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bstract

We use Monte Carlo simulations in order to study diffusion controlled drug release from matrices consisting of random mixtures of high and
ow diffusivity areas (random mixing), and from matrices covered by a thin film of low diffusivity (ordered mixing). We compared our results with
he Weibull model for drug release and found that it provides an adequate description of the release process in all cases of random mixing and

ost cases of ordered mixing. We have studied the dependence of the Weibull parameters on the diffusion coefficient and, in most cases, found

rather simple linear dependence. Moreover, our results indicate that a device covered by a thin film with diffusion coefficient three orders of
agnitude lower that the coefficient of the rest of the device, will release drug at constant rate for most of the release process. This last result may

ave considerable practical applications.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Understanding and controlling the drug release rate from a
elease device is a subject of significant practical importance.
he release of a drug from such a device must take place at appro-
riate rates, in order to ensure the desired therapeutic effect.
heoretical modeling of the processes involved in controlled
rug release is essential (Macheras and Iliadis, 2005), since the
evelopment of new pharmaceutical products is highly facili-
ated from the possibility to predict the desirable release kinetics
n advance. Several models have been proposed for the descrip-
ion of drug release (Higuchi, 1961; Peppas, 1985; Ritger and
eppas, 1987a,b; Peppas et al., 1980; Gao et al., 1995; Siepmann
t al., 1999; Siepmann and Peppas, 2000, 2001; Costa and Lobo,
001; Weibull, 1951; Bonferoni et al., 1998; Sathe et al., 1996)
ut, in practice, the mathematical models most commonly used

o describe the release kinetics from a large variety of devices
re
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a) The Higuchi law (Higuchi, 1961), which is valid for systems
where the drug concentration co is much higher than the drug
solubility cs and has the form:

Mt = A
√

D(2co − cs)t (1)

where Mt is the cumulative amount of drug released at time
t, A the surface area of the controlled release device exposed
to the release medium, D the drug diffusion coefficient, co
the initial drug concentration and cs is the drug solubility.

b) The power law (or Peppas model) (Peppas, 1985). This law
has the simple form:

Mt

M∞
= kts (2)

where Mt and M∞ are the amounts of drug released at times
t and ∞, respectively, k is an experimentally determined
parameter, and s is an exponent that depends on the geometry
of the system. It also depends on boundary conditions such

as the presence of stagnant layers surrounding the matrix, or
non-uniform initial drug distribution. The exponent s can be
related to the drug release mechanisms and it is extensively
used because of this property.

mailto:macheras@pharm.uoa.gr
dx.doi.org/10.1016/j.ijpharm.2007.05.021
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neighboring to the boundary are sites of low diffusivity, see
Fig. 2.

Particles are moving inside the lattice performing random
walks (Weiss, 1994). To be specific, a particle is selected at ran-
K. Kosmidis, P. Macheras / International J

c) The Weibull model (Weibull, 1951; Bonferoni et al., 1998;
Sathe et al., 1996):

Mt

M∞
= 1 − exp(−atb) (3)

where a and b are constants. This model describes exper-
imental dissolution data (Gao et al., 1995) quite well and
a physical meaning of the constants a and b is provided in
Kosmidis et al. (2003a) and Papadopoulou et al. (2006). The
exponent b originates from the fact that a depletion zone is
created gradually near the boundaries of the release device,
and thus, the drug concentration in the device is not uniform.

Here, we will focus exclusively on diffusion controlled drug
elease, which we will study using Monte Carlo simulations
Landau and Binder, 2000). This method provides a useful and
ntuitively plausible way of following the time evolution of a sys-
em. Monte Carlo simulations have recently been used to study
rug release from Euclidean and fractal geometries, yielding
nteresting results (Kosmidis et al., 2003a,b; Bunde et al., 1985;
illalobos et al., 2006, 2005; Haddish-Berhane et al., 2006). See
lso Barat et al. (2006a,b) for a detailed comparative review.

In this paper, we are interested in the way the release rate is
hanged, when the release device is not uniform, but consists
f a mixture of areas with high Dh and low Dl diffusion coeffi-
ients. We use Monte Carlo simulations and study drug release
rom random mixtures of high and low diffusivity areas (ran-
om mixing). In this case we are mostly interested in whether
here is an observable effect when the density of low diffusivity
pproaches the percolation threshold (Bunde and Havlin, 1995).
e also examine the case where the release device consists of
uniform high diffusivity area covered by a very thin layer
ith low diffusivity (ordered mixing). We find that in all cases
f random mixing, the Weibull function (Eq. (3)) provides an
dequate description of the release kinetics and that only the
xponent a depends on the diffusion coefficient, while the expo-
ent b is constant. Moreover, no effects were observed at the
ercolation threshold for the simulated range of Dl and Dh. This
s in marked difference with the case of ionic transport in two-
omponent systems, for example, where percolation effects are
f outmost importance (Bunde and Havlin, 1995). In the case of
rdered mixing, the Weibull approximation continues to be valid
or a large range of the ratio Dl/Dh. In the case, however, where

h is about three orders of magnitude higher than Dl (i.e. when
l/Dh = 0.001) the Weibull approximation fails. In this case the

elease rate is constant for more than 90% of the release pro-
ess, i.e. we observe a constant release rate when Mt/M∞ < 0.90.
his fact, is of considerable practical importance, as it is always
esired to construct release devices that deliver the drug at a
onstant rate.

Our results are valid in several cases of practical interest
here the design of the system controls the molecular diffusion
f drug molecules in and/or surrounding the delivery system.

he following rate-preprogrammed systems fall within this
ategory: (i) polymer membrane permeation-controlled drug
elivery systems, (ii) polymer matrix diffusion controlled drug
elivery systems, (iii) polymer (membrane/matrix) hybrid-type

F
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rug delivery systems and (iv) microreservoir partition con-
rolled drug delivery systems (Boylan and Swarbrick, 2002).

. Methods

The Monte Carlo method (Landau and Binder, 2000) is based
n considering finite-size systems made up of a specified num-
er of units. These systems are statistically averaged over a large
umber of configurations in order to mimic correctly the sys-
em behavior. All decisions are taken by the use of random
umbers drawn from a uniform random number distribution,
function that is inherent nowadays in all computers. Thus,

he system dynamics can be inferred by the resulting configura-
ions. Each decision corresponds to an arbitrary time unit (called

onte Carlo Step, MCS), which may eventually be shown to
orrespond to a real time unit. Initially, we consider either a two-
imensional square lattice of size L × L or a three-dimensional
ubic lattice of size L × L × L. Then, we place a number of
articles randomly on the sites of the lattice, according to the ini-
ial particle concentration c, avoiding double occupancy. Unless
xplicitly stated otherwise, we assume an initial particle con-
entration c = 0.5, meaning that 50% of the sites are initially
ccupied by particles, and the rest are empty. The boundaries
f the lattice are leak areas. If a particle attempts to cross the
oundaries, then it is immediately removed from the system. In
he case of random mixing, each site of the lattice has a proba-
ility p to be a site of low diffusivity or a probability 1 − p to be
site of high diffusivity, see Fig. 1 for a schematic.

In the case of ordered mixing, only the lattice sites that are
ig. 1. An illustration of a matrix comprised of 70% high (light) and 30% low
dark) diffusivity areas randomly mixed (random mixing).
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are Monte Carlo simulation results and the lines are fits of the
Weibull model, Eq. (8), to the data. We notice that the Weibull
model fits the simulation data rather well. The fit is very good
at the initial part of the release but not equally good towards
ig. 2. An illustration of a matrix comprised of a high diffusivity interior (light)
nd a low diffusivity (dark) thin layer around the border (ordered mixing).

om. The particle may stay immobile with a probability q, or
ove at a new randomly chosen neighboring site with proba-

ility 1 − q. The case where q = 0, is identical to the classical
andom walk algorithm that is used to simulate diffusive motion
Kosmidis et al., 2003a; Landau and Binder, 2000; Kosmidis et
l., 2003b; Bunde et al., 1985). The case q �= 0 allow us to sim-
late diffusion processes with different diffusion coefficients. If
he site where the particle is located is marked as a high diffusiv-
ty area, then q = 0, otherwise q has a predefined non-zero value.
he parameter q can be directly related to the diffusivity ratios
nd, thus, is of central importance in the following analysis. If
he new site is an empty site, then the move is allowed, and the
article is moved to this new site. If the new site is already occu-
ied, the move is rejected (since we assume excluded volume
nteractions). A particle is removed from the lattice as soon as
t migrates to a site lying within the leak area (the boundary).
fter each particle selection, time is incremented. The increment

s chosen to be 1/N, where N is the number of particles remaining
n the system. This implies that the unit time characterizing the
ystem is the mean time required for every one of the N particles
o be offered the possibility of moving one step. This is a typ-
cal approach in Monte Carlo simulations (Bunde et al., 1985).

e monitor the number of particles that are present inside the
ylinder as a function of time until the cylinder is completely
mpty of particles.

A well known result in random walks (Landau and Binder,
000; Weiss, 1994) is that the mean square displacement of a
andom walker is equal to the number of steps the walker does,
nd this result holds in all Euclidean dimensions. For simplicity
et us consider an one-dimensional random walk. If x denotes

he displacement from the start, then, for a walk of n steps:

x2〉 = n (4)

F
(
m

al of Pharmaceutics 343 (2007) 166–172

f, however, there is a probability q that the walker remains at
is position, instead of jumping at one of his closest neighboring
ites, then the actual number of steps that the walker will do, on
verage, is (1 − q)n. Thus, the above equation is to be modified
o

x2〉 = (1 − q)n (5)

rom the classical theory of diffusion (Weiss, 1994), we know
hat the mean square displacement for unbounded diffusive

otion in one dimension is

x2〉 = 2Dt (6)

et us consider a particle moving at a high diffusivity area. Then
= 0 and the diffusion coefficient is Dh. For a low diffusivity area

here is a non-zero q and the diffusion coefficient is Dl. From
he above equations and taken that the time needed for a step is
constant we find that

Dl

Dh
= 1 − q (7)

he above equation (Eq. (7)) connects a quantity that is easily
ontrolled in a Monte Carlo simulation with the ratio of the
iffusion coefficients of the different areas.

. Results and discussion

The Weibull model, Eq. (3), implies that the number of par-
icles inside the lattice in time t is equal to

(t) = N0 exp(−atb) (8)

Fig. 3 shows the number of particles inside a square lattice
ith L = 100 as a function of time for three different values of q,
= 0, 0.5, 0.8, i.e. for three different diffusion coefficients. Points
ig. 3. Number of particles inside a uniform (p = 0) matrix vs. time for q = 0
diamonds), q = 0.5 (stars), q = 0.8 (squares). The lines are fits of the Weibull
odel, Eq. (8).
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Fig. 5. Number of particles inside a matrix (random mixing) vs. time for q = 0.8
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he end of the release where the Weibull function overestimates
he number of particles inside the lattice. This is to be expected
s the assumption used to derive the Weibull approximation in
osmidis et al. (2003a) is that a depletion zone is created around

he boundary and that the effect of this depletion zone may be
odeled by a power law. When the vast majority of particles are

eleased, it is not still plausible to speak of a depletion zone since
here are only a few particles and they are almost randomly scat-
ered inside the system. We can still, however, use the Weibull

odel to describe the 100% of the release process, knowing that
he model is an approximation and not an exact solution.

In order to study how the Weibull coefficients a and b depend
n the diffusion coefficient, we have simulated the release pro-
ess from lattices with L = 100 and 200, when the lattice consists
f a uniform area where, at each site, the particles have the same
robability 1 − q to move. We repeated our simulations for sev-
ral q values and fitted Eq. (8) to our results to determine the
alues of the exponents a and b. In all cases, we found that the
xponent b was equal to 0.64, independent of q and thus, inde-
endent of the diffusion coefficient. This is in close proximity
ith the value b = 0.69 that has been observed in Kosmidis et

l. (2003a) for release from cylindrical and spherical geome-
ries. This, lower, value of the exponent is in agreement with
he known facts that the lattice geometry is more “restricted”
han the three-dimensional geometries (Weiss, 1994) and that
he Weibull exponent assumes lower values in restricted geome-
ries (Papadopoulou et al., 2006; Kosmidis et al., 2003b). In
ig. 4, we show the dependence of a on q, for the two above
entioned square lattice sites. As expected, the exponent a is a

ecreasing function of q. This is not surprising, since the higher
he q value, the lower the diffusion coefficient that is simulated.

hen the diffusion coefficient is low, then the particle mobil-
ty is low and the particles need more time to escape from the

elease device. Thus, the exponent a in Eq. (8) is expected to be
maller for low diffusion coefficients and this is confirmed by
he simulation. The relation between a and q is quasi-linear in
he most part of the [0, 1] regime. Only for q > 0.9 the deviation

ig. 4. Dependence of the Weibull exponent a on the parameter q. The exponents
ere calculated from fitting of a Weibull function to Monte Carlo simulation
ata of uniform (p = 0) lattices with L = 100 and 200.
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nd p = 0.1 (diamonds), p = 0.4 (stars), p = 0.8 (squares). Lines are fitting to a
eibull function Eq. (8) with b = 0.64 and a = 0.0096, 0.0068, 0.0044, respec-

ively.

rom linearity is more evident. The exponent a is also a decreas-
ng function of the system size. This dependence was studied
nd explained in Kosmidis et al. (2003a).

Fig. 5 shows the number of particles inside a square lattice
ith L = 100 versus time. The lattice is a random mixture of low

nd high diffusivity areas (see Fig. 1 for a schematic). The dia-
ond symbols are simulation results for p = 0.1, i.e. when 10%

f the lattice consists of low diffusivity material. The star sym-
ols are simulation results for p = 0.4 and the square symbols for
= 0.8. In all cases we have used the value q = 0.8. So in the low
iffusivity areas the diffusion coefficient is considerably lower
han that of the high diffusivity areas. The solid lines are fits to
he Weibull model. Again, we see that the Weibull approxima-
ion is valid also in the case of random mixtures, with the same
estriction that the number of particles is overestimated towards
he end of the release curve. In order to study the dependence
f the Weibull parameters a and b to the proportion of low dif-
usivity areas we have simulated the release procedure from a
quare lattice with L = 100 for two fixed values of q, q = 0.3, 0.8
nd varying concentration of low diffusivity areas p. In all cases
e have found that the exponent b does not depend on the value
f p and for a square lattice we have always found a constant
alue for b, b = 0.64. In Fig. 6, we plot the Weibull exponent a as
function of p. The dependency may be approximately consid-
red as linear, for practical purposes. Moreover, if we compare
his figure with Fig. 4 we can see that if we know (experimen-
ally) the value of a = a1 for a system with known diffusivity Dl
nd the value of a = a2 for a system with the same dimensions
nd different diffusivity Dh, then we may estimate quite well
he value of the parameter a = am for a random mixture by a
inear equation am = pa1 + (1 − p)a2, where p is the fraction of
he system with diffusivity Dl.
Next, we study the release from a square lattice with ordered
ixing (see Fig. 2 for a schematic). In Fig. 7, we plot the num-

er of particles inside the matrix as a function of time for three
alues of q, q = 0.8, 0.99, 0.999. Results are presented with dia-
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Fig. 6. Weibull exponent a vs. the probability p of low diffusivity areas for q = 0.3
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circles) and q = 0.8 (squares). Straight lines are linear fits. The exponents were
alculated from fitting of the Weibull function to Monte Carlo simulation data
f square lattices with L = 100.

onds, stars and square points, respectively. The solid lines are
ts of a Weibull function to release simulation data for q = 0.8,
.99 and a fit of a straight line to simulation data for q = 0.999.
he Weibull model describes well the simulation data in the
ase q = 0.8, 0.99, but it is not adequate in the case q = 0.999.
n order to understand the reason for this difference, we studied
ystematically the dependence of the exponents a and b on the
arameter q. The behavior of the exponent a (data not shown) is
imilar to the case of random mixing. The exponent b, however,
hows a different behavior, as shown in Fig. 8, where we plot
he Weibull exponent b as a function of the parameter q in the
ase of “ordered” mixing, i.e. in the case where a matrix (two
imensional in this example) with high diffusion coefficient is

overed with a thin film with low diffusion coefficient.

For a large regime of q, the Weibull exponent has roughly
he same value b ≈ 0.64 as in the case of random mixing. There

ig. 7. Number of particles inside a matrix with ordered mixing vs. time for
= 0.8 (diamonds), q = 0.99 (stars) and q = 0.999 (squares).
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ig. 8. Weibull exponent b vs. the parameter q. The exponent was calculated
rom fitting of the Weibull function to Monte Carlo simulation data of a square
attice with L = 100.

s, however, a sharp increase of the b value for q > 0.9. The
eason for the sharpness is that q depends on the ratio of the
iffusivities of the two areas. Thus, q = 0.9 corresponds to dif-
usivities that are different by one order of magnitude, while
= 0.99 corresponds to diffusivities different by two orders of
agnitude. Thus, although the numerical values of q in both

ases are very close to each other, they correspond to diffusion
oefficients that have considerable difference. The reason for the
ncrease in the Weibull exponent is that when the diffusivity in
he surrounding area is sufficiently low, then a depletion zone
round the boundary is not created, since the quickly moving
rug molecules inside the matrix have enough time to occupy
his space. As it was shown in Kosmidis et al. (2003a), the reason
or the appearance of a Weibull exponent b �= 1 is the creation of
he depletion zone near the leak boundaries. Thus, it is normal
o expect that when this zone is absent, we will have an increase
f the Weibull exponent towards b = 1 which corresponds to the
imple fact that the number of molecules that exit from the matrix
n a time interval dt is proportional to the number of molecules
n the matrix.

It is not correct, however, to conclude that the release profile
ill be sigmoidal (b > 1) for even larger q values. The fitting of

he release simulation data to a Weibull function gives b val-
es higher than 1, but in these cases the Weibull approximation
s no longer a correct description of the release. The Monte
arlo Simulation results do not show a sigmoid profile but a
ery large linear regime, as seen in Fig. 7. When the param-
ter q takes the value q = 0.999, i.e. when the low diffusion
oefficient is approximately three orders of magnitude differ-
nt from the high diffusion coefficient, then the Weibull model
s no more an adequate description of the release. In fact, the

ajority of the release is done at constant rate, as is evident

rom the straight line part of the curve in Fig. 7 for q = 0.999
square symbols). For sufficiently large values of q, when a drug
olecule exits from the matrix there is always enough time for

nother molecule to replace it near the boundary. Thus, the aver-
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ig. 9. Release fraction vs. time for a cubic matrix with L = 30 and q = 0.999
circles) and for a square lattice with L = 100 and q = 0.999 (x-symbol). The
traight lines are a guide to the eye.

ge number of molecules that are “ready” to exit the matrix is
ractically constant for the major part of the release and so is
he rate of release.

Since this last effect may be of considerable importance for
ractical applications we have verified it for higher dimensions.
n Fig. 9, we plot the release fraction Mt/M∞ versus time, as
s commonly done in pharmaceutic applications. Here, Mt is
he number of particles that have been removed from the sys-
em at time t and M∞ is the number of particles that will be
eleased at infinite time (i.e. the initial number of drug particles
nside the release device). We present results for a square lattice
ith L = 100 and a three-dimensional cubic lattice with L = 30.
e have checked also other size systems with qualitatively the

ame results. We monitor the system until 90% of the release
s completed and as shown in the figure the release curves can
e safely considered straight lines, indicating a constant release
ate. To the best of our knowledge, this last finding has not been
bserved in other simulations or experimental studies. It is, how-
ver, very well known in kinetics that the lower of two processes
n series controls the overall rate, acting as a rate limiting step.
hus, a rule of thumb is used whenever the rate constants of two
rocesses in series are remarkably different. We would, hence,
xpect that in the case of ordered mixing the release system
ould behave as a device with a low diffusion coefficient. Thus,

he release profile would still be described by a Weibull function
ith a very low a value. Instead, we find that the functional form

hanges completely. Thus, in our study we are able to provide
specific cutoff limit for this rule of thumb, associated with the

atio of the diffusivities.

. Conclusions
We studied drug release from random mixtures of high and
ow diffusivity areas (random mixing) and from uniform release
evices covered by a very thin layer with low diffusivity (ordered
ixing). We find that in all cases of random mixing the Weibull

R
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unction (Eq. (3)) provides an adequate description of the release
nd that only the exponent a depends on the diffusion coefficient,
hile the exponent b is constant. Furthermore, we do not observe

ny important effect near the percolation threshold. In the case
f ordered mixing, the Weibull approximation continues to be
alid for a large range of the ratio Dl/Dh. In the case, however,
here Dh is about three orders of magnitude higher than Dl

i.e. when Dl/Dh = 0.999) the Weibull approximation fails. In
his case the release rate is constant for more than 90% of the
elease. This fact, is of considerable practical importance, as it
rovides a means to construct release devices which deliver the
rug at a constant rate.
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