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bstract

We have studied drug release from matrices with periodic layers of high and low diffusivity using Monte Carlo simulations. Despite the fact, that
he differential equations relevant to this process have a form that is quite different from the classical diffusion equation with constant diffusion
oefficient, we have found that the Weibull model continues to describe the release process as well as in the case of the “classical” diffusion
ontrolled drug release. We examine the similarities and differences between release from matrices with periodic layers and matrices with random

ixtures of high and low diffusivity area and show that the periodic geometrical arrangement of the low diffusivity areas has an influence in the

elease profile which is negligible for low diffusivity ratios, but becomes important in the case of high diffusivity ratios and for intermediate values
f the periodic “length”. Such an arrangement in periodic layers leads to Weibull exponent a which are lower than those of the corresponding
andom arrangement and exponents b which are higher than those of the random case.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The theoretical modelling of the processes involved in con-
rolled drug release is rather an important task (Macheras and
liadis, 2005), since the development of new pharmaceutical
roducts is highly facilitated from the possibility to predict the
esirable release kinetics in advance. Several models have been
roposed for the description of drug release (Higuchi, 1961;
eppas, 1985; Ritger and Peppas, 1987a, b; Peppas et al., 1980;
ao et al., 1995; Siepmann et al., 1999; Siepmann and Peppas,
000, 2001; Costa and Lobo, 2001; Weibull, 1951; Bonferoni et
l., 1998; Sathe et al., 1996), such as the Higuchi law (Higuchi,
961) and the power law (or Peppas model) (Peppas, 1985).
mong these models, we feel that the Weibull model (Weibull,
951; Bonferoni et al., 1998; Sathe et al., 1996; Kosmidis et al.,
003a):
Mt

M∞
= 1 − exp(−atb) (1)
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here a and b are constants, is of particular interest. This model
s particularly successful in the description of experimental dis-
olution data (Gao et al., 1995). Moreover, there is a physical
eaning of the constants a and b (Kosmidis et al., 2003a;
apadopoulou et al., 2006). For instance, the exponent b orig-

nates from the fact that a depletion zone is created gradually
ear the boundaries of the release device, and thus, the drug
oncentration in the device is not uniform.

Here, we will focus exclusively on diffusion controlled drug
elease. Monte Carlo simulations (Landau and Binder, 2000)
ave recently been used to study drug release from Euclidean
nd fractal geometries, yielding interesting results (Kosmidis et
l., 2003a, b; Bunde et al., 1985; Villalobos et al., 2006, 2005;
addish-Berhane et al., 2006; Barat et al., 2006a, b). In a recent
aper, we have used this method to study drug release from
atrices that consist of random mixtures of areas with different

iffusivities (Kosmidis and Macheras, 2007).
In this paper, we are interested in the way the release rate is

hanged, when the release device is not uniform, but consists

f a periodic arrangement of areas with high Dh and low Dl
iffusion coefficients. We are interested in determining whether
n this case the release rate is different from the case of release
rom random mixtures of high and low diffusivities and whether

mailto:macheras@pharm.uoa.gr
dx.doi.org/10.1016/j.ijpharm.2007.10.036
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periodically arranged in high and low diffusivity “stripes”, with
periodic length l. This simply means that a column of low dif-
fusivity sites is followed by l columns of high diffusivity sites,
see Fig. 1 for a schematic.
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he Weibull model continues to provide an adequate description
f the release process. Moreover, we are interested in quantifying
he influence of the “length” l of the periodic arrangement on
he release profile and particular the dependence of the Weibull
arameters a and b on l.

. Methods

We have studied the release process using Monte Carlo sim-
lations. In order to get an idea of the complexity and possible
ifficulties involved in the release process, we present an ana-
ytical investigation of a simplified one-dimensional analog of a
elease device having a periodic structure, followed by a detailed
escription of our simulation method.

.1. Analytical investigation

The problem in study is actually a diffusion process where
he diffusion coefficient depends on the space coordinates. For
implicity, we are interested in the study of the release profile
f a quasi-one-dimensional release device where thin layers of
ow diffusivity are followed by layers of high diffusivity with
ength l. i.e. the one-dimensional analog of Fig. 1. In this case the
iffusion coefficient is a function of the x-coordinate, D = D(x).
he equation describing the problem is not simply the “classical”
iffusion equation with the simple substitution of D by D(x).
ne has to consider that the “classical” diffusion equation is
erived from the first law of Fick and the continuity equation
Crank, 1980). Thus, in this case the correct one-dimensional
quation is

∂

∂x

[
D(x)

∂u

∂x

]
= ∂u

∂t
(2)

here u(x, t) is the density of the drug molecules inside the
elease device. In order to model the periodic structure, we may
ssume that

(x) = (Dh − Dl) sin2 lx + Dl (3)

here Dh > Dl are constants and are equal to the maximum and
inimum values of the diffusivity, respectively.
Substituting Eq. (3) into Eq. (2) leads to

((Dh − Dl) sin2 lx + Dl)
∂2u

∂x2

+ (Dh − Dl)l sin(2lx)
∂u

∂x
= ∂u

∂t
(4)

q. 4 is rather different from the classical diffusion equation,
nd has to be solved either analytically or numerically. We may
se the separation of variables method to get an idea of the form
f the solution. Indeed, we may look for solutions in the product
orm u = X(x)T (t) and this will lead to the system of ordinary

ifferential equations

1(x)
d2X

dx2 + f2(x)
dX

dx
+ λX = 0 (5) F

f
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dT

dt
+ λT = 0 (6)

heref1(x) = ((Dh − Dl) sin2 lx + Dl), f2(x) = (Dh − Dl)l
in(2lx) and −λ is the separation constant. Unfortunately, Eq.
5) has no analytic solution. Thus, we have to resort to numerical
ethods. Since the functional form of the last two equations is

ather different from the corresponding equations for diffusion
ith constant diffusion coefficient, it is interesting to check if

he Weibull model, which is proven to be a good approximation
or the release from devices obeying the classical diffusion
quation with constant D, is still a good approximation in this
ase.

.2. Monte Carlo simulations

The Monte Carlo method (Landau and Binder, 2000) is a
umerical method based on considering finite-size systems and
sing random numbers to mimic the system behavior. Thus,
he system dynamics can be inferred by averaging the resulting
onfigurations. Each decision corresponds to an arbitrary time
nit (called Monte Carlo Step, MCS), which may eventually be
hown to correspond to a real time unit. In this paper, we ini-
ially consider a two-dimensional square lattice of size L × L.
hen, we place a number of particles randomly on the sites of the

attice, according to the initial particle concentration c, avoid-
ng double occupancy. Unless explicitly stated otherwise, we
ssume an initial particle concentration c = 0.5, meaning that
0% of the sites are initially occupied by particles, and the rest
re empty. The “left” and “right” boundaries of the lattice are
eak areas, while the top and bottom ones are reflecting sites.
f a particle attempts to cross the leak boundaries, then it is
mmediately removed from the system. Sites of the lattice are
ig. 1. Schematic: matrix L = 50 with l = 4, i.e. 3 stripes of high diffusivity
ollowed by 1 stripe of low diffusivity.
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Fig. 2. Fraction of drug released from the matrix M(t)/M∞ as a function of
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Particles are moving inside the lattice performing random
alks (Weiss, 1994). Particles are selected at random. They
ay stay immobile with a probability q, or move at a new ran-

omly chosen neighboring site with probability 1 − q. The case
here q = 0, is identical to the classical random walk algo-

ithm that is used to simulate diffusive motion (Kosmidis et al.,
003a, b; Landau and Binder, 2000; Bunde et al., 1985). The case
�= 0 allows us to simulate diffusion processes with different

iffusion coefficients (Kosmidis and Macheras, 2007; Landau
nd Binder, 2000; Bunde and Havlin, 1995). Let us consider a
article moving at a high diffusivity area. Then q = 0 and the
iffusion coefficient is Dh. For a low diffusivity area there is a
on-zero q and the diffusion coefficient is Dl. It can easily be
hown (Kosmidis and Macheras, 2007) that these coefficients
re related to the parameter q through the following equation:

Dl

Dh
= 1 − q (7)

q. (7) connects a quantity that is easily controlled in a Monte
arlo simulation with the ratio of the diffusion coefficients of

he different areas.
If the site where the particle is located is marked as a high dif-

usivity area, then q = 0, otherwise q has a predefined non-zero
alue. If the new site is an empty site, then the move is allowed,
nd the particle is moved to this new site. If the new site is already
ccupied, the move is rejected (excluded volume interactions).
he move is also rejected, if the new site is a reflecting boundary.
particle is removed from the lattice as soon as it migrates to a

ite lying within the leak area (the boundary). After each parti-
le selection, time is increased by 1/N, where N is the number
f particles remaining in the system. Thus, in one MCS every
ne of the N particles has, on average, the possibility of moving
ne step. This is a typical approach in Monte Carlo simulations
Bunde et al., 1985). We monitor the number of particles that
re present inside the lattice as a function of time until the lattice
s completely empty of particles. A detailed description of the
lgorithm utilized is presented in Appendix A.

. Results and discussion

Fig. 1 is a schematic of the geometry that we study. Each
olumn of low diffusivity (dark colour) is followed by l − 1
olumns of high diffusivity. The drug molecules are allowed to
scape from the left and right boundaries only, and not from the
op or bottom.

First, we are interested to check if the Weibull approximation,
hich is valid for release from Euclidean devices, devices com-
rised from random mixtures of areas with different diffusion
oefficients and even fractal devices, is valid also in the present
ase. This is not trivial, taking into account the form of the dif-
erential equations that are relevant to this case, as discussed in
ection 2. In Fig. 2, we present Monte Carlo simulation results of

he fraction of drug released M(t)/M∞ as a function of time t, for

matrix with L = 100 and for different values of the parameter
, i.e. different diffusivity ratios and different periodic “length” l,
amely q = 0.5, l = 2 (circles), q = 0.90, l = 10 (squares) and
= 0.99andl = 10 (diamonds). Fitting of the Weibull model to

o
t
p
L

ime t. The points are Monte Carlo simulation data for a matrix with L = 100
nd q = 0.5, l = 2 (circles), q = 0.90, l = 10 (squares) and q = 0.99, l = 10
diamonds). The lines are fits of the Weibull model to the simulation data.

he simulation data, shows that in all cases the Weibull model
q. (1) is a rather good approximation of the release process in

he case of periodic layers in the release device.
Next, we are interested in determining the influence of the

eriodic length l in the release profile. In Fig. 3 we plot the frac-
ion of drug released from a matrix with L = 100, M(t)/M∞, as
function of time t, for two characteristic diffusivity ratios and

everal l values. The left plot presents the case where q = 0.5,
.e. the diffusion coefficient Dh is twice as large as the diffusion
oefficient Dl. We examine different values of l = 2, 6, 10 (cir-
les, squares, diamonds). We notice that in all cases the results
re statistically the same and for this value of the diffusivity
atio the influence of l is practically negligible. The right plot
resents the case of q = 0.90, i.e. the diffusion coefficient Dh
s roughly ten times larger than the diffusion coefficient Dl,
gain for l = 2, 6, 10 (circles, squares, diamonds). We see that
n this case for l = 6, 10 are statistically independent but there
s an observable difference for l = 2 and the release process is
onsiderably slower.

Next, we are interested in determining the reason of the slow-
ng down of the release process. One simple explanation is that
his is due to the introduction of a large number of slow diffusiv-
ty sites. For, l = 2 actually 50% of the device is comprised of
ow diffusivity areas, so it is natural to expect a slower process.
owever, we would like to examine if there is a part of the delay

ssociated with the particular geometry as well. Thus, we have
imulated the release process from release devices that have the
ame size with the periodic layered devices and the same amount
f low and high diffusivity sites, but now the sites are randomly
rranged inside the lattice. We use these “randomized” lattices
s “control” devices. For example, the randomized lattice to be
sed as a comparison for the case of l = 2 is a lattice with 50% of
ts sites being low diffusivity sites, which are randomly placed
nside the lattice. Any difference between the release profiles

f the periodic and the corresponding randomized lattice is due
o the specific periodic geometrical arrangement. In Fig. 4 we
lot M(t)/M∞ as a function of time t for periodic lattices with
= 100 (circles) and the corresponding randomized lattices
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ig. 3. Fraction of drug released from the matrix M(t)/M∞ as a function of ti
= 0.5 and l = 2, 6, 10 (circles, squares, diamonds). Right: q = 0.90, and l =

squares). The top left plot shows the case of q = 0.5 and l = 2,
he top right the case q = 0.90 and l = 6 (circles) the bottom left
lot the case q = 0.99 and l = 2 and the bottom right the case of
= 0.99 l = 10. In the first three cases the release profile from

he periodically arranged case are practically indistinguishable
rom the randomized case. However, the last plot shows con-
iderable difference between the periodic and the randomized

evice indicating that the geometrical arrangement itself has an
nfluence in the release profile and that the observed slowing
own of the process cannot solely be attributed to the existence
f an amount of low diffusivity sites.

“
t
q
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ig. 4. Fraction of drug released from the matrix M(t)/M∞ as a function of time t. A
elease fraction from a periodic structure, q = 0.5 and l = 2 (circles) and from a rand
op right: periodic structure q = 0.90, and l = 6 (circles), and the corresponding rand
circles), and the corresponding randomized structure (squares). Bottom right: period
tructure (squares).
The points are Monte Carlo simulation data for a matrix with L = 100. Left:
10 (circles, squares, diamonds).

Finally, we are interested in quantifying the above result and
ow it affects the parameters a and b of the Weibull model, Eq.
1). Thus, in Fig. 5 we plot the ratio of the Weibull exponent a
left plot) for release from periodic structures, to the exponent
R for release from the corresponding randomized structure
s a function of the “length” l. The same is done for the ratio
f the Weibull exponent b (right plot) to the corresponding

randomized” exponent bR. The different symbols correspond
o different values of the parameter q, namely q = 0.5 (circles),
= 0.90 (squares) and q = 0.99 (diamonds). We observe that

n all cases the exponent a is lower than the corresponding

ll points are Monte Carlo simulation data for matrices with L = 100. Top left:
om structure with the same number of high and low diffusivity sites (squares).
omized structure (squares). Bottom left: periodic structure q = 0.99, and l = 2
ic structure q = 0.99, and l = 10 (circles), and the corresponding randomized
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Fig. 5. Left: ratio of the Weibull exponent a for release from periodic structures to the corresponding exponent aR for release from randomized structures as a
function of the “length” l. Right: ratio of the Weibull exponent b for release from periodic structures to the corresponding exponent bR for release from randomized
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tructures as a function of the “length” l. Different symbols correspond to dif
= 0.99 (diamonds).

andomized exponent aR, while the exponent b is in all cases
arger than bR. This last result has to be compared to the case of
andom mixing (Kosmidis and Macheras, 2007) where it was
ound that the exponent b was in most cases the same as the
xponent for release from a uniform Euclidean device, or the
ase of release from fractal devices (Kosmidis et al., 2003b),
here the exponent b is much lower than the case of a uniform
uclidean device. The differences between the randomized
ase and the periodic case are more profound when the ratio of
iffusivities is high, i.e. in the case q = 0.99 (diamonds) where
he diffusion coefficient Dh is roughly 100 times larger than
he diffusion coefficient Dl. Moreover, the difference is more
rofound in intermediate values of l and not for l = 2 where the
elease device has a large part (50%) of low diffusivity sites.
his can be qualitatively understood, since when there are a lot
f sites that cause delay the drug molecules are “trapped” for a
ong time in these sites despite the fact that these sites are ran-
omly placed in the lattice. When there are less low diffusivity
ites the release is faster in the randomized case since there are
ot enough “delaying” sites, while in the periodic structure the
ame amount of sites causes considerable delay as there is no
ay for the drug molecules to bypass them. When on the other
and the l value is high (for example l = 10), there are only a few
olumns of low diffusivity in the lattice and the delay that they
ause is again not very big. Again the difference between the
eriodic and randomized case is not big. Only for intermediate
values this difference becomes important leading to values of
/aR and b/bR which are significantly different from one.

. Conclusions

We have studied drug release from matrices with periodic
ayers of high and low diffusivity. We have seen that the

eibull model describes the release process quite well. We
ave examined the similarities and differences between release

rom matrices with periodic layers and matrices with random
ixtures of high and low diffusivity areas. We have found

hat the geometrical arrangement of the low diffusivity areas
auses a difference in the release profile which is negligible

t
t

n

values of the parameter q, namely q = 0.5 (circles), q = 0.90 (squares) and

or low diffusivity ratios but becomes important in the case
f high diffusivity ratios and for intermediate values of the
eriodic “length”. Such an arrangement in periodic layers will
ead to Weibull exponent a which are lower than those of the
orresponding random arrangement and exponents b which are
igher than those of the random case.

ppendix A. Detailed description of the algorithm

1. Define an array A(i, j), where i = 0, . . . , L + 1 and j =
, . . . , L + 1. This array represents the release device and L is
he system size.

2. ∀i set A(i, 0) and A(i, L + 1) equal to −1. These are the
bsorbing boundaries. ∀j set A(0, j) and A(L + 1, j) equal to
10. These represent the reflecting boundaries.
3. Set A(i, j) = 0 for all i, j = 1, . . . , L. Next,
(a) Set k = 1 and ∀i set A(i, k) = 1.
(b) Increase k by l (the length of the high diffusivity zones)

i.e. k = k + l) and repeat steps (a and b) until k > L. Sites
here A(i, j) = 1 represent sites of low diffusivity.
4. For all i, j = 1, . . . , L draw a random number x ∈ [0, 1].

f x < c = 0.5 (the initial drug molecules concentration) insert
drug molecule in the system. Mark the coordinates of the
olecule xn = i, yn = j where n is an index for particle number

. At the end note the total number of drug molecules in the
ystem N.

5. Select a particle n at random by drawing a random number.
heck its coordinates i, j. IfA(i, j) = 0 go to step number 6. Else
o to step number 7.

6. (a) Select one of the four sites (i + 1, j), (i − 1, j), (i, j +
), (i, j − 1) as destination site. Note the coordinates of the des-
ination site as k, m. Check if the destination is free by ensuring
hat no particle has coordinates xd = k, yd = m where d runs
ver all drug particle numbers. Check if A(k, m) = −10, i.e. if

he destination is a reflecting boundary. If none of the above is
rue, then move the particle n setting xn = k, yn = m.

(b) Increase time t by an amount 1/N, where N is the total
umber of drug molecules.



1 Journ

s
N

o
t

R

B

B

B

B

B

C

C

G

H

H

K

K

K

L

M

P

P

P

R

R

S

S

S

S

V

V

16 K. Kosmidis, P. Macheras / International

(c) If A(k, m) = −1, then remove the particle n from the
ystem (do not allow further selection in step number 5). Set

= N − 1. Export N and time t in a file.
(d) Go to step number 8.
7. Draw a random number x ∈ [0, 1]. If x < q (q is the ratio

f diffusivities) then, return to step number 6. Else increase time
by an amount 1/N.

8. Repeat steps numbers 3–7 until N = 0.
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