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. Introduction

This year we celebrate the 50th anniversary since the publica-
ion of the Higuchi’s law article (Higuchi, 1961). We  do not use this
istorical milestone to reflect on the progress that has been made

n the field of controlled release based on the Higuchi equation
n the last five decades. In addition, we do not feel that the sev-
ral hundred citations of the Higuchi’s paper reflect its real impact
n the evolution of the field. Rather, we would like to emphasize
. Higuchi’s fundamental contribution towards the introduction
f rigorous physicochemical and mathematical approaches in the
harmaceutical sciences. To this end, this work highlights some
hysicomathematical aspects relevant to the derivation and use
f the Higuchi equation. More specifically, this article deals with
he use of Monte Carlo simulations to verify the validity of Higuchi
aw in one and two dimensions as well as the derivation of the
iguchi equation under alternative boundary conditions making
se of fractional calculus. The latter is a tool which has been recently

ntroduced in the pharmaceutical sciences.

. Application of the Higuchi law to different geometries
Drug release can be defined roughly as the mass transfer of
rug molecules from the dosage form to the surrounding fluid. This
rocess is usually driven by the concentration gradient between
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a high concentration region (dosage form) and a region of low
concentration (surrounding fluid). (Higuchi, 1961) considered a
homogeneous matrix in which drug is dispersed with an initial
concentration C0 while drug’s solubility in the matrix is Cs which is
lower than C0 (C0 > Cs). He also assumed that the matrix is placed in
a perfect sink at t = 0 and a region with depleted drug is penetrat-
ing into the matrix. He derived his equation (Eq. (1)) for the total
mass, M(t) released up to time t using the additional assumption
that the mass flux throughout the depleted region is independent
of the position on the surface

M(t) = A[DCS(2C0 − CS)t]1/2 (1)

where A is the total area and D is the diffusion coefficient of the drug
in the matrix. A few years later, Eq. (1) was extended and modified
to consider different matrix systems including porous structures
(Higuchi, 1961, 1963; Desai et al., 1965, 1966; Lapidus and Lordi,
1966, 1968).

Although the derivation of Eq. (1) applies to slab geometry,
Roseman and Higuchi (1970),  Brophy and Deasy (1987) have shown
that a similar relationship keeping the t0.5 proportionality for
M(t) can be also derived for homogeneous cylindrical and spher-
ical matrix systems, respectively under the pseudo steady-state
assumption C0 � Cs

M(t) = A[2DCSC0t]1/2 (2)
where A in Eq. (2) is either the area of a cylinder (Higuchi, 1963)
or the area of a sphere (Desai et al., 1965). In addition, Brophy and
Deasy (1987) have shown that under the assumptions delineated
above any particle with a regular boundary will follow for a short

dx.doi.org/10.1016/j.ijpharm.2010.11.046
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:macheras@pharm.uoa.gr
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The square root law of Higuchi was derived under certain con-
ditions as mentioned in Section 2. However, its wide applicability
extends beyond these conditions. Here we give an alternative
A. Dokoumetzidis et al. / International Jo

ime the release given by Eq. (2),  where A represents the total area
f the particle.

Overall, the routine use of the Higuchi law for the release of drug
rom delivery systems of varying geometry is extended to 60% of the
elease data and is usually called “a short time approximation”. In
his context, a linear plot of the cumulative amount of drug released
(t) vs the square root of time is routinely used in the literature as

n indicator for a classical diffusion controlled release (Siepmann
nd Peppas, 2001).

. Monte Carlo simulations of the Higuchi law

One of Higuchi’s basic assumptions in order to derive his famous
elease law is that a sharp moving depletion layer is created near the
elease device surface and realized that this layer is important in the
haping of the release profile. Using a simplified one dimensional
eometry, the simplest possible linear form for the depletion layer
nd the assumption that the system’s “drug concentration” is much
igher than its “solubility”, he derived the well known t0.5 time
ependence of the profile.

Here, we describe a Monte Carlo algorithm that can be used to
imulate the conditions of the Higuchi law.

(i) We  start from either a one-dimensional matrix of L sites or from
a two-dimensional matrix of L × L sites.

ii) Each site is labeled with the number of particles it currently
hosts. Initially, all sites have n particles.

iii) The right side of the matrix is considered to be the exit of the
release device and sites belonging to it are labeled as leak sites.

iv) We assume that drug molecules move inside the matrix by the
mechanism of Fickian diffusion. Diffusion is simulated using the
random walk model.

v) Particles cannot move to a site unless this site is empty. Thus,
the system is expected to behave as if its “drug concentration” (n
particles per site) is much higher than its “solubility” (1 particle
per site).

vi) We  select a particle at random and try to move it to a randomly
selected nearest neighbor site.

ii) If the new site is an empty site then the move is allowed, and
the particle is moved to this new site.

iii) If the new site is already occupied, the move is rejected.
ix) A particle is removed from the lattice as soon as it migrates to

the leak site; see Figs. 1 and 2 for a schematic of the one and
two-dimensional case, respectively.

x) After each particle move, time is incremented. The increment is
chosen to be 1/N, where N is the number of particles remaining
in the system. This implies that the unit time characterizing the
system is the mean time required for every one of the N particles
to be offered the possibility of moving one step. This is a typical
approach in Monte Carlo simulations.

We  monitor the number of particles that are present inside the
ylinder as a function of time until the cylinder is completely empty
f particles (Kosmidis et al., 2003). In the simulations presented in
his paper we  have used L = 200 for the one-dimensional case and

 = 50 for the two-dimensional case. The initial number of particles
er site was n = 10.

Fig. 3 shows the function (1 − N/N0) vs. time for the one-
imensional (left) and the two-dimensional (right) case, where N0

s the total initial number of particles and N(t) is the number of par-

icles in the system at time t. One can immediately see that N0 = nL
or the one dimensional case and N0 = nL2 for the two-dimensional
ase. Points represent Monte Carlo simulation data whilst the slope
f the lines is equal to 0.50, equal to the value 0.50 expected from
heory. The results for the one-dimensional configuration are in full
Fig. 1. Schematic representation of the system used to simulate the Higuchi law.
(Top) Initial configuration of the one-dimensional system. (Bottom) evolution after
time t. Particles are allowed to leak only from the right side of the system.

agreement with our previous study (Kosmidis et al., 2003). We  can
see that the Higuchi law can be derived from our simulation model
as a “short” time case (60% of the release data) of such a system.
This conclusion is valid for both the one and the two-dimensional
case and is in good agreement with the analysis of Siepmann and
Peppas (2001).

4. Fractional calculus and the Higuchi law
Fig. 2. Density plot of a snapshot of the 2D system with L = 40. Black sites are fully
occupied with 10 particles. White sites are empty. Gray sites are occupied with
particles whose number varies between 1 and 9. Darker shading indicates higher
number of particles. The dashed line marks the exit side. At t = 0 all sites would be
black.
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ig. 3. Log-log plot of 1 − N/N0 vs. time (Monte Carlo steps-units) for the one-dim
esults.  The slope of the straight lines in both figures is equal to 0.50 and correspon

erivation of the Higuchi square root equation starting from the
ne-dimensional diffusion equation, a derivation borrowed from
he problem of heat transfer as it is treated in (Podlubny, 1999).

ithin this derivation a derivative of order one half appears.
ractional derivatives and integrals are extensions of ordinary
erivatives and integrals, respectively, but of non-integer order.
he so called Riemann–Liouville fractional integral of order  ̨ < 1,
f a function f(t) is defined as follows

D−˛
t f (t) = 1

� (˛)

∫ t

0

(t − �)˛−1f (�)d� (3)

here � is the gamma function. Although Eq. (3) is the only defi-
ition of the fractional integral, there are more than one definition

or a fractional derivative. The Riemann–Liouville fractional deriva-
ive of order  ̨ < 1, of a function f(t) is one of them and is defined as
he ordinary derivative of the fractional integral of order 1 − ˛, as
ollows:

D˛
t f (t) = d

dt
(0D−(1−˛)

t f (t)) (4)
We consider a device carrying drug which is in contact with
 medium (Fig. 4). We  study the concentration of drug in the
edium in time and in a one-dimensional spatial coordinate. The

ne dimensional diffusion equation describing the concentration

ig. 4. Schematic representation of a system of a drug carrying device which is in
ontact with a medium.
Time(MCS)

al (left) and the two-dimensional (right) case. Points are Monte Carlo Simulation
he exponent of the Higuchi law. We plot the initial 60% of the release data.

of drug in the medium is

∂C(t, x)
∂t

= �
∂2C(t, x)

∂x2
(5)

where x is the spatial coordinate and � the diffusion coefficient.
The border between the medium and the device is at x = 0, while
the medium is large enough and considered to extent to infinity,
x → ∞.

The initial condition at t = 0 is C(0,x) = 0, i.e. initially there is no
drug in the medium. The boundary conditions are: at the boundary
between the device and medium, x = 0, the concentration is fixed at
C(t,0) = Cs, the saturation solubility, while away from the boundary
at x → ∞,  concentration is considered to be finite, i.e. | lim

x→∞
C(t, x)| <

∞.
By taking the Laplace transform of Eq. (5) with respect to time,

we  end up with the following equation

s · c(s, x) = �
d2c(s, x)

dx2
(6)

Eq. (6) is an ordinary differential equation of second order with
respect to x, which has the following solution

c(s, x) = c(s, 0) exp

(
−x

√
s

�

)
(7)

Differentiating Eq. (7),  we obtain

dc

dx
(s, x) = −c(s, 0)

√
s

�
exp

(
−x

√
s

�

)
(8)

From Eq. (8),  for x = 0 we obtain

1√
s

dc

dx
(s, 0) = −

√
1
�

c(s, 0) (9)
Since the Laplace transform of a fractional integral of a function
f(x) is (Podlubny, 1999)

L(0D−˛
t f (t), s) = s−˛F(s), (10)
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Eq. (9) can be written in terms of a fractional integral of order
/2.

D−1/2
t

∂C

∂x
(t, 0) = −

√
1
�

C(t, 0) (11)

Eq. (11) can be written as follows in terms of a fractional deriva-
ive of order 1/2

∂C

∂x
(t, 0) = −

√
1
� 0D1/2

t C(t, 0) (12)

The flux J across the interface x = 0 is

(t) = −�
∂C

∂x
(t, 0) = √

�0D1/2
t C(t, 0) (13)

Given the fact that C(t,0) = CS, a constant, and the derivative of
rder 1/2 with respect to t of a constant CS is CS/

√
�t, the flux J

ecomes

(t) = √
�0D1/2

t CS =
√

�

�t
CS (14)

The total amount that has been released to the medium up to
ime t is

(t) = A

t∫
0

J(t)dt = A

t∫
0

√
�

�t
CSdt = 2A

√
�

�
CS

√
t (15)

here A is the area of contact between device and medium.
Eq. (15) is another form of Higuchi’s square root law but derived

n different boundary conditions than the usual ones.

. Conclusion
Higuchi’s square root law has been proven to have wide appli-
ability in drug release devices. In this short article we demonstrate
he validity of Higuchi’s law in Monte Carlo experiments in 1 and 2
imensional systems and we also offer an alternative derivation of
 of Pharmaceutics 418 (2011) 100– 103 103

the Higuchi’s equation under different boundary conditions, using
fractional calculus, which offers insights for the wide applicability
of this equation. In pharmaceutical sciences fractional calculus is
considered to be a promising new tool and the relevant applica-
tions are growing rapidly (Dokoumetzidis et al., 2010a,b; Verotta,
2010; Kytariolos et al., 2010).
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