug
molecules N t( ) inside a cylinder as a function of time. The cylinder has
a height 21 sites and a diameter of 21 sites. The initial number of drug
molecules randomly distributed in the cylider is =N 2,6570 . Points are
the Monte Carlo data. The dashed line is a fitting of the Peppas model

= −N t N kt( ) (1 )n
0 with =n 0.45. The solid blue line is a fitting to a

Weibull model = −N t N at( ) exp( )b
0 . The solid red line is a fitting to a

Mittag-Leffler model = −N t N E k t( ) ( )a
a

0 1 . Best fits were obtained for a
Weibull function exponent =b 0.71 and an ML exponent =a 0.81. The
Akaike Information criterion (AIC) and the Bayesian Information Cri-
terion (BIC) have been calculated for each of the two functions. These
two criteria are used to measure the goodness of fit of each model to the
data. The model with the lower values of AIC and BIC is most probable
to minimize information loss and thus signify a more suitable choice
(Burnham et al., 2002). Here, for the Mittag-Leffler model we have
found = =AIC BIC579.181, 585.148 while for the Weibull function

= =AIC BIC474.691, 480.658.
Fig. 3 shows Monte Carlo simulation results for the number of drug
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Fig. 1. Comparison of the Weibull and Mittag-Leffler functions. An exponentially increasing function is shown as a black line for comparison in all figures. (Top Left)
The blue line shows a Weibull function (wb) with =a 1 and =b 1 while the red a Mitage-Leffler function (ml) with =n1 1 and =a 1. The two functions are identical
in this case and coincide with the exponential. (Top Right) The blue line shows a Weibull function (wb) with =a 1 and =b 0.8 while the red a Mittag-Leffler function
(ml) with =n1 1 and =a 0.8. The two functions begin to diverge. (Bottom Left) The blue line shows a Weibull function (wb) with =a 1 and =b 0.5 while the red a
Mittag-Leffler function (ml) with =n1 1 and =a 0.5. The two functions diverge more for decreasing values of the exponent. (Bottom Right) The points show a Mittag-
Leffler function with =n1 1 and =a 0.5. The solid line is a fitting of a Weibull function with =a 1.08 and =b 0.29 to the points.Observe the descriptive power of the
Weibull that leads to an almost “perfect” fitting. In all cases time is in arbitrary units (a.u). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. Monte Carlo simulations: Number of drug molecules N t( ) inside a cy-
linder as a function of time. Points are the Monte Carlo data. The dashed line is
a fitting of the Peppas model = −N t N kt( ) (1 . 45)0

0 . The solid blue line is a
fitting to a Weibull model = −N t N at( ) exp( )b

0 .Best fit obtained for =b 0.71 .
The solid red line is a fitting to a Mittag-Leffler model = −N t N E k t( ) ( )a

a
0 1 .Best

fit obtained for =b 0.81. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Monte Carlo simulations: Number of drug molecules N t( ) inside the
percolation fractal as a function of time. Points are the Monte Carlo data. The
solid blue line is a fitting to a Weibull model = −N t N at( ) exp( )b

0 . The solid red
line is a fitting to a Mittag-Leffler model = −N t N E k t( ) ( )a

a
0 1 . (For interpreta-

tion of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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molecules N t( ) inside percolation fractals embedded in =L 200 square
lattice as a function of time. Points are again the Monte Carlo data. The
solid blue line is a fitting to a Weibull model = −N t N at( ) exp( )b

0 . The
solid red line is a fitting to a Mittag-Leffler model = −N t N E k t( ) ( )a

a
0 1 .

Best fits were obtained for a Weibull function exponent =b 0.39 and an
ML exponent =a 0.51. For the Mittag-Leffler model we have found

= =AIC BIC2651.42, 2661.13 while for the Weibull function
= =AIC BIC2205.59, 2215.3.

We observe that neither fractal nor fractional kinetics considera-
tions can fully describe 100% of the release from fractal matrices. In
conditions of perfect “mixing” and a Euclidean space the release profile
should be purely exponential. The departure from this exponential re-
lease in a Euclidean space is due to the creation of a depletion zone
around the release sites. The existence of a disordered (fractal) en-
vironment is an additional reason for the departure from first order
kinetics. The relative importance of the two mechanisms is not the same
at the beginning of the release process as it is at the end where very few
drug molecules remain and the depletion effect is not so strong. This
fact is not taken care in deriving neither the Weibull nor the Mittag-
Leffler approximation where mainly only the“imperfect” mixing due
the substrate disorder is taken into account.

Next, we analyze drug release kinetics by plotting the mean release
data versus time from two characteristic cases from the literature. First
we used data obtained from fig.1 of the publication (Papadopoulou
et al., 2006) concerning the release profile of tablets of Elvesil® 120mg

diltiazem hydrochloride (Biomedica). We studied the Elvesil® release
profile under the framework of fractal and fractional kinetics. We
present our results in Fig. 4. We observe that both a Weibull function
(blue line) with exponent =b 0.78 as well as a Mittag-Leffler function
(red line) with =a 0.87 are capable of describing the release data. The
Power law model is shown (dashed line) for comparison. For the
Mittag-Leffler model we have found = =AIC BIC88.9639, 91.9511 while
for the Weibull function = =AIC BIC76.8052, 79.7924.

Finally, we analyze data of the drug release profile of 4-aminopyr-
idine/Metolose 90SH-4000SR matrices using HCl 0.1 N and phosphate
buffer pH 7.4 as dissolution medium. Data were obtained from fig.5 of
the publication (Juárez et al., 2001). We present our results in Fig. 5.
We again observe that both a Weibull function(blue line) with ex-
ponent =b 0.65 as well as a Mittag-Leffler function(red line) with

=a 0.75 are capable of describing the release data. The Power law
model is shown (dashed line) for comparison. For the Mittag-Leffler
model we have found = =AIC BIC60.2217, 60.8134 while for the Wei-
bull function = =AIC BIC57.7005, 58.2922. Both functions tend to un-
derestimate the release ratio above 80% of the release data in this case.
The small value of the Weibull exponent is indicative of release from a
rather disordered substrate.

4. Conclusions

In this paper we compared the fractal kinetics approach leading to
release profiles described by Eq. (2) with the fractional kinetics ap-
proach leading to release profiles described by Eq. (4). We used Monte
Carlo simulation data of euclidean and fractal substrates as well as real
release data from the literature and found that both functional forms
are capable in describing release data up to approximately 85% of the
release. Then they both systematically overestimate the number of
particles remaining in the release device. From a purely practical point
of view the Weibull model performs a little better than the Mittag-
Leffler model concerning computational time.At the very end of the
simulations runs, the descriptive (fitting) ability of the two functions
differ considerably. However, one should take into account the het-
erogeneous distribution of the particles created at the end of the si-
mulation period (Kosmidis et al., 2003). It seems likely that the Weibull
function, which relies on a time dependent coefficient (Macheras and
Dokoumetzidis, 2000) deviates less from the simulation pattern than
the ML function, which is based on a differential equation of non in-
teger order. Overall, both functions deviate from the late stage of the
simulation pattern; however, the Weibull function exhibits smaller
deviation than the ML function. This can be seen from the visual in-
spection of Figs. 2–5 and from the fact that the AIC and BIC estimations
for the Weibull model are in all cases smaller than that of the Mittag-
Leffler model. As far as the fitting to experimental data is concerned the
Weibull function exhibits again better performance on the basis of
classical statistical criteria (correlation coefficient, distribution of re-
siduals, AIC) than the ML function. In short, the Weibul and the Mittag-
Leffler model are practically equally good in describing drug release
profiles. They are not reliable for the description of the final stage of the
release process and in such cases both should be used with caution.
From a purely practical point of view the Weibull model is easier to use.

References

Burnham, D.R., Anderson, K.P., 2002. Model Selection and Multimodel Inference: A
Practical Information-theoretic Approach, second ed. Springer-Verlag.

Caccavo, D., Cascone, S., Lamberti, G., Barba, A.A., 2014. Modeling the drug release from
hydrogel-based matrices. Mol. Pharm. 12, 474–483.

Caccavo, D., Cascone, S., Lamberti, G., Barba, A.A., 2015. Controlled drug release from
hydrogel-based matrices: experiments and modeling. Int. J. Pharm. 486, 144–152.

Christidi, E., Kalosakas, G., 2016. Dynamics of the fraction of drug particles near the
release boundary. Eur. Phys. J. Spec. Top. 225, 1245–1254.

Dokoumetzidis, A., Macheras, P., 2009. Fractional kinetics in drug absorption and dis-
position processes. J. Pharmacokinet Pharmacodyn. 36, 165–178.

Hadjitheodorou, A., Kalosakas, G., 2013. Quantifying diffusion-controlled drug release

Fig. 4. Fitting of the Peppas model Eq. (1) (dotted line), the Weibull model Eq.
(2) (solid blue line) and the Mittag-Leffler model Eq. (4) (solid red line) to
release data of Elvesil® (Papadopoulou et al., 2006, Fig. 1). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Fitting of the Peppas model Eq. (1) (dotted line), the Weibull model Eq.
(2) (solid blue line) and the Mittag-Leffler model Eq. (4) (solid red line) to
literature release data of 4-aminopyridine/Metolose 90SH-4000SR (Juárez
et al., 2001, Fig. 5). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

K. Kosmidis, P. Macheras International Journal of Pharmaceutics 543 (2018) 269–273

272

http://refhub.elsevier.com/S0378-5173(18)30207-2/h0005
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0005
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0010
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0010
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0015
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0015
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0020
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0020
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0025
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0025
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0030


from spherical devices using monte carlo simulations. Mater. Sci. Eng.: C 33,
763–768.

Hadjitheodorou, A., Kalosakas, G., 2014. Analytical and numerical study of diffusion-
controlled drug release from composite spherical matrices. Mater. Sci. Eng.: C 42,
681–690.

Juárez, H., Rico, G., Villafuerte, L., 2001. Influence of admixed carboxymethylcellulose
on release of 4-aminopyridine from hydroxypropyl methylcellulose matrix tablets.
Int. J. Pharm. 216, 115–125.

Kaunisto, E., Abrahmsen-Alami, S., Borgquist, P., Larsson, A., Nilsson, B., Axelsson, A.,
2010. A mechanistic modelling approach to polymer dissolution using magnetic re-
sonance microimaging. J. Controlled Release 147, 232–241.

Kopelman, R., 1988. Fractal reaction kinetics. Science 241 (4873), 1620–1626.
Kosmidis, K., Argyrakis, P., Macheras, P., 2003. A reappraisal of drug release laws using

monte carlo simulations: the prevalence of the weibull function. Pharm. Res. 20,
988–995.

Kosmidis, K., Argyrakis, P., Macheras, P., 2003. Fractal kinetics in drug release from finite
fractal matrices. J. Chem. Phys. 119, 6373.

Kosmidis, K., Karalis, V., Argyrakis, P., Macheras, P., 2004. Michaelis-menten kinetics
under spatially constrained conditions: application to mibefradil pharmacokinetics.
Biophys. J. 87, 1498–1506.

Lamberti, G., Galdi, I., Barba, A.A., 2011. Controlled release from hydrogel-based solid
matrices. a model accounting for water up-take, swelling and erosion. Int. J. Pharm.
407, 78–86.

Macheras, P., Dokoumetzidis, A., 2000. On the heterogeneity of drug dissolution and
release. Pharm. Res. 17, 108–112.

Macheras, P., Iliadis, A., 2016. Modeling in Biopharmaceutics, Pharmacokinetics and

Pharmacodynamics. Springer International Springer International Publishing.
Marsh, R.E., Tuszyński, J.A., 2006. Fractal michaelis-menten kinetics under steady state

conditions: application to mibefradil. Pharm. Res. 23, 2760–2767.
Nygren, H., 1993. Nonlinear kinetics of ferritin adsorption. Biophys. J. 65, 1508–1512.
Papadopoulou, V., Kosmidis, K., Vlachou, M., Macheras, P., 2006. On the use of the

weibull function for the discernment of drug release mechanisms. Int. J. Pharm. 309,
44–50.

Podlubny, I., 1998. Fractional Differential Equations: An Introduction to Fractional
Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some
of their Applications, vol. 198 Elsevier.

Ritger, P.L., Peppas, N.A., 1987. A simple equation for description of solute release ii.
Fickian and anomalous release from swellable devices. J. Controlled Release 5,
37–42.

Savageau, M.A., 1995. Michaelis-menten mechanism reconsidered: implications of fractal
kinetics. J. Theor. Biol. 176, 115–124.

Savageau, M.A., 1998. Development of fractal kinetic theory for enzyme-catalysed reac-
tions and implications for the design of biochemical pathways. Biosystems 47, 9–36.

Siepmann, J., Peppas, N., 2001. Modeling of drug release from delivery systems based on
hydroxypropyl methylcellulose (hpmc). Adv. Drug Delivery Rev. 48, 139–157.

Sokolov, I.M., Klafter, J., Blumen, A., 2002. Fractional kinetics. Phys. Today 55, 48–54.
Villalobos, R., Vidales, A.M., Cordero, S., Quintanar, D., Domínguez, A., 2006. Monte

carlo simulation of diffusion-limited drug release from finite fractal matrices. J. Sol-
gel Sci. Technol. 37, 195–199.

Villalobos, R., Garcia, E.V., Quintanar, D., Young, P.M., 2017. Drug release from inert
spherical matrix systems using monte carlo simulations. Curr. Drug Delivery 14,
65–72.

K. Kosmidis, P. Macheras International Journal of Pharmaceutics 543 (2018) 269–273

273

http://refhub.elsevier.com/S0378-5173(18)30207-2/h0030
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0030
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0035
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0035
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0035
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0040
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0040
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0040
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0045
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0045
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0045
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0050
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0055
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0055
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0055
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0060
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0060
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0065
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0065
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0065
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0070
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0070
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0070
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0075
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0075
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0080
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0080
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0085
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0085
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0090
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0095
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0095
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0095
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0100
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0100
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0100
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0105
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0105
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0105
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0110
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0110
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0115
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0115
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0120
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0120
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0125
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0130
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0130
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0130
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0135
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0135
http://refhub.elsevier.com/S0378-5173(18)30207-2/h0135

	On the dilemma of fractal or fractional kinetics in drug release studies: A comparison between Weibull and Mittag-Leffler functions
	Introduction
	Methods
	Simulation of drug release from a cylinder
	Simulation of drug release from a the percolation fractal

	Results and discussion
	Conclusions
	References




