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Modeling of supersaturated dissolution data
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Abstract

A recursion equation which relies on the population growth model of dissolution is used for the analysis of
supersaturated dissolution data. The concentration–time data of dissolution experiments are initially transformed to
fractions of dose dissolved-generations by adopting an appropriate time interval as the time step of the recursion
equation. A computer program is used to derive estimates for the maximum fraction of dose dissolved and the
fraction of dose remaining in solution at steady state. Good fittings were observed when this equation was applied
to phenytoin and nifedipine supersaturated dissolution data obtained from literature. © 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Dissolution testing is an integral component of
the pharmaceutical product development process.
It is used as a quality control procedure in phar-
maceutical production and as a surrogate for in
vivo bioavailability, and bioequivalence when in
vitro–in vivo correlations have been established.

Considerable interest has been shown in the
modeling of dissolution data. Numerous ap-

proaches have been reported over the years to
describe mathematically the drug dissolution
profiles. The standard methods in the dissolution
data analysis are the cubic root law, the square
root time equation, and several modifications of
the simple exponential function (Noyes et al.,
1897; Hixon et al., 1931; Higuchi, 1961; Gibaldi
and Feldman, 1967; Goldsmith et al., 1978; Pep-
pas, 1985; Sathe et al., 1996; Jorgensen and Chris-
tensen, 1996). Various models have been also
described for the analysis of S-shaped dissolution
profiles (Wagner, 1969; Langenbucher, 1972;
Leary and Ross, 1983; Kervinen and Yliruusi,
1993; Djordjevic and Mendas, 1997).

* Corresponding author. Tel.:+30-1-7274-675; fax: +30-1-
7244-191.

E-mail address: macheras@pharm.uoa.gr (P. Macheras)

0378-5173/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.

PII: S 0378 -5173 (99 )00020 -4



G. Valsami et al. / International Journal of Pharmaceutics 181 (1999) 153–157154

The dissolution data are basically of monotonic
nature (the drug concentration or the fraction of
drug dissolved is increasing with time) and there-
fore the corresponding modeling approaches rely
on monotonic functions. However, non-
monotonic dissolution profiles are frequently ob-
served in studies dealing with coprecipitates of
drugs with polymers, solid dispersion formula-
tions and dissolution of salts in buffers (Wuster
and Taylor, 1965; Finholt and Solvang, 1968;
Yamamoto et al., 1976; Fujii et al., 1991; Suzuki
and Sunada, 1998). The dissolution profiles of
these studies usually exhibit a supersaturation
phenomenon; namely, an initial rapid increase of
drug concentration to a maximum followed by a
progressive decline to a plateau value. To the best
of our knowledge, no modeling approach for
supersaturated dissolution data has yet been re-
ported. Therefore, the necessity of developing a
modeling approach for supersaturated dissolution
data is apparent.

In this work, the proposed technique for model-
ing supersaturated dissolution data relies on the
difference equation of the population growth
model of dissolution reported recently (Dok-

oumetzidis and Macheras, 1997). In this model,
the variable of interest, mass dissolved, is not
considered as a continuous function of time, but
is a function of a discrete time index specifying
successive generations.

2. Theoretical development

The population growth model of dissolution
(Dokoumetzidis and Macheras, 1997) relies on the
concept of the discontinuous birth in successive
generations, n, of the dissolved drug molecules
from the population of the drug molecules in the
solid state. According to this model, the dissolu-
tion process is described by the recursion
equation:

Fn+1=Fn+r(1−Fn)(1−FnX0/u) (1)

where X0 is the dose (total amount of drug), u is
the amount of drug in solution corresponding to
the saturation solubility of the drug in the dissolu-
tion medium, r is a dimensionless proportionality
constant, and Fn, Fn+1 denote the fractions of
dose dissolved at generations n and n+1, respec-
tively; the generation number n takes values be-
ginning with zero for t=0. Eq. (1) has two
steady-state solutions, Fss=1 when u/X0]1 and
Fss=u/X0 when u/X0B1. Because of the nature
of the model, the first step is always Fn=1=r,
and r is always lower than 1, i.e. the theoretical
top boundary of Fn. When either rBu/X0B1 or
rB1Bu/X0, Eq. (1) follows the typical pattern of
dissolution curves, i.e. a monotonic exponential
increase of Fn asymptotically reaching the steady
state, namely 1 or u/X0.

However, for values of r in the range u/X0B
rB2/((X0/u)−1) (Dokoumetzidis and Macheras,
1997), the first step is higher than the plateau
value followed by a progressive decrease to the
plateau (Fig. 1A,B). Thus, Eq. (1) can be used for
the analysis of supersaturated dissolution data
which exhibit this type of behavior, i.e. an initial
rapid increase of drug concentration to a super-
saturated maximum with a subsequent decline to
a plateau. For u/X0 and r values that are close
enough, the descending part of the dissolution
curve is smooth, concaving either upwards (Fig.

Fig. 1. Plots of the dissolved fraction Fn as a function of
generations, n, using Eq. (1) with r and u/X0 values satisfying
the inequality u/X0BrB2/((X0/u)−1): (A) r=0.97, u/X0=
0.56; (B) r=0.8, u/X0=0.5; (C) r=0.97, u/X0=0.34; (D)
r=0.7, u/X0=0.28.



G. Valsami et al. / International Journal of Pharmaceutics 181 (1999) 153–157 155

Fig. 2. Plot of the dissolved fraction Fn as a function of
generations, n (time step 4 h) using Eq. (1) for the dissolution
of phenytoin ground mixture with microcrystalline cellulose in
50 ml of JP VIII disintegration medium at 37°C. �, 50 mg of
the ground mixture; 
, 150 mg of the ground mixture (Ya-
mamoto et al., 1976). Fitted lines of Eq. (1) are drawn over the
experimental data (�, solid line; 
, dashed line).

fading oscillation when r is close to 2/((X0/u)−1)
(Fig. 1C,D).

3. Results and discussion

Eq. (1) was applied to supersaturated dissolu-
tion data obtained from the literature in order to
derive estimates for the dimensionless parameters
r and u/X0. Initially, the drug concentration val-
ues were transformed to the corresponding dis-
solved fractions of dose, Fn, and plotted as a
function of the generations, n. The transformation
of sampling times to generations, n, was achieved
by adopting the time needed to reach maximum
concentration (equivalent to maximum fraction of
dose dissolved) as the time step of Eq. (1). Initial
estimates for parameters r and u/X0 were derived
by reading the maximum and lowest values of Fn,
respectively. These values were further used as
starting points to a computer program, written in
QUICKBASIC, to determine the best parameter esti-
mates. The programme searches for values of r
and u/X0, optimizing the minimization of the sum
of squared discrepancies between the observed
values and the values given by the model. The
program can be obtained by the authors upon
request.

Fittings of Eq. (1) to the data taken from the
literature for dissolution of phenytoin ground
mixture with microcrystalline cellulose and pheny-
toin sodium salt powder (Yamamoto et al., 1976),
as well as nifedipine solid dispersions with nicoti-
namide and polyvinylpyrolidone (Suzuki and
Sunada, 1998), are shown in Figs. 2–4. The esti-
mated parameters values are listed in Table 1. The
three parameters used to describe the supersatu-
rated dissolution data are r, u/X0 and the time
step. The latter is quoted in the legends of Figs.
2–4 for each one of the data sets. The value of r
denotes the maximum fraction of dose which is
dissolved in a time interval equal to the time step
used. The value of u/X0 corresponds to the
plateau value, which is the fraction of dose re-
maining in solution at steady state.

However, the use of Eq. (1) should not be
considered as a panacea for modeling non-
monotonic dissolution curves. Obvious drawbacks

Fig. 3. Plot of the dissolved fraction Fn as a function of
generations, n (time step 2.5 min) using Eq. (1) for the
dissolution of 109 mg phenytoin sodium salt powder in 1 l of
JP VIII disintegration medium at 37°C (Yamamoto et al.,
1976). Fitted line of Eq. (1) is drawn over the experimental
data.

1B) or initially downwards and then upwards
(Fig. 1A); this decline can also take the form of a
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of the model using Eq. (1) are: (i) the data on the
ascending limb of the dissolution curve, if any,
should be ignored; (ii) the inherent error involved,
since the time required to reach the maximum
value of the dissolved fraction of drug is adopted
as the time interval between successive genera-

tions; (iii) the time values of the data points which
can be used for fitting purposes should be integer
multiples of the time step adopted. Moreover,
caution should be exercised by prospective users
of the method since when r takes values much
larger than u/X0, Eq. (1) exhibits chaotic be-
haviour following the period doubling bifurcation
(Macheras et al., 1996; Glass and Mackey, 1988).
For example, Eq. (1) leads to chaos when u/X0=
0.25 and r is higher than 0.855. Despite the afore-
mentioned disadvantages, Eq. (1) offers the only
approach which can be used to describe supersat-
urated dissolution data.
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