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Abstract

For understanding the influence of malware attacking on complex heterogeneous networks, this work studies a fractional
network-based SIRS epidemic model with fuzzy transmission and saturated treatment function. Firstly, we apply
the next-generation method to obtain the basic reproductive ratio R0, that is an important threshold value in the
investigation of asymptotic behavior of the proposed epidemic model. The obtained theoretical results indicates that
the value R0 significantly depends on the topology structure of the underlying network and the malware load. In
addition, we give a threshold value R̃0 > R0 that not only determines the existence of endemic equilibrium E∗ but also
ensures the clean of malware programs on the network. At last, the sensitivity analysis of the threshold value R0 and
some graphical simulations are presented to illustrate for the theoretical results.

Keywords: Fractional network-based epidemic model, fuzzy transmission, saturated treatment function, basic repro-
duction number, malware-free equilibrium, endemic equilibrium, asymptotic stability.

1 Introduction

Recently, many researchers have used mathematical modeling based on complex networks to study the spreading of
malicious objects in various populations. This approach is known as an effective tool, that helps us to better understand
the mechanism of epidemic diseases, to predict the evolution and influence of those diseases on the networks and decide
whether they are epidemic or non-epidemic. It is well-known that the nature of epidemic models is the compartmental
model, that is, the whole population is divided into some compartments and each compartment contains a number of
individuals that share the same epidemiological state. In classical model, when the whole population is small and well-
mixed, the rate of disease-causing contacts is often supposed to be equal. This assumption makes the model’s evaluation
more simply and tractable. However, it is un-realistic when the population is sufficiently large. Indeed, in many kinds
of complex networks such as the Internet, Facebook, Instagram social networks, sensor network and biological chain
network, etc., the connectability of different nodes on the networks is certainly un-similar and of course, the infections
of malware programs to these nodes are also not the same. Therefore, there is a need to take into consideration the
contact heterogeneity of complex networks when mathematically modeling epidemic models of malware program on the
networks. Recently, various epidemic models with network-based settings have been analyzed for better understanding
the dynamical behavior of epidemic diseases. Indeed, the paper [29] is known as a meaning pioneer work in this topic.
This paper presented a study on network-based SIS epidemic model on scale-free network and carried out a detailed
study with both analytical and numerical results of the proposed model. The most important contribution is the
finding of a threshold value for which the epidemic is absent and the corresponding dynamical behavior. In the paper
[12], Huo et al. proposed a three-compartmental epidemic model with susceptible, infected and recovered states to
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describe the virus infection on scale-free network. Firstly, the basic reproduction number R0 was evaluated to study
some characteristic properties of the proposed model. After that, by establishing an appropriate Lyapunov function,
the authors proved the importance of the number R0 in the study of asymptotic behavior of endemic equilibrium. In
an other work, in order to better describe the realistic scenario when the number of infected individuals may exceed the
treatment capacity, Li and Yousef [18] introduced the saturated treatment function in their work. After formulating a
network-based SIRS epidemic model with saturation, the paper [18] calculated the basic reproduction number R0 and
applied it to investigate asymptotic stability of equilibria, the backward bifurcation at R0 = 1. A novelty of this work
is the use of saturated treatment function instead of linear treatment function, that can be applied for our considered
model in future work. In the paper [19], Li et. al. introduced a SIRS epidemic model to describe the virus propagation
on heterogeneous network. This works proved that the presence or absence of the disease on network completely
depends on the value of basic reproduction number R0, i.e., the virus-free equilibrium is globally asymptotically stable
if R0 < 1, while if R0 > 1 then it is unstable. Next, the work [22] introduced an SIS model with limited treatment
capacity on adaptive networks in order to study the effect of anti-virus treatments on epidemic spreading. Firstly, the
author derived the existence condition of backward bifurcation or forward bifurcation at the disease-free equilibrium.
Then, they discussed the effect of bifurcation direction occurring at the disease-free equilibrium to the bi-stability
of endemic equilibria and the elimination of epidemic disease of the model. The obtained results are novelty and
interesting, however, the proposed model will be a better description for real-world network if it is extended to the
case of network-based setting. Moreover, complex heterogeneous epidemic models are also applied for studying the
information diffusion on the networks. For example, the rumor propagation on scale-free network was also studied by
Zan et. al. [32], in which the authors formulated an SICR epidemic model and discussed the asymptotic stability of the
model’s equilibrium points. The contribution of this work is the introduction of a new compartment of counterattack to
stifle the rumor propagation. In a recent work, Hosseini and Zandvakili [11] proposed a mathematical SEIRS-C model
to describe the rumor spreading on social network. The highlighted contribution of this paper is the introduction of a
new compartment (C) to study the effects of counter-attack factor in the rumor control. In addition, the use of fuzzy
logic to express the transmission rate is also a novelty of this paper. After establishing the network-based SEIRS-C
epidemic model, this paper presented the procedure to evaluate the basic reproductive ratio R0 and discussed the local
asymptotic stability of disease-free equilibrium point of the proposed model.

Fractional differentiation and fractional integration, or fractional calculus in general, are considered as the effective
tools for characterizing the behaviors of a large category of complex dynamical systems that the systems with integer
order cannot be applied. With a long history of development, numerous studies have proved that fractional calculus
has a considerable advantages and superiority when modeling many non-local phenomena, the processes with memory
and hereditary properties or the motions in viscoelasticity environments. Beside the rapid popularization of fractional
calculus, the study of fractional dynamical systems has been paid lots of attentions by researchers and achieved a lot of
noticeable results in various fields of basic sciences and engineering such as electrical circuits, fluid dynamics, biological
models, and so forth. On the other hand, with the introduction of Lyapunov function method for fractional differential
systems (see [14]), the stability analysis of fractional differential systems has also attracted a lot of attentions. Due
to the better ability in modeling and data-fitting, fractional calculus has been also applied to study the fractional
epidemiology theory and applications. Note that most of studies in fractional epidemic models described the disease
transmission by using fractional differential systems in Caputo sense. Then, it was proved that the obtained epidemic
model can provide a better estimation for infection processes, as well as obtain the interesting differential equations
from a mathematical viewpoint. However, we must face to a natural question that does the change in the order of
derivative automatically establish consistent models w.r.t. parameters? Fortunately, the authors of [4] proved that this
cannot happen in general. However, to the best of our knowledge, there have only a few studies on network-based
epidemic models with fractional-order and related problems. For instance, Graef et. al. [9] proposed a fractional-order
SIR epidemic model with demography to examine the user adoption and abandonment of online social networks, where
adoption is analogous to infection, and abandonment is analogous to recovery. After that, they discussed the existence
and uniqueness of non-negative solutions of the proposed model as well as the existence and stability of its equilibrium
points by using the Jacobian matrix technique and the Lyapunov function method. In particular, a threshold Rα

0 was
established to prove that the user-free equilibrium E0 is locally asymptotically stable if Rα

0 < 1 and the user-prevailing
equilibrium E∗ is globally asymptotically stable if Rα

0 > 1. The theoretical results were then demonstrated by a case
study of fitting the considered model to some Instagram user data. However, it is a fact that in reality, the network of
Instagram users is not well-mixed and it should be taken into consideration the heterogeneity of the network for better
description. In the literature [13, 16, 7], the authors proposed to study different network-based epidemic models with
fractional derivative. One of common characteristics of these models are the use of linear treatment function/linear
immunization function, however, in reality, since each population or network has its maximal capacity for the treatment
of a disease, the treatment function is often proportional to the number of the infected individuals when the capacity
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of treatment is not reached, and otherwise, takes the maximal saturated level. Therefore, in this work, we propose to
use a treatment function of saturated form for better description of the saturation phenomena.

Since the nature of almost natural phenomena is vagueness and uncertainty, the mathematical modeling of real-world
epidemic diseases must always accept the presence of uncertainties. However, to our best knowledge, there have been
very few studies considering the environmental uncertainty in any epidemic model. It is well-known in many biological
models that the epidemic disease occurs only if the viral load reaches a certain threshold and obviously, the concept of
viral amount is quite difficult to express by exact or certain value. This leads to the use of fuzzy set theory initiated by
Zadeh [31] to get the better modeling of epidemic diseases in realistic situations. In the recent decades, fuzzy set theory
has achieved a lot of significant results in the theory and application of fractional differential equations, see [6, 5, 8, 10].
Despite of the tremendous potential in the modeling of epidemic models, the uses of fuzzy sets in epidemiology theory
are not frequent. Some noticeable applications of fuzzy sets in epidemic models can be found in Dong et. al. [6, 5],
Mahato et. al. [23], Mondal et. al. [25], Nandi et. al. [27].

Motivated by aforesaid, this work is devoted to study a fractional network-based epidemic model with three com-
partments: Susceptible (S), Infectious (I) and Recovered (R) with fuzzy transmission and the use of saturated treatment
function. The main contributions of this work can be highlighted as follows:

(i) Based on SIRS epidemic model, we formulate a new epidemic model with fractional-order derivative in the form
of mean-field reaction rate equations, namely fractional network-based SIRS epidemic model, for describing and
analyzing the spread of malicious objects on scale-free network. Especially, the proposed model considers a
non-linear saturated treatment function for the better fitting with real-world situations. Indeed, in many real-
world networks, there is often a maximal capacity for the treatment or immunization of an epidemic disease and
moreover, when the number of infected cases take the maximal saturated level, this certainly leads to the situation
that there are a number of infected being delayed for treatment. Hence, the assumption that the treatment rate is
proportional to the number of infected individuals in some classical models seems less realistic. Therefore, based
on the approach in [20, 33], this work proposes to use a nonlinear treatment function.

(ii) Due to the fact that the disease infection often occurs only if the amount of malware program on the network
exceeds a certain threshold value and reaches a saturation level at a finite malware load, we propose to use fuzzy
membership function to represent the transmission rate σk, in which the infection happens only if the malware
load on the network reaches a threshold value. Moreover, this work also discusses the effect of node’s degree on
the value of transmission rate.

(iii) Based on the next-generation matrix method, we analytically compute the basic reproduction number R0, that
is an important threshold value in epidemiology theory. However, this work also indicates that the proposed
epidemic model can’t reach the endemic equilibrium state if the basic reproduction number R̃0 < 1. In addition,
it is also proved that the existence and uniqueness of endemic equilibrium E∗ depends on not only the basic
reproduction number R0 but also the other parameters due to the effect of saturated treatment function.

(iv) By using the linearization method and the mathematical induction principle, we give a criteria for the local
asymptotic stability or un-stability of malware-free equilibrium E0 that are related to the basic reproduction
number R0. Next, by applying the direct Lyapunov functional method with an appropriate Lyapunov function,
we can conclude that the attractivity of the equilibrium E0 depends upon a threshold value R̃0 > R0, which
proves that the condition R0 < 1 is not sufficient for eliminating the epidemic disease.

2 Model formulation

In this paper, we characterize the complex heterogeneous network by using Barabási-Albert scale-free network [1] to
get better description for the heterogeneity of malware program ’s propagation on the complex network. The structure
of Barabási-Albert scale-free network can be briefly summarized as follows:

• At the initialization, the scale-free network has a small number of fully connected vertices with N0 nodes;

• A new node with m links is added to the complex network after each time-step and linked to an old node i with

a probability P(ki) =
ki∑
j kj

, where the parameter ki is the degree (connectivity) of the ith-node.
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• When the complex network attains the scale-free stationary state, it can be seen that P(k) = ck−3 is the power-law
probability distribution such that a node has k connected links, where c is a parameter such that∑

k

ck−3 = 1.

2.1 The fuzzy transmission

In this work, assume that one infectious individual always comes to the contact of maximum one susceptible individual
so that the degree-dependent transmission rate of the kth-group σk = σk ≤ k. In addition, in order to describe the
heterogeneity on the complex network, we propose to represent the transmission rate σ as a function of the available
malware program. In particular, this parameter is proposed to describe through the following fuzzy set:

σ(τ) =


0 if τ ≤ τm

σ
τ − τm
τ0 − τm

if τm < τ ≤ τ0

σ if τ0 < τ ≤ τM .

Here, we can see that there always exists a lower threshold τm for the malware propagation, that is, the disease infection
occurs only if the amount of malware program on the network must exceed τm, otherwise, the chance of transmission is
negligible. In addition, the value of τm would depend upon both environmental characteristics and nature of malware
program, that is reasonable for the choice of fuzzy membership function for transmission rate. Next, there has an upper
threshold of malware load, say τ0, beyond which the transmission rate reaches the maximum value σ(τ) = 1. From
τm to τ0, the transmission rate is assumed to vary linearly. Furthermore, assume that the malware load has an upper
bound, say τM . Moreover, since the nature of realistic phenomena is uncertainty, it is not natural to represent exactly
the model’s parameters by crisp values. For instance, in order to express the concept “amount of malware program”,
the use of linguistic variables seems to be more suitable. Thus, this work assumes that the malware load on the network
can be classified into three classes and use linguistic terms, namely “LOW (Al)”, “MEDIUM (Am)” and “HIGH (Ah)”,
to characterize for each class. Additionally, in each classification, based on the threshold values τm, τ0, τM , the malware
load is expressed by using fuzzy numbers (see Figure 1). This approach can be found in [25, 27].

Figure 1: The membership function of fuzzy transmission rate σ and linguistic variables of malware load

2.2 The formulation of the fractional network-based SIRS epidemic model

In SIR epidemic model, we assume that each node can belong to one of three states: Susceptible state (S), Infectious
state (S) and Recovered state (R). In order to taking into consideration the heterogeneity of scale-free networks, the
whole population can’t be well-mixed and the rate of disease-causing contacts must be varied depending upon the node’s
connectivity. Indeed, based on the number of connected links a node has per unit time, we classify the whole population
into n groups and assume that nodes in a same group are dynamically equivalent. Denote Sk(t), Ik(t), and Rk(t) by
the densities of susceptible, infectious and recovered nodes with degree k at time t, respectively for k = 1, 2, . . . , n and
denote Nk(t) by the total number of nodes with degree k at time t. The flowchart of malware propagation of the SIRS
epidemic model in the kth-group is given in Figure 2.
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Figure 2: The flowchart of malware propagation among compartments: Susceptible (S), Infectious (I), Recovered (R)

In several decades, fractional dynamical systems have proved their importance in real-world modeling due to the
effective memory function of fractional derivatives, that has been widely used to model many non-local physical phe-
nomena such as electric flows in signal propagation or processes in the porous media. Motivated by aforesaid, this
work is devoted to study a network-based epidemic model governed by the following fractional mean-field reaction rate
equations: 

C
0 D

β
t Sk(t) = Λ− σk(τ)Sk(t)Θ(t)− µSk(t) + ωRk(t)

C
0 D

β
t Ik(t) = σk(τ)Sk(t)Θ(t)− µIk(t)−

rIk(t)

1 + γΘ(t)

C
0 D

β
t Rk(t) =

rIk(t)

1 + γΘ(t)
− (µ+ ω)Rk(t),

(1)

with the initial conditions

Sk(0) = S0
k, Ik(0) = I0k , Rk(0) = R0

k, (2)

in which the notation C
0 D

β
t (·) denotes for the Caputo fractional derivative of order β ∈ (0, 1] of state functions (see

Definition 7.2 in Appendix). The meanings of the model’s parameters are given in Table 1:

Table 1: The model’s parameters

No Parameter Description

1 σk(τ) The degree-dependent fuzzy transmission rate

2 r The cure rate

3 µ The natural death rate

4 Λ The natural birth rate
5 ω The rate in which a recovered node turns into susceptible

Furthermore, since the un-correlation of node’s connectivity on the network is taken into consideration, the probability
that a given link is connected to an infectious node can be expressed by the following function

Θ(t) =
1

⟨k⟩

n∑
k=1

kP(k)Ik(t),

where ⟨k⟩ =
∑n

k=1 kP(k) is known as the mean degree of the network. On the other hand, since the fact that an
anti-malware program only attains a certain maximal treatment capacity for each epidemic disease, Zhang et. al. [33]
introduced a pioneer work on the study of epidemic model with a staged treatment function h(I) = rI

1+γI compatible
with the treatment capacity. This treatment function also shows its advantage in measuring the extent of the influence
of the infected being delayed for treatment by using a parameter γ in treatment function. This makes our epidemic
model seem more reasonable than the case using the linear function. In this paper, the terms rIk

1+γΘ represents for the

recovery with treatment of the kth-infectious group.
One can easily show that the solution of the fractional differential system (1) with the initial condition (2) is defined

for all t > 0 and k = 1, 2, . . . , n. From the view point of epidemiology, we only need to focus on the positiveness and
the positively invariant set of solution. So we assume that

Sk(0) > 0, Ik(0) ≥ 0, Rk(0) ≥ 0, k = 1, 2, . . . , n.
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Denote

x(t) = (S1(t), I1(t), R1(t), . . . , Sn(t), In(t), Rn(t))
⊤
,

Σ+ =

{
x(t) ∈ R3n

+ : Sk + Ik +Rk ≤ Λ

µ
, k = 1, n

}
.

Due to the presence of epidemic disease on the network and by definition of the probability function Θ(t), we assume
that Θ(t) > 0 for each t ≥ 0.

Lemma 2.1. Assume that x(t) is a solution of the fractional network-based SIRS epidemic model (1) with the initial
condition (2) and x(0) belongs to Σ+. Then, for all t > 0, the solution x(t) belongs to Σ+.

Proof. By contrary, assume that for each k = 1, n, there is a t0 > 0 such that Sk(t) = 0 at t = t0, Sk(t) > 0 for all
0 ≤ t < t0 and Sk(t) < 0 for all t0 < t ≤ t0 + ε0 with sufficiently small ε0 > 0. Then, we consider two following cases:

Case 1: If Ik(t) ≥ 0 for all t ≥ 0, then we have

C
0 D

β
t Rk(t) =

rIk(t)

1 + γΘ(t)
− (ω + µ)Rk(t) ≥ −(ω + µ)Rk(t).

Then, by applying fractional comparison principle (Lemma 10, [18]), it implies that the function

Rk(t) ≥ Rk(0)Eβ

(
−(ω + µ)tβ

)
≥ 0,

for all t ≥ 0. As a result, at t = t0, we have C
0 D

β
t Sk(t)|t=t0= Λ + ωRk(t0) > 0. By using Lemma 7.8 for a = 0 and

t = t0 + ε0, it implies that Sk(t0 + ε0) = Sk(0) +
εβ0

Γ(β)
C
0 D

β
t Sk(t)|t=ξ, where t0 ≤ ξ ≤ t0 + ε0 and 0 < ε0 ≪ 1 is small

enough such that C
0 D

β
t Sk(t)|t=ξ ≥ 0. This means Sk(t0 + ε0) > 0, which contradicts our assumption.

Case 2: If there exists a time t1 > 0 such that Ik(t) = 0 at t = t1, Ik(t) > 0 for all t ∈ [0, t1) and Ik(t) < 0 for all
t1 < t ≤ t1 + ε1 with sufficiently small ε1 > 0, then our proof is proceeded in two following sub-cases:
Sub-case 1: If t1 ≥ t0 then by using similar arguments as in Case 1, we can prove that the functions Ik(t), Rk(t) are all
non-negative on [0, t1] and Sk(t0 + ε0) > 0, which leads to a contradiction.
Sub-case 2: If t1 < t0 then we have S(t1) > 0 and Θ(t1) > 0. Moreover, at the time t = t1, we receive

C
0 D

β
t Ik(t)|t=t1= σk(τ)Sk(t1)Θ(t1) > 0.

Then, we can choose 0 < ε1 ≪ 1 such that C
0 D

β
t Sk(t)|t=ξ ≥ 0 with ξ ∈ [t1, t1 + ε1]. Next, by using Lemma 7.8 for a = 0

and t = t1 + ε1, we obtain

Ik(t1 + ε1) = Ik(0) +
εβ1

Γ(β)
C
0 D

β
t Ik(t)|t=ξ.

It implies that Ik(t1 + ε1) > 0, which contradicts our assumption. Therefore, we can conclude that Sk(t) > 0 is always
positive for all t ≥ 0. Finally, by doing similar arguments, we can also prove that the functions Ik(t) and Rk(t) are all
non-negative for all t ≥ 0 and k = 1, n.

Next, by using the second assumption, we have Nk(0) = Sk(0) + Ik(0) +Rk(0) ≤
Λ

µ
. By summing up all fractional

differential equations of the system (1), we immediately obtain

C
0 D

β
t Nk(t) = Λ− µNk(t). (3)

By applying Example 4.9 in [15], the general solution of the fractional differential equation (3) is given by

Nk(t) = Nk(0)Eβ(−µtβ) + Λ

∫ t

0

Eβ,β(−µ(t− τ)β)

(t− τ)1−β
dτ = Nk(0)Eβ(−µtβ) + ΛtβEβ,β+1(−µtβ).

Then, by choosing α1 = β, α2 = 1 and x = −µtβ , Lemma 7.5 implies that

Nk(t) = Nk(0)Eβ(−µtβ) + ΛtβEβ,β+1(−µtβ) = Nk(0)Eβ(−µtβ) +
Λ

µ

[
1− Eβ(−µtβ)

]
.
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Since x(0) ∈ Σ+, it implies that Nk(0) ≤
Λ

µ
and it should be noted that 0 ≤ Eβ(−µtβ) ≤ 1 for all t ≥ 0. Thus, we have

Nk(t) ≤
Λ

µ
Eβ(−µtβ) +

Λ

µ

[
1− Eβ(−µtβ)

]
=

Λ

µ
,

which means that Σ+ is a positively invariant set for the fractional network-based epidemic model (1).

3 The basic reproduction number R0 and equilibrium points

3.1 The evaluation of basic reproduction number R0

It can be easily seen that the fractional network-based SIRS epidemic model (1) admits a malware-free equilibrium

(MFE) E0 = (
Λ

µ
, 0, 0, . . . ,

Λ

µ
, 0, 0)︸ ︷︷ ︸

3n

. Now, our aim is to find a threshold value which plays a key role in not only the

unique existence of endemic equilibrium E∗ but also the local asymptotic behavior of the model (1). This value is called
basic reproduction number and denoted by R0. In epidemiology, the basic reproduction number R0 is the number
of cases directly caused by an infected individual throughout its infectious period. The essential significance of R0

are determining if an infectious disease can spread in a population and determining the proportion of the population
should be immunized through vaccination to eliminate the epidemic disease. Note that R0 is not a biological constant
for a pathogen as it is also affected by other factors such as environmental conditions and the behavior of the infected
population. In order to evaluate the basic reproduction number, we propose to apply the next-generation matrix method
introduced by Diekmann et al. [2]. It should be noted that the infection causing compartment of the proposed model
is the compartment (I). Therefore, by using the second equation of the system (1), we find out that the gain term and
lost term for the epidemic model are as follows:

• The gain term is σk(τ)Sk(t)Θ(t).

• The loss term is µIk(t) +
rIk(t)

1 + γΘ(t)
.

Then, the rate matrix F of new infections appearance at the equilibrium E0 can be given by

F =
σ(τ)Λ

µ⟨k⟩


1P(1) 2P(2) · · · nP(n)
2P(1) 22P(2) · · · 2nP(n)

...
...

. . .
...

nP(1) 2nP(2) · · · n2P(n)

 =
σ(τ)Λ

µ⟨k⟩


1
2
...
n

 [P(1) 2P(2) · · · nP(n)
]
,

and the transition matrix V of infected states is V = (µ + r)In, where In is the n × n identity matrix. The basic
reproduction number R0 is then the largest eigenvalue of the matrix FV−1 given by

σ(τ)Λ

µ(µ+ r)⟨k⟩


1
2
...
n

 [P(1) 2P(2) · · · nP(n)
]
.

Therefore, we directly get that R0 =
σ(τ)Λ⟨k2⟩
µ(r + µ)⟨k⟩

, where ⟨k2⟩ =
n∑

k=1

k2P(k).

Remark 3.1. According to the formula of R0, we can conclude that the threshold value R0 is directly proportional to

the network structure’s parameter
⟨k2⟩
⟨k⟩

. This means that the network’s heterogeneity can directly affect to the malware

widespread on the network.
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3.2 The existence of an endemic equilibrium

The following theorem presents an interesting result on the existence and uniqueness of an endemic equilibrium (EE)
of the network-based epidemic model (1).

Theorem 3.2. Assume that Λ ≤ µ
(
1 + r

(µ+ω)(1+γ)

)
. Then, the following assertions are fulfilled:

1. If R̃0 < 1 then the fractional network-based SIRS epidemic model (1) doesn’t have any endemic equilibrium.

2. If R0 > 1 then the fractional network-based SIRS epidemic model (1) admits at least one endemic equilibrium E∗
given by

E∗ = (S∗
1 , I

∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n),

where

S∗
k =

1

σk(τ)Θ∗

(
µ+

r

1 + γΘ∗

)
I∗k , R∗

k =
rI∗k

(µ+ ω)(1 + γΘ∗)
, Θ∗ =

1

⟨k⟩

n∑
i=1

iP(i)I∗i ,

I∗k =
Λσk(τ)Θ

∗

µ
[
µ+ σk(τ)Θ∗ + rσk(τ)Θ∗

(µ+ω)(1+γΘ∗) +
r

1+γΘ∗

] .
Moreover, if γ <

σ(τ)

µ+ ω
then the endemic equilibrium E∗ of the network-based epidemic model (1) is unique.

Proof. Assume that E∗ = (S∗
1 , I

∗
1 , R

∗
1, . . . , S

∗
n, I

∗
n, R

∗
n) is an endemic equilibrium of the fractional network-based SIRS

epidemic model (1). Then, for each k = 1, 2, . . . , n, the triple (S∗
k , I

∗
k , R

∗
k) satisfies the following system

σk(τ)SkΘ− µIk − rIk
1 + γΘ

= 0

rIk
1 + γΘ

− (µ+ ω)Rk = 0

Sk + Ik +Rk =
Λ

µ
,

(4)

where Θ =
1

⟨k⟩

n∑
i=1

iP(i)Ii. Next, by expressing the variables Sk, Rk in the two first equations of the system (4) in the

terms of Ik, we immediately get

S∗
k =

1

σk(τ)Θ∗

(
µ+

r

1 + γΘ∗

)
I∗k , R∗

k =
r

(µ+ ω)(1 + γΘ∗)
I∗k .

After that, we substitute the expressions of S∗
k and R∗

k into the last equation of the system (4), we receive[
1 +

1

σk(τ)Θ∗

(
µ+

r

1 + γΘ∗

)
+

r

(µ+ ω)(1 + γΘ∗)

]
I∗k =

Λ

µ
,

or equivalently, I∗k =
Λσk(τ)Θ

∗

µ
[
µ+ σk(τ)Θ∗ + rσk(τ)Θ∗

(µ+ω)(1+γΘ∗) +
r

1+γΘ∗

] . Next, by substituting I∗k into the expression of the

function Θ(t), the equation Θ∗ =
1

⟨k⟩

n∑
i=1

iP(i)I∗i becomes the following self-consistency equation

Θ∗ =
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)Θ∗

µ
[
µ+ σi(τ)Θ∗ + rσi(τ)Θ∗

(µ+ω)(1+γΘ∗) +
r

1+γΘ∗

] . (5)

It should be noted that the self-consistency equation (5) always admits the trivial solution Θ ≡ 0. Now, we aim to
determine a sufficient condition for which the equation (5) has a solution Θ∗ ∈ (0, 1). Firstly, we define

f(Θ) =
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)

µ
[
µ+ σi(τ)Θ + rσi(τ)Θ

(µ+ω)(1+γΘ) +
r

1+γΘ

] .
Here, we can see that
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• The function f(Θ) is continuous on the closed interval [0, 1] and differentiable on the open interval (0, 1).

• f(0) =
Λσ(τ)

µ(r + µ)⟨k⟩

n∑
k=1

k2P(k) = R0.

• For each Θ ∈ [0, 1], we have f(Θ) <
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)
µ2

= R̃0.

• At Θ = 1, we have

f(1) =
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)

µ
[
µ+ r

1+γ + σi(τ)
(
1 + r

(µ+ω)(1+γ)

)] <
1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)

µσi(τ)
(
1 + r

(µ+ω)(1+γ)

) = 1.

Then, the non-trivial solution of the equation (5) is the solution of the following equation

1

⟨k⟩

n∑
i=1

Λσ(τ)i2P(i)

µ
[
µ+ σi(τ)Θ + rσi(τ)Θ

(µ+ω)(1+γΘ) +
r

1+γΘ

] = 1. (6)

Note that if R̃0 ≤ 1 then it implies that f(Θ) < R̃0 ≤ 1. As a result, there doesn’t exist any value Θ ∈ [0, 1] such that
the equation (6) holds, or equivalently, there doesn’t exist any endemic equilibrium when R̃0 ≤ 1. The first assertion
of the theorem is completed.

By using the assumption R0 > 1, it directly follows that f(0) > 1. Therefore, by virtue of Intermediate Value
theorem, the equation (6) has at least one solution Θ ∈ (0, 1), that is also the non-trivial solution of the equation (5).
As a consequence, the solution Θ∗ ∈ (0, 1) of the self-consistency equation (5) will solve the endemic equilibrium E∗.
In order to prove the uniqueness of the endemic equilibrium E∗, let us compute

d

dΘ
f(Θ) =

d

dΘ

{
n∑

k=1

Ak(1 + γΘ)

Bk(Θ)

}
=

n∑
k=1

γAkBk(Θ)−Ak(1 + γΘ) d
dΘBk(Θ)

B2
k(Θ)

,

where for simplicity in representation, we denote

Ak =
Λσ(τ)k2P(k)

µ⟨k⟩
, Bk(Θ) = (1 + γΘ)(µ+ σk(τ)Θ) + r +

rσk(τ)Θ

µ+ ω
.

By some fundamental computations, we obtain

d

dΘ
f(Θ) =

n∑
k=1

rγAk − rσk(τ)Ak

µ+ω − σk(τ)Ak(1 + γΘ)2

B2
k(Θ)

=
n∑

k=1

rAk

(
γ − σk(τ)

µ+ω

)
− σk(τ)Ak(1 + γΘ)2

B2
k(Θ)

.

Therefore, if γ ≤ σ(τ)

µ+ ω
then the derivative

d

dΘ
f(Θ) < 0 for all Θ ∈ [0, 1] and hence, the equation (6) has a unique

solution Θ ∈ (0, 1). The proof is completed.

4 The asymptotic behavior of malware-free equilibrium E0

4.1 The local asymptotic stability

Theorem 4.1. The malware-free equilibrium E0 of the fractional network-based SIRS epidemic model (1) is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Based on the stability theory of fractional dynamical systems, the local asymptotic stability of the malware-free
equilibrium E0 can be determined by finding the modulus of eigenvalue’s arguments of Jacobi matrix J(E0). Let us
consider the Jacobi matrix at E0 of the epidemic model (1) in the following form

J(E0) =


J11 J12 · · · J1n
J21 J22 · · · J2n
...

...
. . .

...
Jn1 Jn2 · · · Jnn


3n×3n

,
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where Jkk, Jkk are 3× 3-square matrices given by

Jkk =


σk(τ)kΛP(k)

µ⟨k⟩
− (µ+ r) 0 0

−σk(τ)kΛP(k)
µ⟨k⟩

−µ ω

r 0 −(ω + µ)

 , Jki =


σk(τ)ΛiP(i)

µ⟨k⟩
0 0

−σk(τ)ΛiP(i)
µ⟨k⟩

0 0

0 0 0

 (k ̸= i),

for each k, j = 1, n. Then, by applying the mathematical induction principle, the characteristic polynomial w.r.t. the
Jacobi matrix J(E0) can be given by

P(λ̃) = (λ̃+ µ)n(λ̃+ µ+ ω)n(λ̃+ µ+ r)n−1

(
λ̃+ (µ+ r)− 1

µ⟨k⟩

n∑
k=1

σk(τ)ΛkP(k)

)
.

According to Theorem 7.20 in [3], the malware-free equilibrium E0 is locally asymptotically stable if and only if all

eigenvalues
{
λ̃j

}
j=1,3n

of the Jacobi matrix J(E0) satisfy

∣∣∣arg (λ̃j

)∣∣∣ > βπ

2
, j = 1, 2, . . . , 3n.

It can easily verified that the characteristic equation P(λ̃) = 0 has 3n − 1 negative solutions, namely λ̃ = −µ with
multiplicity n, λ̃ = −(µ+ ω) with multiplicity n and λ̃ = −(µ+ r) with multiplicity n− 1. The last eigenvalue of the

characteristic polynomial P
(
λ̃
)
is

λ̃ = −(µ+ r) +
1

µ⟨k⟩

n∑
k=1

σk(τ)ΛkP(k) = (µ+ r)

(
Λσ(τ)

µ(µ+ r)⟨k⟩

n∑
k=1

k2P(k)− 1

)
= (µ+ r)(R0 − 1).

By using the assumption R0 < 1, we immediately deduce that eigenvalues of the Jacobi matrix J(E0) are all negative

and hence, their arguments arg
(
λ̃j

)
= π for all j = 1, 3n. In addition, since β ∈ (0, 1], we directly get that

∣∣∣arg (λ̃j

)∣∣∣ = π >
βπ

2
for all j = 1, 3n.

Therefore, by Theorem 7.20 in [3], we can conclude that the malware-free equilibrium E0 is locally asymptotically
stable. Otherwise, if R0 > 1 then the eigenvalue λ̃ = (µ + r)(R0 − 1) is real and strictly positive, i.e. it has zero
argument, and hence, the malware-free equilibrium E0 is unstable.

Remark 4.2. The main approach of Theorem 4.1 is based on linearization method and stability criteria for fractional
differential system in Theorem 7.20 in [3] related to modulus of eigenvalue’s arguments. By applying linearization
method, we get that the Jacobi matrix J(E0) is a square matrix of order 3n and then, the mathematical induction
principle follows that the matrix J(E0) has 3n − 1 negative eigenvalues and the last eigenvalue depending on the sign
of R0 − 1. Therefore, we can conclude that the basic reproduction number R0 plays a key role in the local asymptotic
behavior of the network-based epidemic model (1). At R0 = 1, since the eigenvalue λ̃ = (µ+ r)(R0 − 1) is zero then its
argument is undefined. By using the remark after Theorem 2 in [21], we can conclude that the malware-free equilibrium
E0 is stable but not asymptotically stable.

4.2 The global asymptotic stability

In the following, we discuss the global asymptotic stability of the malware-free equilibrium for the network-based
epidemic model (1). For this aim, we denote a threshold value

R̃0 =
Λσ(τ)⟨k2⟩

µ2⟨k⟩
.

Now, we will prove that R̃0 is the threshold value for which the malware-free equilibrium E0 is globally asymptotically
stable. Indeed, we have
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Theorem 4.3. If the parameter R̃0 satisfies R̃0 < 1 then the malware-free equilibrium E0 of the fractional network-
based SIRS epidemic model (1) is globally asymptotically stable.

Proof. Let x(t) = {(Sk(t), Ik(t), Rk(t))}nk=1 be a solution of the fractional network-based SIRS epidemic model (1). For
simplicity in representation, we denote

Sk := Sk(t), Ik := Ik(t),

Rk := Rk(t), Θ := Θ(t).

Now, we will apply the direct Lyapunov method to discuss the global asymptotic stability of the equilibrium E0. In
particular, we construct the Lyapunov function along the solution x(t) by a function V : Σ+ → R, given by

V(x(t)) =
1

⟨k⟩

n∑
k=1

kP(k)
{
Sk − Λ

µ
− Λ

µ
ln
(µSk

Λ

)
+ Ik +Rk

}

=
1

⟨k⟩

n∑
k=1

kP(k) {Ψ(Sk) + Ik(t) +Rk(t)} .

According to Remark 7.7, we directly get that Ψ(Sk) = Sk − Λ
µ − Λ

µ ln
(

µSk

Λ

)
is a non-negative function for all Sk > 0

and attains the global minimum at Sk =
Λ

µ
. In addition, based on the non-negativeness of the solution x(t) stated

in Lemma 2.1, it implies that the function V(x(t)) is non-negative definite with respect to malware-free equilibrium
E0. Next, by taking the fractional derivative in Caputo sense for the function V(x(t)) along x(t) and then, applying
Lemma 7.6, we receive

C
0 D

β
t V(x(t)) =

1

⟨k⟩

n∑
k=1

kP(k)
(
C
0 D

β
t Φ(Sk) +

C
0 D

β
t Ik + C

0 D
β
t Rk

)
=

1

⟨k⟩

n∑
k=1

kP(k)
[(

1− Λ

µSk

)
C
0 D

β
t Sk + C

0 D
β
t Ik + C

0 D
β
t Rk

]
,

where (
1− Λ

µSk

)
C
0 D

β
t Sk = 2Λ− σk(τ)SkΘ− µSk + ωRk − Λ2

µSk
+

σk(τ)ΛΘ

µ
− ωΛRk

µSk

= − µ

Sk

(
Λ2

µ2
− 2Sk

Λ

µ
+ S2

k

)
+

σk(τ)ΛΘ

µ
− σk(τ)SkΘ+ ωRk

(
1− Λ

µSk

)
, (7)

and

C
0 D

β
t Ik + C

0 D
β
t Rk = σk(τ)SkΘ− µIk − (µ+ ω)Rk. (8)

By combining two inequalities (7) and (8), we receive(
1− Λ

µSk

)
C
0 D

β
t Sk + C

0 D
β
t Ik + C

0 D
β
t Rk ≤ − µ

Sk

(
Λ

µ
− Sk

)2

+
σk(τ)ΛΘ

µ
− µIk + ωRk

(
1− ω + µ

ω
− Λ

µSk

)
.

For each t ≥ 0 and x(t) ∈ Σ+, note that − µ

Sk

(
Λ

µ
− Sk

)2

≤ 0 and ωRk

(
1− ω + µ

ω
− Λ

µSk

)
≤ 0. Hence, we have

C
0 D

β
t V(x(t)) ≤ 1

⟨k⟩

n∑
k=1

kP(k)
[
σk(τ)ΛΘ

µ
− µIk

]

= µΘ

[
σ(τ)

µ2⟨k⟩

n∑
k=1

Λk2P(k)− 1

]
(9)

= µΘ(R̃0 − 1).
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Thus, it implies that if R̃0 < 1 then C
0 D

β
t V(x(t)) < 0. In addition, C

0 D
β
t V(x(t)) = 0 if and only if

Sk =
Λ

µ
, Ik = Rk = 0, k = 1, 2, . . . , n.

The largest invariant set of
{
x(t) ∈ Σ+ : C0 D

β
t V(x(t)) = 0

}
is the singleton set {E0}. Therefore, by using Lemma 4.6

in [14], the proof is completed.

Remark 4.4. The key tool to study the global asymptotic stability of the malware-free equilibrium E0 is the choice of an
appropriate Lyapunov function V(x(t)). In general, the Lyapunov functions are often constructed in quadratic form or
in a special form associated with dynamic of the proposed differential systems. In this theorem, the use of non-negative
function Ψ(Sk) plays an important role to associate the negative definite property of the Caputo fractional derivative
C
0 D

β
t V(x(t)) with the value of the threshold R̃0. Some preceding works, also used this type of Lyapunov function, can

be found in [9, 13, 17, 19, 20].

Remark 4.5. By the inequality (9), we have

C
0 D

β
t V(x(t)) ≤ (µ+ r)Θ

[
Λσ(τ)

µ(µ+ r)⟨k⟩

n∑
k=1

k2P(k)− µ

µ+ r

]
≤ (µ+ r)Θ

(
R0 −

µ

µ+ r

)
.

This requires R0 ≤ µ

µ+ r
< 1 to ensure C

0 D
β
t V(x(t)) ≤ 0. Therefore, we can conclude that the condition R0 < 1 is

not sufficient enough to eliminate the epidemic disease on network. that is the reason why we give a threshold value
R̃0 > R0 to evaluate the global asymptotic stability of malware-free equilibrium E0.

5 Applications

Hand-Foot-Mouth Disease (HFMD) is a common infectious disease for children, especially children are under 5 years
old. From December 19th, 2020 to January 18th, 2021, Vietnam had 2, 901 cases of HFMD, that is 2.3 times higher than
the same period last year, see [34]. In this section, we will apply the proposed fractional network-based SIRS epidemic
model (1) for describing the dynamic of HFMD in the population of children below the age of 10. Here, since the HFMD
is infected from a child to another through direct contacts and it is obvious that the contact between children in reality
is not well-mixed, we will use Barabási-Albert scale-free network to describe the contact heterogeneity of children. We
assume that the maximum contact of a child is at his school with n = 20 and the probability that a randomly child
has degree k, i.e., he is in the contact with k other children, is given by P(k) = ck−3, where c is known as a balanced

parameter such that
20∑
k=1

ck−3 = 1. Indeed, since
20∑
k=1

P(k) = 1, it follows that the constant c = 0.8327 by using Matlab

computation. Moreover, the parameters of network structure ⟨k⟩ and ⟨k2⟩ are computed by MatLab program as follows:

• The parameter ⟨k⟩ =
50∑
k=1

ck−2 ≈ 1.3291 is the average degree of the network, that is, on the average, each child

in the network will contact with 1.3291 other children.

• The parameter ⟨k2⟩ =
n∑

k=1

ck−1 ≈ 2.9933 is the second moment of the node degree that measures the fluctuation

of the degree distribution.

Moreover, the used parameters of the epidemic model are given in Table 2. Here, all the parameter values are chosen
hypothetically due to the unavailability of real-world data.

Table 2: The used parameters in the SIRS epidemic model
Parameter Value Parameter Value

Λ 0.12 µ 0.05

σ 0.1 ω 0.06
r 0.8 γ 4
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5.1 The influence of the fuzzy transmission rate to R0

Since the transmission rate σk(τ) = kσ(τ) is represented as a function of viral load τ , the basic reproduction number
R0 then can be known as a fuzzy number w.r.t. the viral load. Based on the analysis results presented in Section III
and Section IV, the threshold value R0 has an essential role in the asymptotic behavior of the model. In the following,
we will discuss the influence of viral load to the threshold value R0 and the viral infection. We assume that the amount
of malware τ in the population has a linguistic meaning classified as “LOW”, “MEDIUM” and “HIGH”.

Case I. If the amount of viruses is “LOW”, i.e., the triangular fuzzy number Al = (τc − δ, τc, τc + δ) satisfies
τc + δ < τm, then the transmission rate σk(τ) = 0. In addition, it is clear that the basic reproduction number R0

then becomes zero, which means that the disease vanishes from the network, i.e., the malware-free equilibrium E0 is
asymptotically stable. This case can be understood that the disease is not enough to cause the infection or the infected
children are being isolated with the population, i.e., they have less importance on the network.

Case II. If the amount of viruses is “MEDIUM”, i.e., the triangular fuzzy number Am = (τc − δ, τc, τc + δ) satisfies
τc − δ ≥ τm and τc + δ < τ0, then the transmission rate σk(τ) is considered a linear function w.r.t. the malware load
τ . As a consequence, we also deduce that the basic reproduction number R0 := R0(τ), given by

R0(τ) =
Λσ⟨k2⟩

µ(r + µ)⟨k⟩
τ − τm
τ0 − τm

,

is an increasing function w.r.t. the viral load τ . It leads to a fact that the higher viral load is, the bigger value the
basic reproduction number R0 gets.

Case III. If the amount of viruses is “HIGH”, i.e., the triangular fuzzy number Ah = (τc − δ, τc, τc + δ) satisfies
τc − δ ≤ τ0, then the transmission rate σk(τ) = σk is a constant function w.r.t the viral load τ . Therefore, the basic
reproduction number R0 only depends on the model’s parameters.

5.2 The sensitivity analysis of the threshold value R0

Now, we will discuss how different parameters contribute to the change of the threshold value R0 by evaluating the
normalized sensitivity indices. According to Nakul et. al. [26], the sensitivity index of a quantity x depending on a

parameter λ can be determined by Υx
λ =

∂x

∂λ
× λ

x
. By the definition of the basic reproduction number R0, this quantity

depends on some model’s parameters such as r, σ(τ), µ,Λ and the parameter of network structure ⟨k2⟩
⟨k⟩ . Therefore, by

direct computations, we obtain

ΥR0

σ(τ) = 1, ΥR0

Λ = 1, ΥR0
r = − r

µ+ r
, ΥR0

µ = − (2µ+ r)

µ+ r
, ΥR0

⟨k2⟩
⟨k⟩

= 1.

Remark 5.1. We can see that the threshold value R0 is the most sensitive with the natural death rate µ. Furthermore,
we can conclude that the increase of the cure rate r will reduce the value of R0. In addition, the nodes with different
degrees will get different influences to the value R0. For the fuzzy transmission rate σ(τ), it will experience a 10%
increase of the value R0 if we increase the parameter σ by a same percentage. Similarly, we can also conclude that the

value of the basic reproduction number R0 increases with the increase of the structure parameter ⟨k2⟩
⟨k⟩ , which means that

the HFMD could be controlled if the value ⟨k2⟩
⟨k⟩ is decreasing, whereas the higher value of ⟨k2⟩

⟨k⟩ could follow that more

efforts must be done to eliminate the disease on the population, i.e. the controlling of the HFMD becomes more difficult

if the parameter ⟨k2⟩
⟨k⟩ is increasing. The results of sensitive test can be summarized in Table 3.

Table 3: The sensitivity indices of model’s parameters

No Parameter Description
Sensitivity

index

1 σ(τ) The fuzzy transmission rate +1

2 r The cure rate − 16
17

3 µ The natural death rate − 18
17

4 Λ The natural birth rate +1

5 ⟨k2⟩
⟨k⟩ The parameter of network structure +1

In addition, for convenience, we present the sensitivity of parameters in Figure 3.
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Figure 3: The sensitivity indices of the model’s parameters

In the following, we discuss the change of the basic reproductive number R0 with respect to viral load τ . Let us
choose the normalized values of threshold quantities τm, τ0, τM by 0.25, 0.65, 1, respectively. Then, the transmission rate
σ can be represented as a trapezoidal fuzzy number σ̃ = σ(0.25, 0.65, 1, 1). In order to dealt with the uncertainty in the
network-based epidemic model (1), we will apply the granular approach for fuzzy numbers proposed by Mazandarani
et al. [24] to represent the fuzzy transmission rate σ̃. The granular approach is developed from the idea of horizontal
membership function of Piegat [30]. In this approach, we parametrize a fuzzy number u by using two indices α (level-sets
index) and αu (relative-distance-measure variable, see [24] for more detail) that measures the granule of information.
In particular, for a fuzzy number u with respective level-sets [u]

α
= [u−

α , u
+
α ], α ∈ [0, 1], the granular representation of

the fuzzy number u is given by

ugr(α, αu) = u−
α +

[
u+
α − u−

α

]
αu,

in which αu ∈ [0, 1]. As a consequence, the horizontal membership function (or gr-representation) of the trapezoidal
fuzzy number σ̃ is given by σ̃gr(α, ασ) = σ [0.25 + 0.4α+ (0.75− 0.4α)ασ] . Then, the relative change of the basic
reproduction number R0 is given in Figure 4.

Figure 4: The relative change of the basic reproduction number R0 w.r.t. malware load: Fig. (a) σ = 0.1 and Fig. (b)
σ = 0.15

Figure 4 (b) shows the importance of viral load in the change of R0. If the amount of infectious source is increasing
then the basic reproduction number R0 also increases from less than 1 to greater than 1. Hence, there has a noticeable
change in the stability state of the proposed epidemic model when the viral load varies. Additionally, it experienced
that the bifurcation occurs at some values τ . This phenomena will be studied in our next work. A similar result was
discussed in [27].
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6 Conclusions

This work studied a fractional network-based SIRS epidemic model with fuzzy transmission and saturated treatment
function to discuss the malware attacking on the heterogeneous network. In reality, there may occur a scenario that the
quantity of infected individuals who need to be treated may exceed the treatment capacity and reach a saturation level.
Here, in order to better description for real-world situation, we introduce an epidemic model with a saturated treatment
function instead of a linear treatment function. In addition, this work also use linguistic variables and fuzzy membership
function to discuss the influence of malware load in the malware infection on the heterogeneous network. Based on
the next-generation matrix, we analytically evaluate the basic reproduction number R0, that is an important threshold
value to investigate the asymptotic stability of malware-free equilibrium and the presence of endemic equilibrium on the
network. We hope that this work will be the first stage to open up some further studies on the network-based epidemic
model. In the next study, we are going to consider the optimal quarantine control problem for the network-based
epidemic model (1) to evaluate the effect of quarantine treatment for controlling the epidemic disease. In addition, the
bifurcation phenomena leading from a malware-free equilibrium to an endemic equilibrium is an important problem
in the epidemiology theory. Since the proposed epidemic model considered the treatment function in nonlinear form,
namely saturated treatment function, the basic reproduction number cannot describe the necessary disease elimination
effort any more, i.e., a stable endemic equilibrium may co-exists with a stable malware-free equilibrium even if R0 < 1,
which means that the backward bifurcation phenomena occurs. This is also an interesting topic we are going to discuss
in the next study. On the other hand, the dynamic analysis for the endemic equilibrium E∗ hasn’t been detailed
discussed on this paper.

7 Appendix

In the following, we briefly recall a framework of fractional calculus, see [3, 15] for more details.

Definition 7.1. [3] For each β > 0 and [a, b] ⊂ R, let a function f : [a, b] → R such that f ∈ L1([a, b],R). Then, the
Riemann-Liouville fractional integral operator of order β is defined by

aI
β
t f(t) =

1

Γ(β)

∫ t

a

(t− s)β−1f(s)ds, t ∈ [a, b].

Definition 7.2. [3] Let m := ⌈β⌉ be the smallest integer greater than or equal to β. The Caputo fractional derivative
of order β of a function f ∈ Cm(a, b) is defined by

C
a D

β
t f(t) =

1

Γ(m− β)

∫ t

a

(t− s)m−β−1f (m)(s)ds.

In general, Caputo fractional derivative for a vector-valued function f = (f1, f2, . . . , fn)
⊤

is defined component-wise by

C
a D

β
t f(t) =

(
C
a D

β
t f1(t),

C
a D

β
t f2(t), . . . ,

C
a D

β
t fn(t)

)
.

Consider the initial value problem for the following fractional differential equations (FDS)

C
0 D

β
t x(t) = Ax(t) + f(x(t)) t > 0, (10)

subject to the initial conditions

x(0) = x0, (11)

where A ∈ Matn×n(R) and f : Rn → Rn is a continuously differentiable function and satisfies Lipschitz condition.
According to Corollary 6.9 in [3], it implies the global unique existence of solutions of the initial value problem (10)-
(11). Next, let φ : [0,∞) → Rn be a solution of the initial value problem (10)(11). Now, we recall from Definition 7.2
in [3] the notions of stability and asymptotic stability of trivial solution of (10).

Definition 7.3. [3] The trivial solution x∗ ≡ 0 of the FDS (10) is said to be

• stable if for all ε > 0, there exists δ = δ(ε) > 0 such that the solution φ(t,x0) of the initial value problem (10)(11)
satisfies ∥φ(t,x0)∥ < ε for all t ≥ 0 whenever ∥x0∥ < δ.
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• asymptotically stable if it is stable and attractive, i.e., there is a constant γ > 0 such that lim
t→∞

∥φ(t,x0)∥ = 0

whenever ∥x0∥ < γ.

Remark 7.4. The trivial solution x∗ ≡ 0 of the FDS (10) is said to be globally asymptotically stable if its stability does
not depend on the initial condition x0 ∈ Rn.

Lemma 7.5. [3] For each β1, β2 > 0, we have Eα1,α2(x) = xEα1,α1+α2(x)−
1

Γ(α2)
, where Eα1,α2(z) is the Mittag-Leffer

functions of two parameters α1 and α2 (see [15]).

Lemma 7.6. [17] Let x : [0,∞) → R+ be an absolutely continuous function on [0,∞) and β ∈ (0, 1]. Then, for each
x∗ ∈ R+ and t > 0, the following inequality holds

C
0 D

β
t

(
x(t)− x∗ − x∗ ln(

x(t)

x∗ )

)
≤
(
1− x∗

x(t)

)
C
0 D

β
t x(t).

Remark 7.7. Let Ψ : [0,∞) → R be a function given by Ψ(x) = x−x∗ −x∗ ln
(

x
x∗

)
. Then, it is true that the function

Ψ(x) is a non-negative function and attains the global minimum at the point x = x∗.

Lemma 7.8. [28] Assume that β ∈ (0, 1] and both the function Φ and its fractional derivative C
0 D

β
t Φ belong to the

space C[a, b]. Then we have Φ(t) = Φ(a) +
1

Γ(β)
C
a D

β
t Φ(ξ) (t− a)

β
, for a ≤ ξ ≤ t and t ∈ [a, b].
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