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This review summarizes the current knowledge on anatomy and physiology of the human gastrointesti-
nal tract in comparison with that of common laboratory animals (dog, pig, rat and mouse) with emphasis
on in vivo methods for testing and prediction of oral dosage form performance. A wide range of factors
and methods are considered in addition, such as imaging methods, perfusion models, models for predict-
ing segmental/regional absorption, in vitro in vivo correlations as well as models to investigate the effects
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1. Introduction

Optimized and robust in vivo performance of an oral drug prod-
uct is of crucial importance for its successful clinical application.
Yet the lengthy drug development process provides little opportu-
nity for optimization of the therapeutic product in humans. The
subject of this review is a part of the Oral Biopharmaceutical Tools
(OrBiTo) project within the Innovative Medicines Initiative (IMI)
framework, a pre-competitive collaboration between pharma
industry, academia and specialist technology companies. It aims
to enhance understanding of how orally-administered drugs are
absorbed from the gastrointestinal tract and to apply this
knowledge to develop new in vitro tests and in silico models that
will better predict the performance of oral formulations in humans.
This review does not deal with drug absorption from the oral cavity
and the esophagus although they represent parts of the GI-tract. In
this review, in vivo methods for drug absorption, their comparative
physiologies, correlations with in vitro methods (IVIVC), and appli-
cations for formulation/API/excipient characterization including
food effects are covered. Attention has been paid to also point
out the gaps in todays knowledge.

Pharmaceutical product characteristics, e.g. particle size, shape
and physical form of the active pharmaceutical ingredient (API) in
its dosage form are influencing its performance in the fasted and
fed as well as in health and diseased states. Thus, API availability
and its pharmacokinetics (PK) and/or –dynamics (PD) are highly
dependent on the APIs presentation to the body by the formulation
and the interaction with the changing local physiological condi-
tions in the GI-tract (GIT). Such local conditions may change as a
result of co-medication. For example, the use of proton pump
inhibitors increases the gastric pH which may affect dissolution
of acids and bases. Additional factors such as solubility, absorption,
metabolism and disposition characteristics of the API come into
play and may determine the variability of the PK and PD responses.

Biopharmaceutical factors related to the in vivo performance of
the dosage form in the respective preclinical model such as pig,
dog, rat, mouse and also in humans, i.e. GI-motility, GI-transit,
mechanical stress, effects of food, enzymatic or pH-related degra-
dation of API but also excipients, API release profile and API
absorption in various GI segments, and the direct influence of some
excipients on drug metabolism and transport are still insufficiently
understood. Most of these factors have little or no impact for for-
t al. In vivo methods for drug a
r formulation/API/excipient ch
mulations of biopharmaceutic classification system (BCS) class I
drugs, but are of greater influence for APIs from BCS classes II to
IV, since their in vivo performance relies to a greater extent on
the characteristics of their formulation. Therefore, it is obvious that
for targeted, designed pharmaceutical products, the dosage form
type, its composition in terms of identity and quantity of pharma-
ceutical excipients, the manufacturing process and the quality pro-
cess parameters need to be defined and optimized. Quality by
design (QbD) approaches require the definition of a design space
for the raw material characteristics, the manufacturing process
and its process conditions to assure predefined bioperformance
of the manufactured product based on an appropriate design space.

Current biopharmaceutical tools in the pharmaceutical devel-
opment rely on in vitro dosage form characterization, whole animal
studies in mice, rats, dogs, pigs and/or monkeys and studies in
healthy human subjects and sometimes in patients. While studies
in human subjects can provide highly relevant information, they
face various complexities including their justification by an Ethics
Committee with additional limits in terms of throughput and cost.
Therefore, in vivo studies in animals are sometimes preferred and
human studies frequently are done to confirm and translate pre-
dictions to the human situation created from the other methods.
Often animal studies yield species differences and pose the ques-
tion of which animal species is most representative for humans.
Underlying reasons for these species-specific findings include dif-
ferences in anatomy and physiology of the GI tract as described
in detail in the following sections. Not only might the species be
less representative, but also the study setup like dosage regimen,
amount water/meal, chewing, etc. does frequently not reflect the
intended daily practical use of the dosage form in humans.
Nevertheless, pharmaceutical development relies on these studies,
since animals represent intact organisms necessary to simulate the
complex interplay of drug dissolution, permeation and metabolism
and they are used in legally mandatory toxicology studies and drug
disease models such as achlorhydria. Furthermore it should be
pointed out that the potential knowledge acquired from animal
studies should always be measured towards the intrinsic value of
the animal. Ethical issues in terms of animal sacrifice, discomfort
and pain must always be considered. These aspects were acknowl-
edged by Russel and Burch in their principle of 3Rs, Replacement,
Reduction and Refinement (Russell and Burch, 1959). The essence
of the principle to, replace the use of animals with alternative
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://

http://dx.doi.org/10.1016/j.ejps.2014.02.010
http://dx.doi.org/10.1016/j.ejps.2014.02.010


144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Fig. 1. Fluid balance in the human gastrointestinal tract. Adapted from P.E. Paulev,
G. Zubieta-Calleja. Textbook in Medical Physiology and Pathophysiology: Essentials
and Clinical Problems, second ed. Copenhagen, 2004 (ISBN 87-984078-0-5).
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non-animal assays whenever possible, reduce the number of ani-
mals by optimized study designs and to refine the methodologies
to minimize stress and pain is now internationally endorsed by
the scientific community. Strong efforts in many disciplines have
been made according to the 3Rs principle in the last decades and
are for pharmaceutical investigations covered in the EU directive
2010/63/EU on the protection of animals used for scientific
purposes.

Likewise in vitro methods have been used to predict effects in
animals and in humans and, in order to demonstrate their predict-
ability, in vitro in vivo correlations (IVIVC) have been recommended
and are included in EMA and FDA guidelines. Thus, when robust
and accurate predictability can be demonstrated by an in vitro
method in conjunction with a validated IVIVC, a bioequivalence
(BE) study can be waived on the basis of a dissolution test. But
IVIVCs are frequently limited, to this point, to certain modified re-
lease (MR) dosage forms and often fail due to unknown reasons,
which may either be attributed to non-physiologic (poorly biorel-
evant) in vitro test conditions such as volume and composition
and static environment in the compendial dissolution tests that
also do not take permeability and/or metabolism into consider-
ation or to insufficient systems characterization, in terms of other
presystemic factors that influence absorption and systemic avail-
ability of the API in vivo. The simulation programs applied today
are fairly simplistic and may poorly reflect various physiological
aspects important for GI drug absorption and often are not suffi-
cient accurate (Poulin et al., 2011).

It is the concept of the ‘integrated picture’ reflected by the key
biopharmaceutical parameters related to the API, its immediate re-
lease (IR) or MR dosage form and the human and animal systems
characteristics that the authors strive to present in this review.
This will assist in the definition of the current status and identify
the gaps that are the focus of research performed in the OrBiTo
project.
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2. Human GI characterization

The basic design of the gut is a long muscular tube with special-
ized areas for digestion and storage, supplied by arteries and
drained by veins and a lymphatic trunk, all supported in a sheath
of connective tissue below the thorax, termed the mesentery.
Functionally, the gut is divided into a preparative and primary stor-
age region (mouth and stomach), a secretory and absorptive region
(the midgut), a water reclamation system (ascending colon) and fi-
nally a waste-product storage system (the descending and sigmoid
colon) as is illustrated in Fig. 1. Based on the luminal environment
and the nature of the tissue change along the GIT, only the small
intestine is structured to allow for maximal absorption. Important
factors for GI drug absorption include the free luminal
concentration of API, the effective area, interaction with luminal
particles and transit time. A summary of key anatomical and phys-
iological parameters of the human GIT is given in Table 1.
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2.1. Stomach physiology

Stomach physiology and its impact on drug dissolution have
recently been reviewed (Koziolek et al., 2013a,b). The stomach is
divided into three functional parts. The fundus region acts together
with the middle part of the stomach (corpus) as a storage compart-
ment. In the distal part (antrum), food particles are milled, sieved
and finally emptied through the pylorus. The size of the stomach
depends largely on the filling status. Under fasting conditions,
the stomach is mostly empty containing only approx. 10–50 mL
of gastric juice as well as some gas. After meal intake, stomach fill-
ing volume may increase to 1 L or more, depending on the ingested
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
in vitro methods (IVIVC), and applications for formulation/API/excipient ch
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volume and individual physiology (Chial et al., 2002; Geliebter,
1988; Geliebter and Hashim, 2001).

The actual volume of the gastric content is the sum of meal vol-
ume, fasting gastric volume, cumulative saliva and gastric secre-
tion minus gastric emptying (Goetze et al., 2009; Kwiatek et al.,
2009). The total gastric volume has been shown to be larger than
the consumed meal volume up to 3 h after intake of a light meal
(Burton et al., 2005). During digestion, gastric juice is produced
with a total daily secretion volume in the range of 2–3 L. In the
fasted state, an unstimulated secretion rate of about 1 mL/min oc-
curs which increases after meal intake to rates of 10 mL/min up to
50 mL/min (Versantvoort et al.). Another source of gastric filling
volume is saliva with an also stimulation dependent flow rate of
up to 10 mL/min and a total daily secretion volume of about
1–1.6 L per day (Engelen et al., 2003; Gaviao et al., 2004; Pedersen
et al., 2002). Due to moderate peristaltic mixing, gastric contents
are not homogenously distributed. Typically, a lipid layer is located
on top of the gastric fluid due to the lower density of fat compared
to that of water. However, subject posture and ingestion order
influence the location of the lipid layer (Chang et al., 1968; Kunz
et al., 2005). Solid high density particles accumulate in the more
distal parts of the stomach due to their higher gravity, where they
may be ground by a moderate antral milling activity. Gastric emp-
tying occurs as a decanting process of the watery phase with small
suspended particles and emulsion droplets (Keinke et al., 1984).

The flow properties of gastric contents range from Newtonian
flow for pure water towards non-Newtonian, pseudoplastic flow
behavior showing shear thinning, i.e. lower viscosity with shear
forces acting on the contents in the presence of solid particles
(Dikeman et al., 2006; Marciani et al., 2000; Mudie et al., 2010;
Takahashi and Sakata, 2002, 2004). Estimated values for the viscos-
ity of the gastric contents are in the range of 10–2000 mPa s (Abra-
hamsson et al., 2005).

Stomach motility is characterized by two different gastric mo-
tor patterns that originate from pacesetter cells located at the
greater curvature of the corpus. In the fasted state, the interdiges-
tive migrating motor complex (IMMC) occurs that enables the
emptying of non-digestible objects from the gastric lumen during
phases of high intensity with maximum pressures in the pyloric re-
gion of up to 300 mbar (Cassilly et al., 2008; Khosla and Davis,
1990). One IMMC front moves from the proximal stomach to the
ileum every 1–2 h (Sarna, 1985; Vantrappen et al., 1977). The
IMMC is interrupted by meal ingestion as the digestive motor
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Table 1
Comparison of the gastrointestinal tract of humans and animals with respect to anatomy and physiological parameters of relevance for drug absorption studies.

Parameter Human Canine Pig
Landrace (LR)
Minipig (MP)

Rat Mouse

pH fasted Stomach 1–3.5 (Dressman et al., 1990; Hila
et al., 2006; Simonian et al., 2005)

1.5–6.8 (values from various studies)
(Arndt et al., 2013)

1.2–4.0 (Hossain et al., 1990) LR
0.3–1.7 (Oberle and Das, 1994) MP

4–5 (glandular region); 7 (anterior
region) (Davies and Morris, 1993;
Kararli, 1995)

4.0 (McConnell et al., 2008a)

SI 6.0–7.0 (Duodenum) 6.0–7.7
(Jejunum) 6.5–8.0 (Ileum) (Brener
et al., 1983; Ferraris et al., 1983;
Lennernäs, 2007c) (46–48)

6.1–7.6 (de Zwart, 1999; Kalantzi
et al., 2006; Sutton, 2004)

7–8 (Oberle and Das, 1994) MP 4.5–7.5 (Davis and Wilding, 2001;
Lennernäs and Regårdh, 1993)

5.0 (McConnell et al., 2008a)

Li 5.5–6.5 (Cecum) 5.5–7.5 (Colon asc.)
7.0–8.0 (Colon desc)

�6.5–unspecified dosing conditions
(de Zwart, 1999)

n.a. n.a. 4.7 (McConnell et al., 2008a)

pH fed Stomach 3.0–6.0 (Kararli, 1995; Simonian
et al., 2005)

Up to neutral – depends heavily on
the pH of the ingested food, due to
minimal gastric acid output

4.4 (Merchant et al., 2011) LR 3.6
(Oberle and Das, 1994) MP

3.8–5.0 (Davies and Morris, 1993) 3.0 (McConnell et al., 2008a)

SI 5.0–5.5 (Duodenum) 5.0–6.5
(Jejunum) Similar to fasted (Ileum)
(Brener et al., 1983; Davies and
Morris, 1993; Persson et al.,
2005)>4 h after meal: fasted pH

6.1 (Kalantzi et al., 2006) 5.5–7.2
(Duodenum/Ileum) (Sutton, 2004)

Duo: 4.7–6.1 Jej: 6.0–6.5 Ile:6.3–7.2
(Braude et al., 1976; Merchant
et al., 2011) LR

6.5–7.1 (Davies and Morris, 1993) 4.8 (McConnell et al., 2008a)

LI n.a. �6.5–unspecified dosing conditions)
(de Zwart, 1999)

6.1–6.6 (Merchant et al., 2011) LR 6.6–6.9 (Davies and Morris, 1993) 4.5 (McConnell et al., 2008a)

Transit time fasted Stomach 10–15 min (t1/2) for liquids 0–2 h for
indigestible solids (Brener et al.,
1983; Davis et al., 1986)

Solution: 2–76 min Solid 7 � 20 mm:
1.2 h (t1/2) (Reppas et al., 1991;
Sutton, 2004)

1–28 days* (Hossain et al., 1990) LR 15–30 min (t1/2) (Langguth et al.,
1994) 5–65 min (t1/2) (Maerz et al.,
1994)

n.a.

SI 3–4 (Davis et al., 1986) 60–111 min (Sutton, 2004) <1–3 days* (Hossain et al., 1990) LR 3–4 h (Davis and Wilding, 2001;
Lennernäs and Regårdh, 1993)

n.a.

Li 8.0–18.0 (Davis et al., 1986) Shorter than humans based on
absorption data (Sutton et al., 2006)
unspecified dosing conditions) and
length (Kararli, 1995)

<1–3 days* (Hossain et al., 1990) LR 10–11 h based on a total GI transit
time of 15 h (DeSesso and Jacobson,
2001)

n.a.

Transit time fed Stomach Liquid: Rapid but slower than the
same liquid in fasted state (Brener
et al., 1983) Digestible solids: Very
rapidly for particles <2 mm (99%
emptying in 0.5–3 h) (Davis et al.,
1986) Rapidly for size <7–10 mm;
larger particles held for many h
(DeSesso and Jacobson, 2001)

Time to phase III activity: 5.4–13.3 h
(Sutton, 2004)

Solution/pellets 1.4–2.2 tablet 1.5–
6.0 (Davis et al., 2001; Wilfart et al.,
2007) LR

n.a. 1 h (Padmanabhan et al., 2013)

SI 3–4 (Davis et al., 1986) Jejunal: 150–180 min (Sutton, 2004) 3–4 h (Davis et al., 2001; Wilfart
et al., 2007) LR

n.a. 1–2 h (Hamada et al., 1999;
Padmanabhan et al., 2013)

Li n.a. Shorter than humans based on
absorption data (Sutton et al., 2006)
unspecified dosing conditions) and
length (Kararli, 1995)

24–48 h (Davis et al., 2001; Wilfart
et al., 2007) LR

n.a. 3 h (Padmanabhan et al., 2013)

Length SI 7 m (post mortem) (Dressman, 1986;
Ferraris et al., 1983) 3.0–5.0 (in vivo)
(Hofmann et al., 1983)

2.5–4.1 m (de Zwart, 1999) 840–900 cm (34–63 cm/kg)
(Kurihara-Bergstrom et al., 1986;
Suenderhauf and Parrott, 2013) MP
470–2000 cm (17–19 cm/kg)
(Bergman et al., 2009; Merchant
et al., 2011) LR

102–148 cm (Kararli, 1995) 40.2 cm (Ogiolda et al., 1998)

Length Li 1.5 (DeSesso and Jacobson, 2001) Cecum: 8 cm Colon: 34–60 cm (de
Zwart, 1999)

323 cm (11 cm/kg) (Glodek and
Oldigs, 1981; McRorie et al., 1998)
MP 436 cm (4.3 cm/kg) (Merchant
et al., 2011) LR

26–26 cm (Kararli, 1995) 8.3 cm (Ogiolda et al., 1998)
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Table 1 (continued)

Parameter Human Canine Pig
Landrace (LR)
Minipig (MP)

Rat Mouse

Bile concentration SI 2.0–10 mM (fasted) (Hofmann et al.,
1983; Persson et al., 2005) 8.0 (fed)
(Persson et al., 2005) 10–20 mM
(after meal) (Hofmann et al., 1983)

Fasted state: Approx. 10 mM (values
from various studies, (Arndt et al.,
2013) 2.4–9.4 mM (Kalantzi et al.,
2006) Fed state: 12.8–18.0 mM
(Kalantzi et al., 2006) Most abundant
is taurocholic acid (Holm et al.,
2013b)

42–55 mM (Juste et al., 1983) LR 33.5–61.3 mM (fasted) (Staggers
et al., 1982) 17–18 mM (fasted)
(Kararli, 1995)
Compared to man higher BS/PL ratio
but PL concentration similar to man

n.a.

Metabolic activities Phase I CYP3A4, 2C9, 2C19, 2D6, 2J2 (see also
Table 2)

Different than in humans (Haller
et al., 2012)

See Table 3 CYP related activities (Takemoto
et al., 2003)
In general not correlated to humans

CYP1a1, 1b1, 2b10, 2b19, 2b20,
2c29, 2c38, 2c40, 2e1, 3a11,
3a13, 3a16, 3a25, 3a44 (Komura
and Iwaki, 2008; Zhang et al.,
2003)

Phase II UGT, SULT, GST Different than in humans (Haller
et al., 2012)

UGT, SULT, GST b-Glucuronidase, sulfate conjugation,
glucuronidation, N-acetylation
In general not correlated to humans

UGT (Komura and Iwaki, 2011)

Major drug
transporters

P-gp, MRP2, BCRP, PepT1, OATP Peptide transporter-1 (PEPT1,
SLC15A1, organic cation transporter-
1 (OCT1, SLC22A1), BCRP), and
multidrug resistance-associated
protein 1 (MRP1, ABCC1) resemble
the human tissue distribution (Haller
et al., 2012)

P-gp, BCRP, MRP2, OATP Similar transporter expression
patterns as in humans (Cao et al.,
2006)

P-gp (Holmstock et al., 2013)

Permeabilities Reference Higher than human for low
permeability drugs (e.g. (Fotaki et al.,
2005))

Less than in humans Less than in humans, good
correlation

Similar to human (Escribano
et al., 2012)

Water volumes Stomach <50 mL (fasted) Up to 1 L (fed) (Chial
et al., 2002; Geliebter, 1988;
Geliebter and Hashim, 2001)

Similar to humans especially for dogs
>20 kg (Martinez et al., 2002)

Wetmass: �250 g (Merchant et al.,
2011) LR

2.4 mL (Takashima et al., 2013) 0.37–0.71 mL (McConnell et al.,
2008a)

SI Water pockets (Schiller et al., 2005) No specific data–water flux in fasted
upper GI is similar with humans
(Reppas et al., 1991)

Wetmass: �500 g (Merchant et al.,
2011) LR

3.0–4.6 mL (Takashima et al., 2013) 0.81 mL (McConnell et al.,
2008a)

Li Negligible (Schiller et al., 2005) n.a. wetmass: �750 g (Merchant et al.,
2011) LR

n.a. 0.6 mL (McConnell et al., 2008a)

n.a.: not available.
* Measured using nondisintegrating formulations.
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activity is initiated. The intensity of the gastric pressure waves is
typically lower in the fed state than during phases of high intensity
whilst fasting (Ouyang et al., 1989).

Little in vivo data on gastric flow is available due to the exper-
imental difficulties for these measurements. However, Boulby
et al. observed peak velocities of 2–8 cm/s (Boulby et al., 1999).
Computer simulations based on computational fluid dynamics
have also been performed but reported a rather broad range of esti-
mated values (Ferrua et al., 2011; Pal et al., 2004). Under postpran-
dial conditions liquids may probably also be cleared within a few
min from the stomach due to a mechanism called ‘‘Magenstrasse’’
(Pal et al., 2007).

As for hydrodynamics, data on intragastric mechanical condi-
tions are highly variable. It seems, however, that the antral grind-
ing forces represent the highest shear forces acting on solids in the
fed stomach with grinding force values in the range of 0.2–1.89 N
(Kamba et al., 2000; Marciani et al., 2001a).

During digestion only liquids and small suspended particles are
delivered to the small intestine whilst larger particles are retained
by gastric sieving (Meyer et al., 1981). Due to the diversity of the
relevant food parameters it is not possible to define a clear cut-
off size (Khosla and Davis, 1990; Newton, 2010; Siegel et al., 1988).

Liquids are emptied according to first-order kinetics with emp-
tying rates that are influenced by both caloric content and meal
composition. Ranges are reported from 2 to 4 mL/min, however,
initial emptying rates may reach values of up to 10 to 40 mL/min
(Faas et al., 2001; Indireshkumar et al., 2000; Kong and Singh,
2008; Kwiatek et al., 2009). Comparable high emptying rates are
also observed after ingestion of water (non-caloric liquids) under
fasting conditions (Oberle et al., 1990). Solid particles are emptied
according to a biphasic pattern.

2.2. Intestinal surface area

The surface area of the gut is commonly regarded as a long mus-
cular tube, which is increased by foldings, and by small intestinal
villi and microvilli. Based on static morphology, several workers
have calculated the apparent mucosal surface area of the small
intestine after removal, fixation and staining to be approximately
2.2 m2 (Wilson, 1967). These histological measurements could
not take account of the microvilli and their presence complicates
the estimation of surface area since on scanning electron micros-
copy they are seen to be a tightly packed array. It appears that
for nutrition, there is an excess capability and only the top of the
villus may be utilized. In addition, the simple static concept is mis-
leading. The foldings change dynamically with transit of food and
the microvilli break off to form mixed micellar phases near the
apical boundary. The effective surface area is highly dynamic and
is affected by nutritional status, exposure to noxious agents and
by the luminal viscosity.

2.3. The pH of the GIT

In the fasted state the gastric pH value of healthy adults is re-
ported to be within pH 1 to pH 3 (Dressman et al., 1990; Hila
et al., 2006; Simonian et al., 2005). In elderly patients and also as
a function of ethnic difference, various degrees of achlorhydria
have been reported (Charman et al., 1997). After meal intake, the
pH of the gastric content is increased to various degrees. For in-
stance, after intake of the FDA standard breakfast, the maximum
stomach pH was reached within the first 5 min and pH decreased
to values below pH 3 not before 56 ± 42 min. Due to regional differ-
ences in the presence of acid secreting glands, pH gradients in the
stomach contents have been observed (Simonian et al., 2005).

Although compendial estimates of the pH of the stomach simu-
lated by simple media have varied over the years from pH 1 to pH
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
in vitro methods (IVIVC), and applications for formulation/API/excipient ch
dx.doi.org/10.1016/j.ejps.2014.02.010
1.2, it is generally accepted that bicarbonate secretion is important,
raising the pH in the sub-mucin layer. The contribution of
occasional duodenal-gastric reflux must also not be neglected as
it produces transient neutralisation as illustrated in Fig. 2. Even
within a subject, it can also be appreciated that a wide range of
gastric pH with time occurs. The data also reflect the observation
that in the stomach, the pH in the fundus will typically be one
pH unit higher than in the pyloric antrum. In the fed stomach,
the sampling device can find itself in pockets of acid or in the food
mass (Vo et al., 2005). Twenty-four h radio-telemetry data show
the daily excursions in pH, with very short periods at pH 1, tran-
sient rises to up to pH 5 and slow recovery to baseline as illustrated
in Fig. 3. The daily intake of food causes rises in pH, with fatty
meals causing a sustained rise in proximal gut pH, which may be
important if a heavy meal is taken at night. This occurs rarely in
clinical trials but may be fairly common in the western world in
the general population. Treatment with proton pump inhibitors re-
duces the number of pockets of acid (detected by pull through) and
increases their pH (Vo et al., 2005). Increased gastric pH due to
therapy with proton pump inhibitors or H2 receptor blockers
may be of concern for enteric coated dosage forms and is also dis-
cussed as a possibly quite often overseen source for a reduced bio-
availability of drugs with a strongly pH dependent solubility
profile. For example, this has been recently reviewed for a number
of oral anticancer drugs (Budha et al., 2012). Besides the changes in
gastric pH, proton pump inhibitors also reduce stomach secretions
(Babaei et al., 2009; Nishina et al., 1996). This anti-secretory effect
may also contribute to a reduced bioavailability of poorly soluble
compounds.

2.4. GIT transit and motility

In normal physiology, a balance exists between propulsive,
peristaltic movements and mixing contractions. This is controlled
by signalling between external nerves, especially the vagus, by
intestinal short-range pathways and through the plexii. Local re-
sponses also occur and may cause spasm.

The fasting and fed patterns of GI motility are distinct and have
been examined extensively in vivo (Szurszewski, 1969). In the fed
mode, contractions travel down the wall of the stomach, originat-
ing below the fundus and forming an annular ring, the pyloric
cylinder. Towards the pylorus, the walls collapse, squeezing the
contents through a partially closed sphincter and causing retropul-
sion of larger debris back into the body of the stomach. The mech-
anism sieves the contents, retaining larger objects for further
grinding and is a major determinant of the gastric emptying and
onset of drug absorption for any pharmaceutical solid dosage form.

Gastric sieving is also the cause for the retention of large
non-disintegrating dosage forms in the stomach which lasts until
complete emptying of caloric contents and the appearance of the
IMMC. A clear cut-off dimension for the particle size which may
allow emptying from the stomach during digestion cannot be given
(Newton, 2010). A particle size below 2 mm is usually considered
as small enough for emptying during fed state motility. Tablets
with a size of 3 mm have clearly been demonstrated to be retained
with food (Podczeck et al., 2007). Disintegrating objects, near the
sphincter are emptied as a series of pulses. This wave of contrac-
tion travels from the stomach to the terminal ileum and then
vanishes.

In the fasted state IMMC consists of four phases that are charac-
terized by distinct intensity and duration. The IMMC front moves
from the proximal stomach to the ileum and restarts afterward.
These cycles repeat until food is ingested and a complete cycle lasts
for approximately 1–2 h. Most of all the powerful contractions that
are characteristic for phase III activity (the so-called housekeeping
waves) serve as a general cleansing allowing the emptying of large
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Fig. 2. Distal and proximal 24 h pH-monitoring in human.

Fig. 3. pH-profile recorded by a telemetric IntelliSite capsule in a healthy volunteer
during GI transit. Capsule ingestion occurred under fasting conditions. (Data kindly
provided by Medimetrics.)
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non-digestible solids like enteric coated tablets or monolithic
extended release tablets from the stomach (Cassilly et al., 2008;
Khosla et al., 1989). The stomach is emptied for small particles un-
der fasted state with emptying times from approx. 15 min to more
than 3 h and can be grouped into immediate and rapid, delayed but
rapid, delayed and slow, and interruptive emptying (Locatelli et al.,
2009).

As discussed in several reviews, the GI luminal conditions
change as a function of the specific GI site (Varum et al., 2010;
Weitschies et al., 2010; Wilson, 2010). The intraluminal pressure
following the passage through the pyloric sphincter and ileocaecal
valve may reach values of up to 300 mbar (Cassilly et al., 2008;
Dinning et al., 1999). Furthermore, similar high pressure ampli-
tudes are also recorded in the colon (Rogers et al., 1989). Such high
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
in vitro methods (IVIVC), and applications for formulation/API/excipient ch
dx.doi.org/10.1016/j.ejps.2014.02.010
pressure events can result in an altered in vivo drug release profile
or even possibly affect release mechanisms from MR dosage forms.
The small intestinal transit time (SITT) is in the range of 3–4 h and
appears not to be dependent upon the dosage form (Davis et al.,
1986). However, this value is probably a reflection of the typical
feeding regimen used in clinical trials as small intestinal transit
is triggered by food intake via a mechanism known as gastro-ileo-
caecal reflex (Fadda et al., 2009; Schiller et al., 2005). Movement of
dosage forms through the small intestine is characterized by typi-
cally short episodes of transport where peak velocities of up to
50 cm/s may be reached (jet propulsion) and phases of rest (Weits-
chies et al., 2005). Typically, dosage forms spend most of the total
transit time at rest in the small intestine, typically in the terminal
ileum (McConnell et al., 2008b). Under fasting conditions, dosage
forms are not necessarily in permanent contact with intestinal
water (Schiller et al., 2005).

Interestingly, small particles move faster than large particles in
colon and due to the extremely variable composition and viscosity
of colonic contents, hydrodynamic properties are extremely diffi-
cult to predict (Abrahamsson et al., 1996; Arkwright et al., 2013;
Follonier and Doelker, 1992; Wilson, 2010).

2.5. Presence of GI fluids

Body fluid balance is primarily regulated by renal mechanisms,
by which the body conserves electrolytes and achieves acid–base
balance. GI fluids are produced by saliva, gastric and intestinal
secretions, pancreatic secretions and ingested fluids. The small
intestine is a very efficient absorber of water, which has a high
effective permeability (Peff) in the jejunum in vivo, approximately
2 � 10�4 cm (Fagerholm et al., 1995). The half-time of gastric emp-
tying of water is approximately 10–15 min or less. After emptying
into the small intestine, water is quickly taken up into the systemic
circulation. In magnetic resonance imaging (MRI) images, residual
water can only be seen in a few pockets along the small intestines
(Schiller et al., 2005). Free water is rarely seen in the colon (Schiller
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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et al., 2005). Also in relation to postprandial response, bile, bicar-
bonate, electrolyte composition, etc. play an important role in dos-
age form disintegration (coating), dissolution, solubilization and
absorption of the API.

2.6. Abundance of drug metabolizing enzymes

It has been proposed that the intestinal mucosa is the most sig-
nificant extra-hepatic site for drug metabolism (Lin and Lu, 2001).
The intestine possesses the potential to considerably impact drug
bioavailability (Yang et al., 2007). In order to predict first-pass ef-
fects in the intestinal wall, it is necessary to characterize the re-
gion-specific expression of enzymes along the GIT. This is
particularly relevant to the development of mechanistic physiolog-
ical-based intestinal models that are capable of assessing the
contribution of these enzymes to intestinal metabolism, portal vein
availability and intestinal-based DDI (Jamei et al., 2009; Pang and
Chow, 2012). Given that the variability in metabolism can be con-
siderable between individuals (Lampen et al., 1996, 1995), identi-
fying the basis of these differences, i.e., the variability in
abundance and or activity of the enzymes responsible for the
metabolism of a drug may be crucial (Gertz et al., 2011; Proctor
et al., 2004; von Richter et al., 2004).

The enzymes most extensively expressed in the small intestine
are the cytochrome P450’s (CYPs) (Paine et al., 2006; Thelen and
Dressman, 2009). Studies of the human intestine have shown that
the CYP isoform with the highest specific content was CYP3A4. It
has been reported that average CYP3A4 abundances (65–70
nmol/total gut) incorporated into minimal intestinal models, such
as the Qgut model, were appropriate (Yang et al., 2007). However,
the differential expression of CYP3A along the length of the small
intestine (Table 2) in a fully mechanistic compartmental model is
crucial for a development of any MR dosage form (Darwich et al.,
2010; Jamei et al., 2009).

There are conflicting views of the expression and functional rel-
evance of the metabolic contribution of CYPs in the colon (Cana-
paro et al., 2007; Lennernäs, 2007b). Canaparo et al. suggested
that CYP3A isoforms are expressed in the colon. But an absence
of CYP3A4 expression in certain samples has been demonstrated
within this study, highlighting the potential variability for CYP3A4
expression in the colon between individuals.

In addition to the CYP3A family, the CYP2C, 2D and 2J family of
enzymes are also expressed in the gut mucosa (Paine et al., 2006;
Zhang et al., 1999). The relative contributions to the overall intes-
tinal CYP content of (CYP3A4, 2C9, 2C19, 2D6, 2J2) were measured
in 31 small intestinal donors (Paine et al., 2006), with details of
region-specific expression provided in (Table 2). Reports utilizing
liquid chromatography–tandem mass spectrometry (LC–MSMS)
proteomic techniques to determine CYP abundance, are at present
Table 2
Segmental distribution of intestinal CYP enzymes in human.

Enzyme Duodenum Jejunum I Jejunum II Ileum

Segmental abundance (nmol)
CYP2C9 1.78 3.51 3.51 1.02
CYP2C19 0.21 0.41 0.41 0.12
CYP2D6 0.11 0.22 0.22 0.06
CYP2J2 0.19 0.38 0.38 0.11
CYP3A4 9.11 18.03 18.03 5.26
CYP3A5 3.38 6.7 6.7 1.95

Intestinal CYP abundances are from Paine et al. (2006) and Paine et al. (1997) (Paine et
therefore the abundances of CYP2C9, 2C19, 2D6, and 2J2 were calibrated against CYP3A
The expression of the active CYP3A5 enzyme is phenotypic and dependent on an individu
a frequency of approximately 10–20% (Wrighton et al., 1989). There is evidence that t
however, a reciprocal relationship has yet to be verified in gut samples (Barter et al., 20

Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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confined to measurements undertaken in Beagle dog intestinal
regions (Heikkinen et al., 2012). Therefore, there are opportunities
to expand on this technique to enhance our understanding of abso-
lute protein abundance of numerous CYP isoforms in man.

The intestinal expression of intestinal phase II enzymes; uridine
50-diphosphate glucuronosyl transferases (UGT), sulfotransferase
(SULT) and glutathione-S-transferase (GST) also deserve consider-
ation (Coles et al., 2002; Ritter, 2007; Trdan Lusin et al., 2011).
Notably, there are fewer studies characterizing the expression
and activity of phase II enzymes in the intestine as compared to
CYPs. The review by Ritter (2007) highlights the interest towards
studies utilizing mRNA-gene expression of UGT’s in numerous
intestinal segments (Ritter, 2007). Ritter asserts that the lack of
specific antibodies, or specific probe substrates for individual
UGT isoforms, in addition to the difficulty in purifying/synthesizing
these full length recombinant membrane anchored proteins (Milne
et al., 2011), hampers the characterization of quantitative protein
activity relationships in tissues. Absolute protein abundance quan-
titation of intestinal UGT’s by LC–MSMS proteomic techniques
have been used to quantify numerous UGT isoforms in intestinal
microsome samples (Harbourt et al., 2012; Smith et al., 2011).
However, the levels of these enzymes along the length of the intes-
tine are yet to be determined.

The quantification of absolute levels of SULT enzymes in the
intestine is limited to a single documented study (Riches et al.,
2009). Determination of SULT expression in cytosolic fractions
from duodenal samples (n = 6) was undertaken by quantitative
immunoblotting and identified 3 out of 5 SULT isoforms under
study (SULT1A3, 1B1 and 1E1) and found that their abundance in
the duodenum was greater than that for liver, kidney and lung
cytosolic fractions. Further data for the expression of SULT’s in
other intestinal regions is yet to be established.

Additional enzymes such as epoxide hydrolase and aldehyde
oxidases have been shown to be expressed in the small intestine
(de Waziers et al., 1990; Moriwaki et al., 2001). Characterization
of their abundance and activity in human intestinal cytosolic or
S9 fractions will be required to facilitate the development of strat-
egies in order to predict the impact of the activity of these enzymes
on bioavailability.

Determining the transient levels of an enzyme is critical for the
accurate prediction of DDI’s involving mechanism (time)-based
inhibition and induction. Enzyme levels are governed by the bal-
ance of the processes of de novo protein synthesis and degradation
and thus, when these processes are in equilibrium, enzyme levels
are at steady-state (Yang et al., 2008). This balance may be
disturbed, for example, when the rate of enzyme synthesis with
a concomitant absence of change or a decrease in degradation rate,
leads to a rise in enzyme levels (‘induction effect’). There are a host
of in vitro and in vivo methods to determine enzyme turnover in
I Ileum II Ileum III Ileum IV Total intestinal abundance (nmol)

1.02 1.02 1.02 12.9
0.12 0.12 0.12 1.5
0.06 0.06 0.06 0.8
0.11 0.11 0.11 1.4
5.26 5.26 5.26 66.2
1.95 1.95 1.95 24.6

al., 2006, 1997). In Paine et al. (2006), CYP abundances were relative expressions,
total intestinal abundances.

al carrying at least one CYP3A5⁄1 allele. Within a Caucasian population, this occurs at
here is also a correlation between the abundance of CYP3A4 and CYP3A5 in liver,
10).

bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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hepatic systems (Yang et al., 2008). For the intestine, the situation
is different because enterocyte stem cells arising from the crypt
base migrate towards the villus tip, maturing and differentiating
into fully functional enterocytes as they migrate. This migratory
process can take between 1 and 10 days and is likely to be more ra-
pid than enzyme turnover. Thus, turnover is likely to be governed
by the enterocytes sloughing into the intestinal lumen rather than
the intrinsic turnover of the enzyme. Enterocyte CYP turnover
information can be estimated indirectly in studies administering
grapefruit juice. Oral ingestion of grapefruit juice leads to a selec-
tive and irreversible inhibition of intestinal enzymes without
affecting the hepatic enzymes (Schmiedlin-Ren et al., 1997; Won
et al., 2012). Studies using this design with subsequent oral dosing
of a probe substrate such as midazolam have been utilized to esti-
mate a CYP3A enterocyte turnover half-life of 23 h (Greenblatt
et al., 2003).

There is significant scope to expand our current knowledge of
Phase I and II enzyme abundances in the gut. Further data should
be obtained on the region-specific expression of Phase I and II en-
zymes, and the development of quantitative immunoblot and LC–
MSMS proteomic techniques. This will enhance knowledge within
this field, particularly where isoform specific antibodies or full
length protein standards are not available. As more studies with
increasing sample numbers become available analyses will focus
on evaluating the inter-individual variability in abundance, to-
gether with defining abundance–activity relationships to provide
more mechanistic approaches for in vitro–in vivo extrapolation
(IVIVE).

2.7. Abundance of membrane drug transporter

Passive membrane diffusion processes, where molecules pass
across membranes driven by concentration gradients play a
significant role in the absorption of many drugs (Lennernäs,
2007b; Sugano et al., 2010). Yet, there is considerable evidence that
many drugs can interact with transporter proteins expressed in
enterocyte membranes along the intestine to either facilitate or
reduce absorption rate (Varma et al., 2010). There is therefore a
necessity to accurately gauge the intestinal region-specific expres-
sion of these transporters in order to predict the potential impact
of these transporters on the GI drug absorption and dosage form
development (Giacomini et al., 2010).

Epithelial cells including enterocytes are polarized and contain
two functionally distinct membrane domains at either pole of the
cell. The apical (luminal) membrane contains specific constituents
that are structurally and functionally distinct to those at the basal
(serosal-blood) side at the opposite pole of the cell. This includes
the differential expression of transporter proteins in each mem-
brane. The most thoroughly characterized transporter proteins
are those that are members of the ATP-Binding Cassette (ABC)
superfamily. Transporters such as P-glycoprotein (P-gp, MDR1,
ABCB1), multidrug-resistance associated protein (MRP2, ABCC2)
and breast cancer resistant protein (BCRP, ABCG2) are expressed
on the apical membrane of the enterocyte. They transport drugs
against the prevailing concentration gradient by binding them
from the intracellular milieu or inner membrane leaflet and secret-
ing (effluxing) these molecules into the intestinal lumen resulting
in an absorption limitation (Aller et al., 2009). The impact of intes-
tinal efflux transporters is expected to be at its greatest when the
drug’s passive diffusion across the apical membrane enterocyte is
low (Darwich et al., 2010). In the clinical setting, the b1-adrenocep-
tor antagonist talinolol demonstrated a dose-dependent increase
in systemic exposure after oral administration in humans. In vitro
mechanistic studies determined that the likely mechanism for this
phenomenon was the interaction with P-gp (Wetterich et al.,
1996). As the dose increases, the efflux function of P-gp reaches
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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saturation, giving rise to the non-proportional increase in exposure
by increasing drug transfer across the enterocyte apical membrane.
In addition to ABC transporters, transporter proteins belonging to
the solute carrier superfamily (SLC) operate to facilitate transport
across the apical and basal enterocyte membranes by binding
and co-transporting counter ions by symport or antiport mecha-
nisms (Grandvuinet et al., 2012; Koepsell et al., 2007). The impact
of SLC transporters on drug absorption is dependent on their mem-
brane location and the direction into which they operate, i.e. where
they transfer the substrate across the membrane in which they re-
side. For example, pro-drug strategies have utilized transporter
function to enhance drug absorption by targeting the SLC intestinal
uptake transporter (oligopeptide transporter PepT1). This was
shown to augment drug absorption and increase bioavailability
(Varma et al., 2010; Weller et al., 1993; Steffansen et al., 2005).
Intestinal transporter–substrate interactions can be complex with
flux mediated by transporters on both membrane poles bi-direc-
tionally as demonstrated for estrone-3-sulfate (Rolsted et al.,
2011).

For many years there was a reliance on determining transporter
protein expression by semi-quantitative immunoblotting or quan-
titative mRNA-gene expression approaches. These studies have
employed blot densitometry techniques to evaluate relative
expression differences between samples after calibration against
a reference ‘housekeeper’ protein. Meta-analyses evaluating the
regional heterogeneity of intestinal transporter expression from
multiple literature sources, using immunoblot densitometry and
mRNA-based expression, have been undertaken to incorporate
expression-based transporter functionality into mechanistic intes-
tinal models (Badhan et al., 2009; Bolger et al., 2009; Darwich et al.,
2010; Harwood et al., 2013). It is common when using relative
expression techniques to normalize the expression of transporters
along the intestine to a single reference compartment, i.e. the prox-
imal ileal or jejunal segments (Bolger et al., 2009; Darwich et al.,
2010; Harwood et al., 2013). It appears there is no consensus as
to the relationship of the regional-specific P-gp expression imple-
mented across these models, which is likely to result from the data
and statistical methodologies incorporated into the meta-analyses.
In addition, the usage of mRNA-gene expression assumes a direct
correlation to protein activity, which may not be the case for cer-
tain transporters (Berggren et al., 2007).

The reliance on relative expression techniques to the quantita-
tion of transporter expression owes much to the challenges in puri-
fying full length recombinant integral membrane proteins, and the
lack of development of antibodies specific to transporter isoforms
to act as standards for quantitative immunoblotting and enzyme
linked immunosorbent (ELISA) assays (Ohtsuki et al., 2011). Over
the last several years, development of targeted proteomic
techniques has enabled the absolute quantification of integral
membrane proteins such as transporters, using ‘heavy’ labeled iso-
topes as internal standards (Kamiie et al., 2008; Li et al., 2008). Two
recently published studies have utilized these techniques to quan-
titate transporter abundances in 5 jejunal and 7 ileal mucosal sam-
ples (Groer et al., 2013; Oswald et al., 2013). The abundance of
PepT1 was shown to be substantially higher than OATP2B1, P-gp,
MRP2 and BCRP, however data from a greater number of samples
is required to confirm regional-specific expression of these trans-
porters. In addition, quantitative immunoblotting techniques have
been employed to measure the absolute abundance of P-gp, MRP2
and BCRP in frozen duodenal tissues obtained from a human tissue
bank (Tucker et al., 2012). In these assays, the mucosal surface was
scraped and subsequently homogenized with an ensuing
differential centrifugation procedure. P-gp, MRP2 and BCRP in total
membrane fractions from 14 samples were measured by quantita-
tive immunoblotting using s-tagging technology as an internal
standard (Karpeisky et al., 1994). Within the duodenal membrane
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Table 3
Presence of CYP isoenzymes in landrace and Göttingen minipig (modified from Helke
and Swindle, 2013 (Helke and Swindle, 2013).

Human CYP Landrace Göttingen minipigs

1A1 +
1A2 + +
2A6 + +
2B6 +
2C9 + �
2D6 + �
2E1 + +
3A4 + +

+: indicated presence/activity of enzyme.
�: indicates no presence/activity of enzyme.

10 E. Sjögren et al. / European Journal of Pharmaceutical Sciences xxx (2014) xxx–xxx

PHASCI 2973 No. of Pages 53, Model 5G

19 March 2014
fractions, the transporter abundances in order from highest to low-
est were; BCRP > P-gp > MRP2. This is in conflict with duodenal
expression data from meta-analyses incorporating data using rela-
tive expression techniques that are normalized to the proximal
jejunum (Harwood et al., 2013). These analyses show a reversal
of expression in the order: MRP2 > P-gp > BCRP. The accurate
implementation of expression data within intestinal models is crit-
ical to ensure the models proximity to the in vivo milieu to provide
the basis for predicting the impact of transporters on ADMET.

There is a need to undertake further studies quantifying the
region-specific abundances of a variety of ABC and SLC transporters
that reside on the apical and basal enterocyte membranes and their
variability between individuals in numerous populations. In
addition, it would also be valuable to quantify the transporters
OST-a and OST-b (OST-A & OAT-B) located on the basal enterocyte
membrane (Ballatori et al., 2005; Grandvuinet and Steffansen,
2011) and cadherin-17/human peptide transporter 1 (CDH17,
HPT1) which functions as a peptide transporter (Dantzig et al.,
1994).

Many fundamental questions remain to be elucidated regarding
accurately quantitating the levels of these proteins within tissues.
Loss of proteins throughout practical workflow is inevitable. Strat-
egies to counter these losses, or the use of recovery factors, to esti-
mate the ‘true’ or ‘intrinsic’ tissue abundance levels could be
utilized. For intestinal samples, a reasonably pure enterocyte yield
is essential as contamination with connective tissue, i.e. lamina
propria, and underlying submucosal tissue will dilute the sample.
This is likely to lead to under-estimation in transporter abundance.
Moreover, expression of transporter proteins in any intestinal
layers or red blood cells other than the enterocytes will lead to
contamination and may bias abundances. It has been speculated
that different methods to obtain membrane fractions may be
subject to their digestion and thus quantitation may lead to differ-
ences in abundance levels between studies (Prasad et al., 2013).
Equally, the protocols employed to reduce, alkylate and digest
proteins or the internal standard peptides used as surrogates for
protein quantitation could influence the endpoint quantitation
(Balogh et al., 2012). Therefore, it has been proposed that to
elucidate whether there are any methodological biases leading to
differences in endpoint abundances, matched protein samples
should be processed across laboratories using their own in-house
techniques where valid comparisons can take place (Rowland
Yeo et al., 2013).
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3. Canine GI characterization

3.1. Anatomical considerations

Detailed description of the anatomy of the canine GI tract can
be found in various previously published reviews (de Zwart,
1999; Kararli, 1995) and a summary is provided in Table 1. The
canine stomach is anatomically similar to that of humans, e.g., vol-
ume of 0.5–1 L (living beagle) (Martinez et al., 2002). Dogs possess
a well developed small intestine, which is consistent with a diet
that is low in fiber but high in fat and protein, and a relatively sim-
ple colon. Major differences, compared with humans, include the
shorter small intestine, especially for small dogs, and the much
shorter large intestine, about one-fourth of human colon (de Zwart,
1999; Kararli, 1995).
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3.2. GI characteristics

Some GI characteristics are presented in comparison with
data from other species in Table 3. An extended review on
canine GI physiology is available (Smeets-Peeters et al., 1998).
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Canine gastric pH in the fasted state varies along the length of
the stomach. Anterior gastric pH has a pH of 5.5 and drops to
3.4 in the posterior stomach (Smith, 1965). Perhaps it is
important to mention that the most effective way to achieve a
consistently low gastric pH in fasting dogs is to administer
0.1 mol/l HCl-KCL buffer 15 min before the dosage form.
Similarly, to elevate the gastric pH reproducibly (in the fed
state), omeprazole 1 mg/kg should be administered intravenously
at least 90 min before oral administration of the dosage form
(Polentarutti et al., 2010).

With regards to the fasted small intestine, all along the length of
the small intestine the pH increases from pH 6.2 to about 7.5
(Kararli, 1995). This was confirmed by Kalantzi et al. (2006) who
reported a fasted pH of 7.1. The buffer capacity has been measured
1.4–4.2 mM/pH and the osmolarity 62–207 mOsmol/kg, both low-
er than in humans (Kalantzi et al., 2006). The most abundant bile
salt is taurocholic acid (Holm et al., 2013b). The phospholipid in
the canine intestine contains 94.5% phosphatidylcholine and 5.5%
phosphatidylethanolamine (Alvaro et al., 1986).

The type and pattern of contractions of the canine GIT in the
fasted state are similar to those of humans. Phase III (housekeeping
wave) of the IMMC lasts for about 20 min in both species and oc-
curs every 100–110 min (Itoh and Takahashi, 1981; Yamada
et al., 1995). In contrast, agitation intensity is higher in the GIT
of dogs (Katori et al., 1995). In the fed state, the pattern of contrac-
tions in jejunum is similar although probably more intense
(Schemann and Ehrlein, 1986).

Gastric emptying of liquids in the fasting state has been
reported to be similar or faster compared with those in humans
(Ehrlein and Prove, 1982; Gupta and Robinson, 1988; Hinder and
Kelly, 1977; Reppas et al., 1991). In the fed state, the gastric emp-
tying rate of liquids is slower compared to humans (Nishiyama
et al., 1996). The gastric emptying of solids in the fasting state is
size-dependent like in man and occurs at similar or faster rates
(Aoyagi et al., 1992; Gruber et al., 1987). Solid meals are emptied
at slower rates than in humans (Dressman, 1986; Meyer et al.,
1981; Meyer et al., 1979). Transit times of the small and large
intestine vary with the size of the dog. In beagles, they are about
half of that of humans (Davies and Morris, 1993).

Information on intraluminal metabolic activity in the canine
GIT has been very limited (de Zwart, 1999; Martinez et al., 2002).
A recent study showed that the degradation of three ester prodrugs
in jejunal fasted state contents collected from Labradors and
healthy humans was similar (Borde et al., 2012). However, the
enzymatic capacity of luminal contents in dogs was higher than
in humans, which is in line with the higher protein levels measured
in the canine luminal contents. Also, compared to the activity in
luminal contents, the hydrolase activity in small intestine micro-
somes seemed to be lower in dogs but higher in humans (Borde
et al., 2012).
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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3.3. Intestinal permeability and metabolic activity

It has been estimated that the unstirred layer thickness for
rapidly absorbed compounds is similar in dogs and humans (of
the order of 40 lm) (Fagerholm and Lennernäs, 1995; Levitt
et al., 1990). Differences in the available surface area and in the
tightness of the junctions between epithelial cells have been con-
sidered to be important for low permeability compounds (Fotaki
et al., 2005; He et al., 1998). There is some evidence for improved
drug permeability through the canine small intestine as compared
to human intestine which has been related to these factors (Sutton,
2004). However, good correlation of the relative bioavailabilities of
11 compounds administered to the dog and human colon have
been observed (Sutton, 2004).

To date, the distribution of metabolic enzymes and membrane
transporters in dogs has not been comprehensively investigated.
Relevant studies have mainly focused on the expression and cata-
lytic activity of metabolic enzymes in the liver (Kyokawa et al.,
2001; Mills et al., 2010). Less is known about the intestinal expres-
sion distribution of CYPs, UGTs, membrane transporters as well as
their substrate specificities and variability in expression compared
with that in humans (Bock et al., 2002; Conrad et al., 2001; Fraser
et al., 1997; Locuson et al., 2009; Mealey et al., 2008; Turpeinen
et al., 2007).

According to a recent study (Haller et al., 2012), the gene
expression pattern of five drug transporters in the liver and along
the intestine of beagle dogs has a number of differences compared
with human data. In particular, the tissue distribution of CYP iso-
zymes and P-gp appears to be markedly different in dogs compared
with humans, whereas UGT1A6, peptide transporter-1 (PEPT1,
SLC15A1), organic cation transporter-1 (OCT1, SLC22A1, BCRP),
and multidrug resistance-associated protein 1 (MRP1, ABCC1)
more closely resemble the human tissue distribution (Haller
et al., 2012).

3.4. Gall bladder emptying and lymphatic transport

In the fasted state, canine gallbladder shows brief alternating
excursions of filling and emptying with the number of emptying
events exceeding the filling events during phase II of IMMC (Abiru
et al., 1994). In the fed state, the intensity of gallbladder contrac-
tions is dependent on the ingested calories and meal lipid content
(Romanski and Slawuta, 2003). The in vivo lymph cannulated
canine model has been described and used to study intestinal
lymphatic targeting and transport. Khoo et al. (2001) have
proposed a triple-cannulated conscious dog model, which allows
sampling from the thoracic duct lymph as well as portal and sys-
temic blood (Khoo et al., 2001). In contrast to other animal models,
the dog model allows administration of dosage forms that are of a
size relevant for human administration, and it facilitates to study
the effects of fed versus fasted states on drug absorption. However,
the higher concentration of bile acids in the GI chyme should be
recognized (Persson et al., 2005).

3.5. Concluding remarks and gaps to be filled

Characteristics of the canine GIT, especially the luminal charac-
teristics of large dogs (body weight of about 30 kg), show various
similarities with man. The most important distinctions from the
human GIT relate to the higher bile concentrations and higher sol-
ubility/dissolution of BCS Class II drugs, to the higher absorption of
BCS class III drugs, and to differences in colonic characteristics
(personal communication Abrahamsson; Persson et al., 2005).
There are also indications that the intersubject variability in regard
to GI characteristics is larger in dogs than in humans (de Zwart,
1999). A more thorough understanding of enzyme (both luminal
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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and mucosal) and transporter activities in dogs, would improve
the usefulness of this model in drug absorption and API/formula-
tion studies.
4. Pig GI characterization

4.1. Introduction

Pigs are considered a translational model in biomedical
research because of anatomical, physiological and biochemical
similarities to humans (Puccinelli et al., 2011; Swindle, 2007;
Swindle and Smith, 1998; Tissot et al., 1987). Pigs and in particular
mini-pigs have therefore become increasingly popular as an alter-
native species in drug development (Bode et al., 2010; Ganderup
et al., 2012; Helke and Swindle, 2013; Swindle et al., 2012). How-
ever, in the literature there is a disagreement on the potential use
of pigs as an in vivo model for drug formulation research and devel-
opment, which needs further exploration. In order to understand in
which circumstances pigs should be considered, this section
includes a description of pig GI physiology, metabolism and
membrane transporters and the similarity/dissimilarity to humans.
There are several breeds of minipigs, such as the Yucatan and
Göttingen, where Göttingen minipig is the most frequently used
pig strain in contemporary pharmaceutical literature (Simianer
and Kohn, 2010). However, since considerable characterizations
of the domestic landrace pig are applicable and valid for the mini-
pig assessment, this strain will also be included in the evaluation
(Forster et al., 2010).
4.2. Anatomical considerations

The size of the GIT regions, in relation to total body weight, in
pigs is generally very similar to human. The stomach, small
intestine and large intestine represent approximately 0.45/0.95%
(landrace/Göttingen minipig), 2% and 1.4%, respectively, in pigs in
comparison to 0.7%, 2.5% and 1.8%, respectively, in humans (Bollen
et al., 1998; Kühn, 2001; Phuc and Hieu, 1993; Price et al., 2003).
As in humans, the pig is monogastric and acid secretion results
as a function of stimuli, such as food intake (Schubert, 2009; von
Rosenvinge and Raufman, 2010). The length and diameter of the
small intestine is 470–2000 cm (17–19 cm/kg) and 2.5–3.5 cm in
landrace pigs and 832–900 cm (34–63 cm/kg) and 2 cm in minipigs
(Bergman et al., 2009; Glodek and Oldigs, 1981; Kurihara-Berg-
strom et al., 1986; Merchant et al., 2011; Suenderhauf and Parrott,
2013). In landrace pigs the large intestine (cecum:colon) is
23:413 cm (0.22:4 cm/kg) while in minipigs it is 20:303
(0.23:10 cm/kg), the colonic diameter is 2.7 cm (Glodek and Oldigs,
1981; McRorie et al., 1998; Merchant et al., 2011; Suenderhauf and
Parrott, 2013).

Stomach fasting pH is highly variable (1.2–4.4) with indication
of different pH regions within the stomach while the small intes-
tine pH was reported to be about 7–8 (Hossain et al., 1990; Oberle
and Das, 1994). No information of the pH in the large intestine
could be found for a confirmed fasted state. In the fasted state
the gastric transit time of nondisintegrating dosage forms was
shown to be significantly retained (1–28 days) with high variabil-
ity (Hossain et al., 1990). The transit times in small and large intes-
tine were shown to be shorter and less variable (<1–3 days)
(Hossain et al., 1990). In the fed state the gastric pH was reported
to be 3–4.5 and the transit was generally shorter (1–6 h) than in
the fasted state but still highly dependent on the gastric content
(Merchant et al., 2011; Oberle and Das, 1994). The small and large
intestine transit times in the fed state are less variable about 3–4 h
and 24–48 h, respectively, and the pH ranges from 4.7 to 7.2
(Braude et al., 1976; Davis et al., 2001; Hossain et al., 1990;
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Ruckenbusch and Bueno, 1976; Wilfart et al., 2007). However, the
transit time is somewhat influenced by intestinal content, for an
example, a high fibre diet generated a value of 26 h while other liq-
uids and solids had a transit time of 25–49 h (van Leeuwen et al.,
2006; Wilfart et al., 2007). The water content, given as wet mass,
for pigs fed ad libitum has been reported to be 250 g in the stomach
and 500 g (0.25 g/cm gut length) and 750 g (1.7 g/cm gut length) in
the small and large intestine, respectively (Merchant et al., 2011).
Bile is stored in a gall bladder and secreted to duodenum as in hu-
mans. It is produced at a rate of approximately 20–50 ll/min/kg
with a concentration of 42–55 mmol/L and has a similar composi-
tion to human bile (Bergman et al., 2009; Juste et al., 1983; Nakay-
ama, 1969; Petri et al., 2006; Sjödin et al., 2008). The amplification
of surface area due to folding and villi was found in landrace pig to
be 3.7 in the small intestine and 2.5 in the large intestine (Snipes,
1997). Even though a systematic investigation or compilation of
pig permeability data is absent, a number of single pass intestinal
perfusion studies in situ have been completed where Peff were
determined. For some of these compounds, there are human Peff

reference values available, for instance Peff (10�4 cm/s) pig:human:
fexofenadine (0.02:0.07), verapamil (�1:6.8), antipyrine (0.61:5.6),
cyclosporine (0.62:1.65) (Chiu et al., 2003; Persson et al., 2008;
Petri et al., 2006; Thörn et al., 2009). For other APIs, a direct
measurement of human Peff is absent, such as in the case of danazol
(pig: 1.1 � 10�4 cm/s) (Persson et al., 2008). Methodological
aspects, e.g., surgery and anaesthesia, as well as species-related
differences in physiology have been suggested to the lower Peff

values measured in pigs (Fagerholm et al., 1996; Petri et al.,
2006). In vitro permeability investigation using pig material is lim-
ited. However, there are examples of studies with excised mucosal
tissue using the Ussing chamber technique as well as employing
isolated and cultured enterocytes (Bader et al., 2000; Nejdfors
et al., 2000; Winckler et al., 1999).

4.3. GI metabolism

There are similarities between man and pig with regard to bio-
transformation, but also significant differences. E.g., pigs have very
low CYP2D and CYP2C19 expression compared to man (van der
Table 4
CYP test reactions and human and porcine isoenzymes involved.

Substrate Human Porcin

Methoxyresorufin CYP1A2 CYP1A
Ethoxyresorufin CYP1A2 CYP1A
Coumarin CYP2A6 CYP2A
Nicotine CYP2A6 CYP2A
Benzyloxyresorufin CYP2B6 CYP2B
7-Ethoxy-4-triflouromethylcoumarin CYP2B6 CYP2B

CYP2B6 CYP2B
Pentoxyresurfin CYP2B6 ND
Mephenytoin
Diclofenac CYP2C8/9 CYP2C
Tolbutamid CYP2C9 NI
S-Mephenytoin CYP2C19 ND
Desbrisoquine CYP2D6 ND
Bufuralol CYP2D6 CYP2B
Dextromethorphan CYP2D6 CYP2B
Clorzoxazone CYP2E1 CYP2E
p-nitrophenol CYP2E1 CYP2E
Aniline CYP2E1 CYP2A
Midazolam CYP3A4 CYP3A
Testosterone CYP3A4 CYP3A
Nifedipine CYP3A4 CYP3A

NI: specific porcine CYP isoenzyme responsible for this reaction not yet identified ND: n
(1) (Nebbia et al., 2003), (2) (Skaanild and Friis, 1999), (3) (Bogaards et al., 2000), (4) (
(Skaanild and Friis, 2005), (8) (Myers et al., 2001), (9) (Desille et al., 1999), (10) (Behni
(Wiercinska and Squires, 2010), (14) (Skaanild and Friis, 2007), (15) (Lu and Li, 2001), (
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Laan et al., 2010). In other cases, the metabolic activity in the intes-
tinal wall is significant. This can be similar to human but in other
cases not, e.g., the bioavailability of metoprolol is 48 ± 22% in hu-
mans compared to �3% in pigs (Holm et al., 2013a; Sandberg
et al., 1991; van der Laan et al., 2010). Not all human CYP isoforms
have an ortholog in pigs (Helke and Swindle, 2013). Comparison
between pig and human cDNA and amino acids show high se-
quence homology, though metabolic responses may vary as also
demonstrated with the metoprolol example (Lu and Li, 2001;
Monshouwer et al., 1998; Toutain et al., 2010). In Table 3, the
CYP enzyme activity in landrace and Göttingen minipigs can be
found and an overview of the CYP isoenzyme involved in the
reactions with a number of substrates are presented in Table 4,
demonstrating some differences in the CYP isoenzymes involved
between the two species. A comprehensive characterization of
abundances and substrate specificity of conjugating enzymes,
e.g., UGT’s and SULT’s, is still absent for the pig. However, in vitro
and in vivo studies have shown intestinal and hepatic UDP and
SULT functionality with potential similarity to humans (Gu et al.,
2006; Rahikainen et al., 2013; Sjögren et al., 2012; Thörn et al.,
2012).

Altogether, based upon substrates, induces, inhibitors and regu-
lation data, there are no major differences among CYP1A1, 1A2, 2B,
2E1 and 3A in pigs when compared to humans (Puccinelli et al.,
2011). Hence, the pig could be a good model for human (with re-
spect to metabolic profile) for compounds that are mainly metab-
olized by these CYP enzymes, However, as less is known of CYP2C,
CYP2D6 and phase II metabolism in pigs, more caution should be
taken when selecting pigs as a model for these compounds which
interact with these enzymes.

4.4. GI transporters

Only a limited number of references on drug transporter
expression and functionality in pigs and minipigs are available.
However, Schrickx presented an RNA and protein expression study
on the landrace pig of P-gp, BCRP and MRP2 in various tissues
including the GIT (Schrickx, 2006). P-gp and BCRP RNA levels were
found to increase along the small intestine to reach highest
e Reaction Reference

O-Demethylation 1
O-Demethylation 1–2
7-Hydroxylation 2–6

/NI O-Oxidation 7
? (NI) O-Debenzylation 8
? (NI) O-Debenzylation 3
? (NI) Dealkylation 9, 10

Demethylation 2

9/NI 4-Hydroxylation 3, 8.16
4-Hydroxylation 11
4-Hydroxylation 2, 3, 8
4-Hydroxylation 12
1-Hydroxylation 3, 12
O-Demethylation 12, 16

1+2A+3ª 6-Hydroxylation 2, 3, 9, 13
1 + CYP2A/NI 2-Hydroxylation 1, 14
/(NI) 4-Hydroxylation 1

1- and 4-hydroxylation 15
6b-Hydroxylation 2, 3
N-oxidation 2, 9

o detectable metabolism.
Skaanild and Friis, 2000), (5) (Shimada et al., 1994), (6) (Pelkonen et al., 2000), (7)
a et al., 2000), (11) (Anzenbacher et al., 1998), (12) (Skaanild and Friis, 2002), (13)
16) (Thörn et al., 2011).
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expression in distal jejunum with reduced expression in ileum and
negligible amounts in the large intestine. The same expression pat-
tern was observed for MRP2 with the difference that the expres-
sion was quite significant in the large intestine. This work also
presented high homology between human and porcine P-gp with
regard to transcriptional, protein and functional level. The work
of Tang and co-workers reported an increased P-gp protein expres-
sion along the small intestine and also some expression in large
intestine in the Yucatan minipig (Tang et al., 2004). Minor expres-
sion in the intestine (region unknown) has also been reported for a
pig homolog to human OATP1A2 with high similarity both in se-
quence and functionality (Yu et al., 2013).

No in vivo study has been published on pigs with direct
information of the intestinal transporters, e.g., PK data presented
together with information of protein expression or genetic hetero-
zygosity. However, several studies have been conducted using the
domestic landrace pig with known substrates of transporters with
or without transporter inhibitors, such as fexofenadine, ximelaga-
tran, rosuvastatin, verapamil and digoxin (Bergman et al., 2009;
Petri et al., 2006; Sjödin et al., 2008; Tannergren et al., 2006; Thörn
et al., 2009). A few ex vivo studies wherein brush-border
membrane of pig small intestine showing expression of carriers
of amino acids and D-glucose have also been published (Munck
et al., 1995) (Maenz and Patience, 1992; Munck et al., 2000; Schar-
rer et al., 2002; Stevens et al., 1982). As this section demonstrates,
further investigations are needed to increase the knowledge and
role of intestinal transporters in drug absorption in pigs.
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4.5. Concluding remarks and gaps to be filled

The slow and variable gastric emptying of the pig is an impor-
tant species difference to human with high potential implications
for the in vivo GI drug absorption of enteric coated or modified
release formulations as well as investigations in the fed state. In
contrast to gastric transit times, the transit times in small and large
intestine are generally less variable and more comparable to that in
humans. Also, as pointed out by this summary, further
characterization of pH and transit times in the fasted state is nec-
essary, especially for small and large intestine and disintegrating
formulations. Further investigations, both in vitro and in vivo, for
the characterization of the intestinal permeability, metabolism
(especially mediated by CYP2C, CYP2D6 and phase II enzymes)
and transporters are also needed for an optimum application of
the pig as a pre-clinical model for drug absorption. Anatomical
and physiological data of the GI tract of pigs is summarized in
Table 1.
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5. Rat GI characterization

In general there are important differences between the physiol-
ogy of rodents and humans such as the fact that rodents are noc-
turnal animals with consequences for timing of dose and an
option to change day–night rhythm. Further rodents are prone to
coprophagy with consequences of re-uptake of fecal excreted
drugs. In addition, the size of rodents limits their use in studies
with intact dosage forms intended for human use and generally
higher metabolism is observed in rodents as compared to humans.
Drugs are often dosed per body weight in animal studies and if
comparing gastric volumes adjusted for body weight, the relative
gastric volume of the rat is larger than for humans (Davies and
Morris, 1993). The gastric emptying rate of liquids in the fasted
state, being the most relevant factor when comparing drug absorp-
tion rates of BCS class I compounds, is somewhat similar in rats and
humans, with a gastric emptying half-life around 15–30 min
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(Langguth et al., 1994). Gastric emptying in the rat is mainly
controlled by the energy content of the ingested food in a similar
manner like in humans. For instance, the gastric emptying half-life
for solution with 0–6 kcal were 5–65 min (Maerz et al., 1994). The
rat often has a higher gastric pH than that of man of about 4–5 (Da-
vies and Morris, 1993; Kararli, 1995). Despite the increased gastric
secretion, fasted gastric pH is generally increased by food intake
across all species. The magnitude of gastric pH increase is highly
dependent on the meal composition and a direct comparison be-
tween species is difficult. The contents of GI fluids such as bile
salts, lipids and buffer species as well as the GI motility and pH
are the main factors responsible for the initial saturation. The
secretion of bile acids (taurocholate is the major bile acid at a total
concentration of 8–25 mM in rats) is induced endogenously by
food intake. In rats, within 10 min the secretion of bile-pancreatic
juice proteins increased from 0.2 mg under fasted state with oral
saline solution to 0.7 mg under fed state with oral fatty acids or
sucrose solution (Hiraoka et al., 2003). Total bile acid and
phospholipids concentration for the rat intestine is changing with
segment such that saturation solubilities of compounds also
depend on the segmental fluid composition and distribution
(Tanaka et al., 2012).

The GI fluids mostly control the in vivo drug solubility, along
with the volume of the co-administered water and the adminis-
tered dose. The pH in small intestine increases continuously from
duodenum to terminal ileum within a similar range as humans,
i.e., 4.5–7.5. SITT of 3–4 h in rats is also similar to humans (Davis
and Wilding, 2001; Lennernäs and Regårdh, 1993).

The anatomical features of the GI tract such as radius and
length, microbial content, the hydrodynamic characteristics of
volume, flow rate of the GI fluids, as well as elements closely
associated with permeability for example tight junction have pre-
viously been reviewed (DeSesso and Jacobson, 2001; Kararli, 1995).
Focusing on the epithelial permeability in small and large intestine,
the rat has been used in several in situ single pass perfusion exper-
iments (Cao et al., 2006; Fagerholm et al., 1996, 1997, 1999). This
technique has, in several reports, shown that the rat jejunal perme-
ability correlates strongly with the corresponding human jejunal
Peff. The Peff for passively absorbed drugs on average was 3.6 times
higher in humans compared to rats. Compounds with carrier-med-
iated absorption deviated from this relationship, which indicates
that scaling of these processes needs further consideration (Cao
et al., 2006; Fagerholm et al., 1996, 1999). Mechanistic investiga-
tions by determining human and rat jejunal permeability and at
the same time examining the expression levels of transporters
and metabolic enzymes through GeneChip techniques has found
the same good correlation between human and rat permeability
(R2 = 0.8), only a moderate correlation for the transporter
expression levels in duodenum (R2 > 0.56), but no correlation in
metabolizing enzyme levels (Cao et al., 2006). This agrees with
the well-established difference between the species in drug metab-
olism and oral bioavailability where a mean allometric coefficient
of 0.66 was determined in a correlation of plasma clearance of 54
extensively metabolized drugs between humans and rats (Chiou
and Barve, 1998). On the basis of these studies, the rat in situ sin-
gle-pass perfusion model is considered as the most appropriate
animal model for predicting human permeability and absorption
from the small intestine (Cao et al., 2006; Fagerholm et al., 1996,
1997, 1999). In addition, the Ussing chamber with rat tissue has
also been reported to be a useful model to predict human intestinal
absorption based on data from both the small and large intestine
(Lennernäs et al., 1997; Ungell et al., 1998). It seems that the rat
colon may be useful to predict absorption of drugs intended to
be used in oral MR dosage forms but this requires further valida-
tion. An opportunity can be seen in the assessment of absorption
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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for BCS II, III and IV drugs in IR dosage forms using this technique
because of the regional differences. However, even if the rat is a
suitable preclinical model for GI absorption it has limitations such
as body size, dietary intake difference and the shortcomings
related to dosing of intact solid dosage forms.
1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197
6. Mouse GI characterization

6.1. Anatomical considerations

Although a description of the anatomy and physiology of the
mouse GI tract can be found in various previously published
reviews (de Zwart, 1999; Kararli, 1995; McConnell et al., 2008a;
Ogiolda et al., 1998), the amount and quality of the data regarding
biopharmaceutically relevant information in mice in particular for
drug product development is much less than human and rat,
although the mouse has been the most extensively studied species
in pharmacology.

The mouse stomach is divided into a glandular and non-glandu-
lar portion (de Zwart, 1999). The non-glandular portion is thin--
walled and is a higher percentage than found in humans. The
glandular portion is thick-walled and secretes mucus, pepsinogen,
and HCl. Ogiolda studied the size of various parts of the mouse GIT
at 8-months of age after selective breeding of 8-week old mice (Og-
iolda et al., 1998). The body weights at 8-months of age resulted in
the following categories: heavy (63 g male, 58 g female), light (22 g
male, 21 g female), and randomly selected (45 g male, 41 g female).
Since most of the anatomical and physiological publications relate
to mice that are 18–22 g we will focus on the average properties of
male and female mice reported by Ogiolda for the ‘‘light’’ category.
McConnell reported that a 20 g mouse is comfortably full with a
stomach volume of 0.37 mL and could expand up to 0.71 mL max-
imum (McConnell et al., 2008a). Assuming the stomach is a sphere
with surface area of 2.47 cm2, the radius would be 0.443 cm and
the resulting spherical volume would be 0.365 mL. Thus, there is
a good correlation between the data collected by Ogiolda for the
‘‘light’’ category mouse and the physiological data of McConnell.
More importantly, for estimation of mouse anatomy for a given
body weight, Ogiolda did not find statistically significant
differences between the ‘‘light’’, ‘‘random’’, or ‘‘heavy’’ mice when
the ratios of GI section weight/body weight, or surface area/body
weight(2/3), or length/body weight(1/3) were compared. Ogiolda
found the following additional average dimensions for the ‘‘light’’
category mouse: Duodenum weight (166 mg) and length
(38 mm); Jejunum/Ileum weight (1156 mg) and length
(364 mm); Cecum weight (305 mg) and length (31 mm); and Colon
weight (550 mg) and length (83 mm).

Assuming consistency and reported relationship to body weight
of these GI parts, the regional anatomy for any size mouse should
be easily estimated. In fact, these dimensions are consistent with
Kararli who reported a total SI length of 35–45 cm for mice (Karar-
li, 1995). In a study of the influence of lactation on processing of
dietary protein, Harmatz et al. reported that the average
circumfence of the control mouse (21 g) small intestine was
0.7 cm (Harmatz et al., 1993). The radius determined from this va-
lue of circumference would be 0.11 cm and if it is assumed that the
small intestine is a cylinder of 36 cm long, its volume would be
1.38 mL. Of course, the small intestine does not have a constant
radius going from the duodenum to the distal ileum, but more
accurate measurements of the radius for different segments of
the mouse intestine are not available. McConnell et al. measured
the average water content of the mouse small intestine (70%) by
weighing the contents before and after lyophilization and esti-
mated fasted water volume to be 0.81 mL and fed water volume
to be 0.98 mL. Thus, there is very good agreement of total volumes
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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and water volumes for the mouse small intestine from a variety of
studies by different groups over more than a decade.
6.2. Gastric emptying and small intestinal transit time

Recently, technetium-labeled activated charcoal diethylenetri-
aminepentaacetic acid (99mTc-Ch-DTPA) detected by single-pho-
ton emission computed tomography (SPECT) was used to study
gastrointestinal transit times in mice (Padmanabhan et al., 2013).
It was found that stomach transit time was 1 h, small intestinal
transit time was 1–20 h, and cecum and colon transit time was
3 h. In a study of the influence of salmon calcitonin on the small
intestinal transit time (SIT) in the mouse, Hamada et al. reported
the average non-inhibited SIT to be 1 h (Hamada et al., 1999).
6.3. pH of the mouse small intestine

McConnell et al. investigated the pH, water content, and lym-
phoid tissue distribution in two groups of mice (McConnell et al.,
2008a). The first group was fasted overnight with free access to
water and the second group was given free access to a low protein
(18%)/low fat (5%) standard diet and water at all times. When
9.17 g of mouse chow was mixed with 10 mL of water until the
food pellet disintegrated, the resulting pH was 5.9. GI pH was
determined after sacrificing the animal, by dissecting the GI
segments, collecting and mixing the undiluted contents, and mea-
suring pH with a meter. In contrast to humans, mice had lower
stomach pH (3.0) under fed conditions than fasted (4.0 ± 0.3). Un-
der fasting conditions, all sections of the mouse small intestine had
similar pH values and were slightly higher (5.0 ± 0.25) than in fed
mice (4.8 ± 0.03). Compared to the fasted human small intestine
where the pH ranges from 6 to 7.4, the lower pH in the mouse
has implications for in vivo testing. When delivered as a solution
formulation, acidic drugs may precipitate in the mouse small
intestine but remain in solution or dissolve readily when tested
in humans. Also, when tested in mice, the performance of pH-sen-
sitive polymeric delivery formulations may not exhibit the same
release characteristics as expected in humans. In contrast to the
differences in normal values of pH between human and mouse,
in a study of the intestinal permeabilities of the following five
model drugs furosemide, piroxicam, naproxen, ranitidine and
amoxicillin in the in situ intestinal perfusion technique in mice, it
was found that permeability was similar for the above mentioned
compounds when compared to human (Escribano et al., 2012).
6.4. Metabolism and transport

Information on the quantitative expression of intestinal
metabolic enzymes in the mouse is not as plentiful as some other
preclinical species. Zhang et al. reported on mRNA expression and
identity of the following Cytochrome P450 enzymes; Cyp1a1, 1b1,
2b10, 2b19, 2b20, 2c29, 2c38, 2c40, 2e1, 3a11, 3a13, 3a16, 3a25,
and 3a44 (Zhang et al., 2003). They found that Cyp3A13 was found
in the highest abundance in the small intestine followed by 3a11.
However, liver expression of 3a11 was higher than 3a13. Komura
et al. published on species differences for in vitro and in vivo small
intestinal metabolism for several CYP and UGT substrates in mice
(Komura and Iwaki, 2008, 2011). Mutch et al. commented on
regional variability in ABC transporter expression in mice but less
information is available for other drug transporters (Mutch et al.,
2004). Finally, Holmstock et al. has reported on a transgenic mouse
model that has human CYP3A4 and P-gp for use in studying the
inducing effects of xenobiotics on human intestinal P-gp (Holm-
stock et al., 2013).
bsorption – Comparative physiologies, model selection, correlations with
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6.5. Concluding remarks and gaps to be filled

The mouse GIT shows some similarity to human and both spe-
cies share the same finger-shaped morphology of intestinal villi.
This is in contrast to rats with tongue-shaped villi (de Zwart,
1999). However, the lower pH of the small intestine might make
the mouse less attractive for formulation development than some
of the other preclinical species. More quantitative information on
intestinal enzyme and transporter expression will facilitate the
use of physiologically based pharmacokinetic (PBPK) models for
in vitro/in vivo extrapolation.

An overall comparison of anatomical and physiological data of
the GI tract of humans and commonly used animal models is given
in Table 1.
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7. Imaging technologies for anatomy, physiology and, dosage
form performance

Imaging has proved to be a useful tool in biopharmaceutical
studies as it enables a number of important attributes related to
the formulation. In particular, the following information can be
acquired:

� Patterns of motility and the transit of material along the GIT.
� The region in which dispersion/disintegration occurs.
� Time point at which release of material occurs.
� The influence of feeding on dosage regimens: effects of dosing

relative to a meal; influence of food components.
� The amount of water available for dissolution.
� The separation of meal components.
� Gall bladder volumes.
� In vivo erosion and release rates of MR systems and enteric

coatings.

When combined with other measurements, the imaging tech-
niques become even more informative as the combination of data
can be used for additional elucidation of aspects such as:

� Regional absorption (e.g. extent of colonic absorption).
� Localization of the dosage form in the GIT relative to the plasma

concentration (sometimes termed ‘pharmacoscintigraphy’ or
‘pharmacomagnetography’).
� The unambiguous relationship between position in the GIT and

pH for tagged radiotelemetry devices.

The use of imaging has been reviewed, sometimes at length, in
several articles over the past 30 years. These articles have dealt
with specific technologies: gamma scintigraphy (Hardy and
Wilson, 1981; Newman and Wilding, 1999; Wilding et al., 2001)
MRI (Marciani, 2011; Schwizer et al., 2006) and magnetic marker
monitoring (MMM) (Weitschies et al., 2010, 2005). MMM is also
referred as magnetic moment imaging (MMI), magnetic pill
tracking as well as related methods such as alternating current
biosusceptometry (ACB) (Cora et al., 2011). Characteristics of the
currently most used imaging modalities have recently been re-
viewed (Weitschies and Wilson, 2011). In most cases a separate
marker compound is used in a formulation (e.g. with drill & fill
method), but this may have a different release/dissolution profile
than the API from the non-modified formulation.

A very promising recent development is the MR-based combi-
nation of 19F tracking and 1H imaging allowing real time tracking
of one or more 19F labeled dosage forms (Hahn et al., 2011,
2013). In addition, the availability of new telemetric tools for
clinical gastroenterology such as the Given Imaging camera pill
(Glukhovsky and Jacob, 2004) and those for investigational studies
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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including the Medimetrics IntelliCap pH sampling unit (Shimizu
et al., 2008) and the SmartPill pressure sensor (Cassilly et al.,
2008), have been applied in biopharmaceutic studies. Specific de-
tails concerning these instruments can be found in engineering
journals (McCaffrey et al., 2008). Optical systems have been used
to examine deposition in the lower gut and in the vagina
(Henderson et al., 2007). This technology is best applied to fluores-
cent labels or materials that have intrinsic fluorescence, aiding
biopsy sampling (Muldoon et al., 2007). The IntelliCap system is
in principle also capable of sampling GI fluids, the issue being pres-
ervation of the integrity of the sample.

7.1. MRI in biopharmaceutics

The understanding of functions of the GIT is important in the
application of biopharmaceutics for the development of orally
administered drugs. Experimental approaches have mainly relied
on tissue sections to examine the microscopic structures within
the GIT as well as telemetric measurements to understand transit
time, gastric emptying time and pH changes along the length of
the GIT in humans and animals. While understanding human
physiology is of the utmost importance to the development of
new orally acting drugs, the ability to make comparisons across
typical species used in drug development, such as the rat, dog
and pig, are useful in extrapolating from these animal species to
humans. In fact any of the measurements in current in silico tools
for these extrapolations have embedded within them the charac-
teristics of these animal species.

Imaging techniques have been used frequently to understand
how specific compounds (new chemical entities) or probe com-
pounds interact with the various components of the GIT through
measurement of compound in blood, plasma or urine into which
the compounds find their way. The compounds are typically
labeled with radioactive functional atoms which can be measured
either based on gamma emissions (scintigraphy, e.g., Single Photon
Emission Tomography, or positron emission tomography) (de
Kemp et al., 2010; Shoghi, 2009; Van Berkel et al., 2008). In these
two cases, the radioactive nuclei, 99mTc or 18F, are short-lived iso-
topes which decay rapidly with half-lives in the order of 6 h and
110 min, respectively. Moreover, newer techniques have been
developed to measure tissue concentrations in thin sections (e.g.,
matrix-assisted laser desorption ionization, MALDI); however, as
with the other techniques they measure compound and metabo-
lites and do not focus on microscopic or patho-physiological
processes.

Functional imaging on the small animal level has not been used
frequently to date but has been applied for many years to humans.
The clinical MRI equipment is quite expensive and difficult to jus-
tify for use in small animals. Approximately 25 years ago, small
animal MRI instruments were developed and recently increased
efforts have been made in the field (Hockings, 2006; Rudin, 2005).

Several obstacles limit MRI technologies in pharmaceutical
preclinical animal research: animal size called for adapting instru-
ment dimensions and magnetic field strength; the necessity for
anesthesia and its monitoring, the control of body temperature
among other vital parameters, all these requirements have to be
met for a successful longitudinal, repetitive and non-destructive
application of MRI.

From a scientific point of view, the advantages of such
non-invasive technologies include the ability to work with intact
animal models, much closer to human reality than any isolated cell
suspension system, in spite of the tremendous difficulties often
encountered. The improved predictivity of (patho)-physiological
data obtained in living animal models as a basis for subsequent
human studies responds to the ethical requirement of utmost
safety before human application.
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Fig. 4. MRI of rat abdomen. To improve delineation of the intestine a mannitol
solution was applied per gavage. Numbers indicate organs as follows: (1) Liver, (2)
Stomach, (3) Small intestine, (4) Colon. MRI details: Bruker BioSpin 70/30: T2-
weighted RARE-image, TR 2000 ms, MTX 256, FOV 8 � 6 cm; toal acquisition time,
8 m 32 s. Image kindly provided by Sanofi-Aventis.

16 E. Sjögren et al. / European Journal of Pharmaceutical Sciences xxx (2014) xxx–xxx

PHASCI 2973 No. of Pages 53, Model 5G

19 March 2014
In vivo MRI as a tool for animal research is very much in line
with the Ethics Committee recommendations of decreasing animal
use since, usually, the chosen MRI-parameter acts as a biomarker
for the interesting physiological process or function of interest
and is determined dynamically over a suitable period of time.
Therefore, it is not only a snap shot of this process, but depicts
the development up to its final ‘‘end-point’’ with an inherently
higher reliability.

MRI in drug development has mainly addressed the under-
standing of normal physiological versus pathological activity of,
for example, the heart or other organs and the effects produced
by drugs on that tissue. Rarely has MRI technology been used to
understand the effects of excipients on gastric motility or
formulation effects in the GIT of small animals in order to better
understand the human situation.

Contrast agents are tolerated by small animals and similar to
humans, they can be used to look into the physiology of the GIT
Fig. 5. MRI of rat intestinal mucosa. High signal intensity rim in colon, tentatively as
validation. Numbers indicate regions as follows: (1) bladder, (2) Colon lumen, (3) Rim o
details: Bruker BioSpin 70/30: T2-weighted RARE-image, TR 2000 ms, MTX 256, FOV 7 c
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(Fig. 4). The work proposed in OrBiTo is to develop best practices
for the most commonly used species, rat and Beagle dog using
MRI to investigate function, water content, mucus layers (Fig. 5)
and motility in these species. Assessing how these factors correlate
to man with regard to formulation disintegration and dissolution,
particle and macromolecule (e.g. excipients) diffusion through
the unstirred water layer (i.e., the mucus compartment) and its
final distribution and disposition will aid in selecting the best mod-
el, reduce the number of animals needed to optimize a formulation
and provide input to model builders in the other work streams.
8. GI luminal concentration profiling of orally administered
drugs in humans

GI drug concentrations after oral administration reflect the
interplay of multiple GI and biopharmaceutical processes, includ-
ing the drug dose, drug release, dissolution, solubility, transit and
simultaneous dilution by secretions, precipitation, degradation
and mucosal permeation. Monitoring these luminal concentrations
as a function of time, therefore, provides a unique insight into the
intraluminal behavior of a drug and its formulation (Fig. 6).

8.1. Methodology: sampling and characterizing GI fluids

The determinations of the GI drug concentrations can be per-
formed following oral administration to healthy volunteers, where
GI fluids are sampled by means of a double-lumen catheter, posi-
tioned either via the mouth or nose into the upper GIT. Intubation
with two catheters allows the simultaneous assessment of drug
concentrations at two intraluminal positions: e.g., the stomach
and duodenum (Brouwers et al., 2007b; Walravens et al., 2011)
or duodenum and upper jejunum (Brouwers et al., 2005, 2006).
Positioning of the catheters is usually monitored by means of
fluoroscopy (Lennernäs et al., 1992). Drugs are administered either
orally (dosage form with water) (Brouwers et al., 2005, 2007b,
2006; Walravens et al., 2011) or directly into the stomach by
means of a catheter (solution or suspension) (Psachoulias et al.,
2011; Vertzoni et al., 2012). While ‘real-life’ administration is obvi-
ously most relevant, gastric dosing may be more appropriate for
mechanistic purposes. To this point, Psachoulias et al. investigated
intestinal precipitation of weakly basic drugs upon gastric empty-
ing by administering drug solutions directly into the stomach; this
approach neglects gastric dissolution to focus on supersaturation
and precipitation (Psachoulias et al., 2011). Fed state conditions
can be simulated by either a nutritional drink (Brouwers et al.,
2007b) or a homogenized liquid meal (Vertzoni et al., 2012).
signed to mucus layer. Mucus thickness approximately 700 lm, requires further
f mucosa. The image to the right is a magnification of the region of the colon. MRI
m; total acquisition time, 2 min. Image kindly provided by Sanofi-Aventis.
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absorption process and the investigation of the mucosal permeation potential of a drug.
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GI fluids are sampled as a function of time, typically for a period
of 2–4 h following administration. To minimize the effect of sam-
pling drug on the absorption process, aspirated volumes should
be kept to a minimum, especially when multiple GI sites are sam-
pled and/or plasma concentrations are determined in parallel. At
the time of sampling, enzymatic processes should be inhibited
(e.g. cocktail of lipase and protease inhibitors), non-dissolved
and/or precipitated drug particles should be separated (centrifuga-
tion or filtration) and possible further precipitation should be
avoided by diluting the particle-free sample. The observed drug
concentrations will be related to characteristics of the GI fluids
such as: pH, osmolality, viscosity, surface tension, buffer capacity
and concentration of bile salts, phospholipids and dietary
(digestion) products.
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8.2. Applications of GI concentration profiling in humans

8.2.1. Fosamprenavir: understanding an unexpected food effect
Fosamprenavir is a phosphate ester prodrug of the poorly

soluble HIV protease inhibitor amprenavir. To investigate in vivo
the intraluminal dephosphorylation of fosamprenavir, required
for transepithelial permeation, GI fluids and plasma samples were
collected after administration of an IR tablet of fosamprenavir
(Telzir�) to healthy volunteers in the fasted and fed state
(Brouwers et al., 2007b). The plasma concentrations of amprenavir
demonstrated a distinct food-induced delay in absorption (mean
tmax increased by 2.5 h). Previous in vitro studies suggested that
the inhibition of fosamprenavir dephosphorylation in fed state
conditions as a potential cause of this delay (Brouwers et al.,
2007a). However, the clinical study revealed duodenal appearance
of fosamprenavir, and not dephosphorylation, as the major
determinant of plasma tmax. In the fed state, duodenal appearance
appeared to be delayed due to an unexpected delay in gastric dis-
integration of the IR tablet of fosamprenavir. This study clearly
illustrated the use of GI concentration profiling to identify key
intraluminal processes for absorption. In addition, the data were
used as reference to validate the TNO Intestinal Model (TIM) to
predict food-dependent disintegration of IR tablets (Brouwers
et al., 2011).
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8.2.2. Gastric dissolution of weakly basic drugs and the role of acidic
beverages

Posaconazole is a poorly soluble and weakly basic antifungal
drug, administered as an oral suspension (Noxafil�). GI concentra-
tion profiling in healthy volunteers confirmed the importance of
gastric dissolution for posaconazole absorption (Walravens et al.,
2011). In line with other weakly basic drugs, fasted state intake
of posaconazole with an acidic cola beverage significantly
enhanced absorption by improving gastric dissolution. In contrast
to the usually accepted hypothesis, this could not necessarily be
attributed to a reduction of the gastric pH. In normal fasted state
conditions, the acidic beverage enhanced dissolution by prolonging
the gastric residence time without affecting the gastric pH.

8.2.3. The role of intestinal precipitation in the absorption of weakly
basic drugs

Intraluminal drug precipitation from supersaturated solutions
is currently extremely difficult to predict, since the influence of
GI physiology on the precipitation process has not yet been eluci-
dated. By characterizing intestinal fluids aspirated after gastric
administration of solutions of the weakly basic drugs ketoconazole
and dipyridamole, intestinal precipitation was recently
investigated for the first time in vivo (Psachoulias et al., 2011). As
expected, the intestinal fluids appeared supersaturated with both
drugs as a result of the solubility difference between stomach
and intestine. In contrast to previous in vitro experiments (Kos-
tewicz et al., 2004), however, the observed precipitation in vivo
was minimal. The obtained clinical data were used to optimize
the experimental conditions of in vitro transfer experiments for
weak bases, pursuing more accurate and biorelevant prediction
of intestinal precipitation (Psachoulias et al., 2012).

8.2.4. GI fluids as reference for biorelevant flux assessment
The above mentioned examples illustrate the unique value of GI

concentration–time profiles to elucidate intraluminal processes
crucial for absorption. Another application involves the use of aspi-
rated GI fluids as a reference for the biorelevant in vitro assessment
of drug flux across an epithelial monolayer. Flux is an informative
measure of drug and formulation performance, since it not only
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Fig. 7. Schematic illustration of experimental techniques for human intestinal
perfusion studies. (A) Open perfusion system. (B) Proximal balloon perfusion
system, (C) Double balloon perfusion system. Solid arrows indicate where the
perfusate enters and leaves the intestinal segment. Generally the perfusate leaves
the segment by force of gravity, as the fluid is collected on ice standing on the floor
while the subject is positioned in a bed. The dotted arrow specifies the proximal-to-
distal direction of the intestine.
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depends on intraluminal drug concentrations but also on the per-
meability of the monolayer for the drug. Absorption-enabling
strategies, including food- or excipient-based solubilization of lipo-
philic drugs, often generate highly complex intraluminal fluids that
may drastically affect the permeation potential of the drug.
Simulating these effects in vitro may be challenging and requires
reference fluids. For instance, upon administration of a co-solvent
and surfactant-based formulation of amprenavir (Agenerase�),
intestinal fluids contained high amprenavir concentrations as a re-
sult of solubilization by D-a-tocopheryl polyethyleneglycol 1000
succinate (TPGS) (Brouwers et al., 2006). Subsequent use of these
fluids as the donor medium in Caco-2 transport experiments
demonstrated the interplay of multiple factors in determining
the amprenavir flux: (1) increased amprenavir concentrations, (2)
entrapment of amprenavir in TPGS-based micelles (reduced per-
meability), and (3) inhibition of the efflux carrier, P-gp, by bile salts
and TPGS.

Similarly, intestinal fluids were collected and analyzed upon
administration of the highly lipophilic drug danazol together with
a heterogeneous liquid meal (Vertzoni et al., 2012). In comparison
to a simple aqueous medium, diluted aspirates and micellar phases
of aspirates significantly reduced the permeability for danazol
across Caco-2 monolayers as a result of entrapment in the luminal
coarse and/or micellar lipid structures. In terms of flux, however,
the increased danazol concentrations in lipid structures overcom-
pensated for the reduced permeability.

8.3. Future of GI concentration profiling

In comparison with the use of classic PK studies that require
deconvolution or modeling to simulate drug appearance in the sys-
temic circulation from other disposition processes, the sampling
and analysis of GI fluids upon drug administration directly reflect
intraluminal drug and formulation behavior. As such, the tech-
nique provides unique reference data for optimization of in vitro
and computational models to assess drug absorption. Especially
for drugs with a suboptimal absorption potential (BCS class II–IV)
that rely on complex absorption-enabling strategies, e.g., solubili-
zation and supersaturation, the predictive power of existing simu-
lation models is insufficient. It can be expected that direct
assessment of intraluminal drug concentrations will play a crucial
role to resolve the performance of these strategies in the complex
GI environment and to guide further optimization of models.

8.4. Regional absorption methodologies/in vivo and ex vivo animal
models for characterizing segmental/regional drug absorption

The physicochemical properties of the API and the complex
physiological and biochemical interactions of the GIT determine
the regional intestinal Peff in vivo. Variations in mucosa physiology
may affect regional Peff differently depending on the transport
mechanism(s) involved (Chadwick et al., 1977a,b; Corrigan, 1997;
Davis and Wilding, 2001; Lennernäs, 1998; Ungell et al., 1998;
Winiwarter et al., 2003, 1998). Intestinal Peff depends on the
coexistence of multiple, parallel transport processes such as pas-
sive transcellular diffusion and carrier-mediated absorption and
carrier-mediated efflux (Sugano et al., 2010).

8.4.1. Human model
Direct measurements of intestinal Peff and secretion of drugs in

humans are possible by regional intestinal perfusion techniques
(Drescher et al., 2003; Igel et al., 2007; Lennernäs, 1998; Lennernäs
et al., 1992, 1994; Modigliani et al., 1973a,b; von Richter et al.,
2001). In general, four different clinical perfusion principles have
been employed in the human small intestine (Fig. 7):
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� a triple-lumen oro-nasal tube including a mixing segment,
� a multi-lumen tube with a proximal occluding balloon,
� a multi-lumen tube (Loc-I-Gut�) with two balloons occluding a

10 cm long intestinal segment (Fig. 7),
� two 20 cm adjacent jejunal segments were isolated with the

multi-lumen perfusion catheter.

The advantages and disadvantages of the various intestinal
perfusion techniques are discussed elsewhere (Lennernäs, 1998).
Direct determination of compound transport and metabolism
through blood concentration measurements in the mesenteric
and portal vein is not possible in humans for obvious reasons.
Intestinal perfusion techniques based on drug disappearance and
appearance in the lumen do, however, offer great possibilities of
measuring various intestinal transport processes. Over the past
70 years different in vivo intestinal perfusion techniques have been
developed and the importance of such in vivo work has been
clearly demonstrated (Drescher et al., 2003; Igel et al., 2007; Len-
nernäs, 1998; Lennernäs et al., 1992, 1994; Modigliani et al.,
1973a,b; Pfeiffer et al., 1990; Rambaud et al., 1973; von Richter
et al., 2001). A good correlation between in vivo determined Peff

and historical data on fraction of dose absorbed (fabs) for a large
number of structurally diverse drugs have been established and
reported (Lennernäs, 2007). The effects of the tube on GI physiol-
ogy are minimal and do not question the pharmaceutical relevance
of drug absorption data collected using these perfusion methods.
For instance, Näslund et al. showed that there was no difference
in the sensitive gastric emptying process between the following
three methods: scintigraphic, oral dosing of paracetamol tracer
and subsequent plasma sampling, and polyethylene glycol (PEG)
dilution methods using intubation tubes (Näslund et al., 2000).

Validated double balloons methods have been used for regional
single-pass perfusions of the proximal jejunum and distal rectum
in vivo in humans on separate occasions. The small intestinal tube
has been extensively used to examine jejunal Peff of various com-
pounds (Lennernäs, 1998; Lennernäs et al., 1992, 1994; Tannergren
et al., 2003a,b). The jejunum is the major absorbing region for
drugs and nutrients in most mammals. It also has the largest
surface area and is the site of the most active carrier-mediated
transport in the gut (Chadwick et al., 1977a,b; Collett et al.,
1997; Hilgendorf et al., 2007; Lennernäs et al., 1992; Ungell
et al., 1998). Human in vivo jejunal Peff values for 42 compounds
(31 drugs) have been determined using this technique and will
be referred to later on (Chiu et al., 2003; Fagerholm et al., 1995,
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Fig. 8. Relationship between relative bioavailability in dogs and humans following
oral and colon administration (Sutton et al., 2006).
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1996, 1997, 1999; Lennernäs, 1997, 1998; Lennernäs et al., 1992,
1994, 2002, 1993, 1997; Lindahl et al., 1996; Petri et al., 2006,
2003; Sandström et al., 1998, 1999; Sun et al., 2002; Söderholm
et al., 1997; Takamatsu et al., 2001, 1997; Tannergren et al.,
2004, 2003a, 2003b; Winiwarter et al., 2003, 1998).

The human in vivo jejunal Peff (at pH 6.5) for fexofenadine, furo-
semide, hydrochlortiazide and inogatran is 0.07 � 10�4,
0.05 � 10�4, 0.04 � 10�4, and 0.03 � 10�4 cm/s, respectively (Fag-
erholm et al., 1997; Tannergren et al., 2003a; Winiwarter et al.,
1998). The fabs for each drug is 30–41%, 40–60%, 55% and 5–10%,
respectively. These drugs have hydrophilic properties and their
passive transcellular diffusion is expected to be low. Also, they
are too large to be considered to have a significant paracellular up-
take, which is indicated by the low and incomplete fabs. A potential
explanation for the relatively high interindividual variability seen
in the permeability estimates is that there is a small difference
between inlet and outlet concentration in the perfusate. For the
two diuretics, there was also a strong induction of fluid flux into
the segment that might have affected the determination of the Peff

value.
Some human permeability data have been reported from

studies in which a triple lumen tube was used to perfuse 80 cm
segments in jejunum and ileum at a perfusion rate of 5 mL/min
(Sutcliffe et al., 1988). From these data, it can be speculated that
the Peff values of these low permeability compounds are somewhat
higher than that measured by the regional perfusion method with
two balloons. This apparent discrepancy may be explained by pH
differences and/or by the open nature of the triple lumen perfusion
technique, which may have allowed absorption from a much long-
er segment than it actually was designed for (due to uncontrolled
flow of perfusate in both directions). It is obvious that more explor-
atory in vivo studies are required in order to obtain reliable data on
regional intestinal drug absorption. It is crucial to accurately deter-
mine the regional intestinal Peff, as this information will contribute
to form the basis for the expected increase in in silico predictions of
oral biopharmaceutics. It is suggested that it would be feasible to
use open, single-pass perfusion studies for the in vivo estimation
of regional intestinal Peff, but that care should be taken in the study
design to optimize the absorption conditions.

8.4.1.1. In vivo animal models for characterizing segmental/regional
drug absorption. A MR dosage form administered after fasting con-
ditions reach the colon in most instances within 3–6 h (Follonier
and Doelker, 1992). Thus, if longer duration of drug release and
absorption is desired, drug absorption in colon is a prerequisite.
In addition, for compounds with incomplete absorption in the
small intestine, e.g., BCS class III, IV and certain class II drugs, some
absorption may also occur in the more distal intestine for IR formu-
lations. However, many drugs have too low and highly variable
absorption in the colon to be suitable for extended release delivery
(Wilding and Prior, 2003). In the worst case, poor colonic drug
absorption may terminate the development of the MR product.
Hence, a regional drug absorption assessed, preferable in humans,
should be conducted prior to starting the MR formulation develop-
ment. However, for new chemical entities it is desirable to evaluate
regional absorption properties already in pre-clinical screening.

There has been a clear progress in recent years to use in vitro
tools for regional absorption assessment including permeability
aspects (Sjöberg et al., 2013; Tannergren et al., 2009), solubility as-
pects (Vertzoni et al., 2010), and drug degradation in colonic lumen
by bacteria (Sousa et al., 2008). However, the advantage of in vivo
models compared to in vitro testing is that they capture the com-
plexity and dynamics of critical factors in the GI tract influencing
drug release and absorption. The main limitation of the usage of
animal models is that no single species resembles all physiological
properties of man, even if the rat model seems to be predictive
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(Ungell et al., 1998). This introduces a risk that the results obtained
in the animal model are not fully predictive for the situation in
man. The main aspects to consider in deciding on using an animal
model are physiological features of the different regions of the GI
tract, such as surface area, tight junction pore size, intestinal
transporters, residence times in different segments, physical and
physicochemical characteristics and volumes of GI fluids, the pres-
ence of enzymes that could metabolize drugs and gut wall metab-
olism since these factors could directly affect regional absorption.

The dog is in many cases an acceptable model due to its similar-
ity to man regarding anatomy, motility pattern, residence times
and many secretory aspects (Dressman and Yamada, 1991; see also
canine section in this review). This is further verified by the
compilation of GI physiology data provided in Table 1. In addition,
the size of dogs also allows for subsequent studies of formulations
developed for human use. The focus of the current work is to re-
view comparisons between man and dog regarding regional
absorption allowing some general conclusions about suitability
and role of the dog model. In addition, the use of rat for prediction
of regional human drug absorption will also be briefly addressed.
8.4.2. Dog model
Several, different methods have been applied for regional

absorption studies in dogs including endoscopic or colonoscopic
methods (Sutton et al., 2006; Tajiri et al., 2010b), remote control
capsules (Ishibashi et al., 1999b; Parr et al., 1999) and direct access
to the intestine through surgical access ports (Kim et al., 1994).

The most extensively published comparison between dog and
man covering the relative bioavailabilities following administra-
tion in more distal parts of the GI tract, primarily the colon, versus
administration to the proximal small intestine has been performed
by Sutton et al. (Fig. 8) (Sutton et al., 2006). Their study included 11
compounds and showed a good correlation (r2 = 0.8) between dog
and man regarding colonic relative bioavailability. In addition, the
relationship of relative colonic bioavailability between dog and
man was close to 1:1.

The study included drugs from all BCS classes. It was clear that
low permeability compounds consistently provided low relative
colonic bioavailability in both dog and man. Regarding low solubil-
ity compounds with high permeability (Class II), two out of three
compounds had relatively high colonic drug absorption in both
species. The greatest individual difference between dog and man
was obtained for atenolol which had 67% relative colonic bioavail-
ability in dog and only 15% in man. A similar investigation was
performed within AstraZeneca using dogs with colonic fistulas
for direct administration to this site where a corresponding
correlation of r2 = 0.6 was achieved. However, high permeability
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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compounds had consistently higher relative bioavailability and low
permeability compounds had lower values in agreement with the
work by Sutton (Sutton et al., 2006). A couple of low permeability
compounds, cimetidine and ranitidine, had significantly lower val-
ues in man compared to the dog as was noticed for atenolol (Sutton
et al., 2006). This supports the suggestion by Sutton that for smal-
ler hydrophilic molecules, the dog colonic mucosa is somewhat
more ‘‘leaky’’ than in humans. Another interesting deviation be-
tween dog and man in the AstraZeneca data set was for an internal
developmental compound where relative colonic bioavailability
was 48% and 100% in dog and man, respectively. This compound
was identified to have intestinal Phase II metabolism indicating
that the regional difference with less metabolism in colon in man
is not reflected by the dog model. Tajiri and co-workers studied
diclofenac, dilitiazem, cevimeline, felodipine, morphine, metfor-
min and felodipine in a dog colonic absorption model (Tajiri
et al., 2010a,b). Again a good correspondence was obtained with
human data where good absorption was obtained in man for all
compounds except metformin. The main deviation was obtained
for felodipine which is almost completely absorbed from long act-
ing extended release formulations in man while colonic relative
bioavailability was only 30%. This may be due to differences in
in vivo dissolution between dog and man since felodipine is a
low solubility compound (water solubility 1 lg/mL). However, an
alternative or complimentary explanation is the difference be-
tween the species of regional intestinal CYP3A4 metabolism. The
latter explanation is also supported by other data from Tajiri for
diltiazem, where the relative colonic bioavailability in dog was
lower than for man at relevant doses (Tajiri et al., 2010b). Also data
from Sutton for nifedipine, another drug with intestinal CYP3A4
metabolism, showed lower relative colonic bioavailability in the
dog compared to man, further supporting the possibility of species
differences in regional intestinal metabolism. Recent work on gene
expression of enzymes and transporters in beagle dogs also con-
cluded that there are significant differences in distribution of CYP
enzymes between dog and man (Haller et al., 2012).

In conclusion, the dog model seems relevant with respect to
identifying drugs with permeability-limited colonic drug absorp-
tion even though absolute levels for some drugs in this class seem
to be somewhat higher in the dog compared to man. However, this
is possible to predict by use of simpler in vitro methods
(Tannergren et al., 2009). Regarding solubility limitations, data
are complex, due to the influence of formulations and aspect of
regional intestinal metabolism, which makes clear conclusions
hard to be drawn. Regarding regional variation of intestinal metab-
olism, it seems that there is a clear species difference but this
needs to be further elucidated. Overall, the dog has shown a
reasonable good resemblance with humans regarding regional
bioavailability data but if it offers any clear advantage with regard
to predictive value on top of simpler in vitro/in silico approaches
remains to be verified.

8.4.3. Rat model
Data on regional absorption comparison versus man is less well

studied for the rat despite the fact that it is a simpler model. The
work by Ungell et al. using rat tissue from different regions of the
GIT showed consistently a reduction in permeability in colon for
low permeability compounds whereas high permeability
compounds, if anything, had a more similar permeation across the
entire GIT (Ungell et al., 1998). Thus, the rat model can be
expected to be a better discriminating system for drugs with
passive permeability limitations. However, as metabolism differs
between rat and man, both in regard of enzyme type and distribu-
tion, it is not likely that the rat model will correctly capture such
effects in a manner relevant for man (Komura and Iwaki, 2011).
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9. Excipients effects

9.1. Introduction

Excipients encompass a wide range of properties that are of
importance for the resulting drug product ensuring stability, con-
tent uniformity and bioavailability of the incorporated APIs among
many other factors. The total absorption of an API can be affected
by the combination of excipients included in the formulation. This
may be due to changes in the solid state of the API itself or the
formulation characteristics of physical form (particle size, tablet
hardness, porosity, hydrophilic properties of the total matrix,
etc.) or the interactions between the components of the product
(Panakanti and Narang, 2012).

Excipients may chemically react with the API, and thereby neg-
atively influencing its availability for absorption. Such unintended
incompatibilities have been reviewed lately by Bharate et al.
(2010). For example, lactose led to degradation of acyclovir (Mona-
jjemzadeh et al., 2009), amlodipine (Abdoh et al., 2004), metformin
(Santos et al., 2008) and other amine-compounds in compatibility
studies, whereas PVP led to degradation of oxprenolol (Botha and
Lötter, 1990) and sulfathiazole (Voigt et al., 1984). Inclusion of
magnesium stearate has shown to decrease the stability of moex-
ipril hydrochloride and beta-lapachone, potentially by increasing
the humidity in the formulation (Cunha-Filho et al., 2007; Stanisz
et al., 2013). Conventional and modern QbD formulation develop-
ment strategies will generally avoid such incompatibilities to occur
in drug products.

From a biopharmaceutics point of view, functional excipients
may exert a number of well-known effects including enhancement
of wettability, dissolution rates and even solubility of the incorpo-
rated active ingredients. The solubility of an API is determined by
its physical–chemical characteristics including its polymorphic
form. This polymorphic form may be stabilized by addition of spe-
cific excipients (Singhal and Curatolo, 2004; Telang et al., 2009).
Particle size is a determinant for the dissolution rate and the
effective surface area for dissolution may also be influenced by ex-
cipients (Vialpando et al., 2011). Chemical or physical derivation of
the API itself may be obtained during production of the active
substance and/or of the finished product. See the section on models
for API-formulation approaches later in this review for more exam-
ples in this context.

There are also less well-documented effects that may affect the
bioperformance of a drug product such as modulation of intestinal
transit times, interference with drug metabolizing enzymes and
other constituents of the GI-tract, e.g. bile salts, which may in a un-
ique way affect the absorption of a drug. Effects on physiological
conditions and processes involved in drug absorption may lead
to changes in the absorption profile.

Excipient effects on bioavailability are best shown by in vivo
bioavailability studies in humans. Knowledge of these excipient
effects is especially relevant in the context of comparative studies:
formulation A versus formulation B containing different excipients.
In many situations, comparative bioavailability studies are needed
for new formulations to demonstrate equivalence. Such relative
bioavailability/BE studies are not only relevant in the context of
generic oral drug products, but also in the cases of a change in
composition of an existing product. Understanding of intended or
unintended effects of excipients on the pharmacokinetics of a drug
substance is particularly interesting from the perspective of waiv-
ing in vivo BE studies for IR dosage forms.

Current EU Guidance on the investigation of BE states that BE
studies for oral solutions of multisource drug products may be
waived (EMA, 2010). However, if the excipients in the dosage
forms involved affect GI transit (e.g. sorbitol, mannitol), absorption
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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(e.g. surfactants or excipients that may affect transport proteins),
in vivo solubility (e.g. co-solvents) or in vivo stability of the active
substance, a BE study should be conducted, unless the differences
in the amounts of these excipients can be adequately justified by
reference to other data (EMA, 2010).

A BCS-based biowaiver may be considered for BCS class I and III
(in the EU) drug compounds. As a general rule, for both BCS class I
and III drug substances, well established excipients in usual
amounts should be employed and possible interactions affecting
drug bioavailability and/or solubility characteristics should be
considered and discussed. A description of the function of the ex-
cipients is required with a justification whether the amount of
each excipient is within the normal range.

The following overview will go through the physiological pro-
cesses that a solid oral dosage form encounters after oral adminis-
tration and give examples on how excipients may modulate these
processes. It will discuss how the knowledge of these excipients is
applied from a regulatory point of view and when mathematical
models may be applied, especially in the context of biowaivers.

9.2. Modulation of drug release from dosage form: disintegration,
dissolution and solubility

Drug release from the dosage form is essential for drug absorp-
tion as this will make the API available for absorption. The use of
specific disintegrants to facilitate drug release is well-established
for IR oral dosage forms. For example, the inclusion of sodium
bicarbonate as disintegrant in the formulation led to a more rapid
absorption of ibuprofen in humans compared to a formulations
including aluminium hydroxide (Hannula et al., 1991). An
enhancement in carbon dioxide production led to enhanced
in vivo disintegration of the capsule, enhanced in vivo dissolution
of the drug and enhanced gastric emptying rate. Examples of excip-
ients that have been shown to improve in vitro dissolution rates
are microcrystalline cellulose, D-glucosamine hydrochloride and
PEG 6000 (Al-Hamidi et al., 2010; Alsaidan et al., 1998; Vijaya
Kumar and Mishra, 2006). However, some super disintegrants have
been described to interact with drugs, leading to decreased in vitro
dissolution, although these interactions do not seem to affect the
in vivo performance of the formulation (Fransén et al., 2008; Na-
rang et al., 2012).

Excipients can also improve the solubility and dissolution of APIs
via different mechanisms, e.g., solubilization, precipitation and
supersaturation, as addressed elsewhere in this review. Cyclodex-
trins have for example been studied with the aim to increase the sol-
ubility and thereby the bioavailability of in vivo in different animal
models by complexation of the drugs, e.g., griseofulvin, cinnarizin,
glibenclamide, ibuprofen and nifedipine (Dhanaraju et al., 1998; Jar-
vinen et al., 1995) (Emara et al., 2002; Nambu et al., 1978; Savolai-
nen et al., 1998). In regulatory practice however, cyclodextrins are
not widely applied. The FDA Inactive Ingredients Database lists only
one oral preparation in which hydroxypropyl-b-cyclodextrin is
applied and seven parenteral products including cyclodextrines
(FDA, 2013). Having said that, a number of cyclodextrin-containing
oral dosage forms are available in worldwide formularies (Davis and
Brewster, 2004).

On the other side, several studies have shown that excipients
may also negatively affect the solubility of an API. In a recent study
an interaction between SLS with intrinsic intestinal mixed micelles
composed of bile salts and lecithin has been shown (Buch et al.,
2010, 2009). The interaction led to a destruction of the micellar
structure and a decrease in solubility of the low water soluble
fenofibrate by SLS. Thus, instead of increasing the solubility of
the drug by the addition of surfactant, the opposite effect was pro-
voked with a concomitant decrease in the bioavailability of the SLS
containing fenofibrate formulations (Buch et al., 2010, 2009).
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
in vitro methods (IVIVC), and applications for formulation/API/excipient ch
dx.doi.org/10.1016/j.ejps.2014.02.010
Complex formation may reduce the availability of the API for
absorption and consequently reduce its bioavailability. For in-
stance, PEG 4000 formed insoluble complexes with phenobarbital,
leading to decreased permeation across excised rat intestine (Singh
et al., 1966). A reduction of bioavailability of the API was also ob-
served when Tween 80 and sodium lauryl sulfate were combined
with chlorpromazine and calcium salts and for magnesium carbon-
ate with tetracycline (Chin and Lach, 1975; Nakano, 1971; Zak
et al., 1978). This might have been caused by a complex formed
between the API and the excipient(s). Complex formation was also
postulated as mechanism for the interaction of calcium sulfate
with phenytoin. When calcium sulfate was replaced by lactose
the bioavailability of phenytoin increased so that the maximal safe
plasma concentration was exceeded. However, additional studies
did not confirm this mechanism and other authors suggested that
the higher hydrophilicity of lactose as compared to that of calcium
sulfate promoted increased dissolution of phenytoin. Nevertheless,
other authors reported interactions of phenytoin with antacids and
summaries of product characteristics of phenytoin include a warn-
ing that concomitant use of antacids or calcium salts may reduce
the absorption of phenytoin (Bochner et al., 1972; Cacek, 1986;
Chapron et al., 1979; Garnett et al., 1980).

The calcium sulfate-phenytoin data were correlated to result in
bioinequivalence. However, in other cases there is often a lack of
information on the magnitude of the excipient effect on the
in vivo bioavailability of a specific API. The FDA Inactive Ingredient
Database includes levels of excipients used in combination with
the administration route (FDA, 2013). However, as the API included
in the concerned dosage form is not listed together with these
amounts, it is not possible to correlate the study data directly to
levels actually used or to deduce safe levels from it. Additional
information on the quantitative composition of bioequivalent
products would be necessary to conclude on safe levels in combi-
nation with specific APIs.

9.3. Modulation of stomach physiology

The characteristics and volume of the pharmaceutical product
as present in the stomach will determine the subsequent process
steps. The authors are not aware of excipients that have been
shown to change the function of the stomach physiology i.e. having
an effect on the volume of the stomach itself or of the mechanistic
aspects of stomach motility. Excipients affecting the luminal condi-
tions including the stomach content are discussed below. The vol-
ume of the excipients, their liquid or solid state and perhaps also
the effects on the viscosity of the stomach content may affect the
gastric emptying time. See description of the stomach physiology
in this review for information on relevant mechanisms in this
context.

Strategies to increase residence time of an API in the stomach
include the use of bioadhesive microspheres that slow intestinal
transit and gastroretentive dosage systems (Ahmed and Ayres,
2007; Davidovich-Pinhas and Bianco-Peled, 2010; Davis, 2005;
Prajapati et al., 2013). Small particles with bioadhesive properties
and sometimes also floating capacity (on stomach content) are
used to physiologically and physically reduce the gastric emptying.
Positively charged molecules are thought to adhere to the nega-
tively charged sialic acid groups on the gastric mucus. Strategies
to enhance gastroretention may also make use of an enlarged ob-
ject size and include swelling and floating agents. An example of
such a formulation are superporous hydrogels formed in situ from
polyethylene oxide with swelling capacity in combination with
hydroxypropyl methylcellulose (HPMC) as sustained release
matrix have been investigated (Kousar et al., 2013).

Formulations including gastroretentive mechanism are usually
tested based on their specific physical characteristics using
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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in vitro techniques which may include in vitro release testing as
well as floating/buoyancy tests, the latter demonstrating the
capacity of the dosage form to float on the gastric contents. How-
ever, an in vivo performance test in human or animal models is
usually needed. Such investigations are generally carried out using
radiology or scintigraphy visualization, endoscopic techniques or
magnetic monitoring to show the location of the formulation or
alternatively 13C octanoic acid breath testing to determine the gas-
tric residence time (Prajapati et al., 2013). See also the section
above on imaging techniques.

9.4. Modulation of intestinal surface area

Morphological changes to the structure of the intestinal surface
of the GI tract may change the absorption of drugs by changing the
effective surface for absorption. Surfactants have been shown to
cause (reversible) mucosal damage resulting in enhanced absorp-
tion of co-administered APIs. Rat intestinal perfusion studies also
showed that co-administration of a mucolytic agent and a non-io-
nic surfactant improved the intestinal absorption of poorly
absorbed hydrophilic (Swenson et al., 1994; Takatsuka et al.,
2006, 2008) compounds. Histological evaluation also showed
mucosal damage which is therefore thought to play a role in the
observed absorption enhancement. See also below for more exam-
ples of permeability enhancers.

9.5. Modulation of pH of the GIT

Excipients may interact with the luminal components and
thereby indirectly influence the dissolution and absorption of an
API. For example, sodium bicarbonate increased the bioavailability
of the acid-labile drug erythromycin acistrate in humans (Marvola
et al., 1991), probably due to an increase in the gastric pH. The
effects of excipients on the gastric pH could be simulated by
in vitro tests, for example by simulation based on known com-
pounds pH-stability profiles and the assumed residence times in
the stomach. There also exist artificial stomach-duodenum models
which incorporate the stomach to duodenum transit step with a
concomitant shift in pH (Carino et al., 2010). However, so far
animal and human studies provide the best measures of these
potential effects. In the extrapolation from animal to humans it
is however important to account for differences in animal GI phys-
iology compared to man, as described in the sections above.
Table 5
Examples of modulators of residence time and/ or transit speed.

Excipient/modulator Drug/marker
compound

Model Ob

Sodium alginate/karay gum gel Barium sulfate Rat/mice Ga
Gellan and sodium alginate Paracetamol Rabbit and Rat Ga
Unfolding multilayer polymeric films Riboflavin Beagle dogs Ga
Swellable polymer films Riboflavin Dogs and

Human
Ga

Polycarbophil with albumin Chlorothazid Human Ga
Poly(acrylic acid), in gelatin

microspheres
Oxprenolol
hydrochloride

Rat Ga

Sodium bicarbonate Aluminium hydroxide Human Re
Sodium acid pyrophosphatee Ranitidine Human De

tim
Alcohol monosaccharides mannitol,

xylitol and lactulose
– Human De

tim
PEG 400 Ranitidine Human
Sorbitol Ranitidine and

metoprolol
Human

Oleic acid – Human In
Lipids – Human En

m
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9.6. Modulation of GI transit and motility

The residence time and transit speed of an API are determined
by the GI motility, which can be influenced by e.g., food intake or
composition of the formulation.

Examples of excipients affecting gastric emptying time are de-
scribed above. Another commonly discussed phenomenon is the
reduction of the SITT and the consequences for absorption of
drugs (Yuen, 2010). Well-known excipients that reduce the intes-
tinal transit time in humans include the alcohol monosaccharides
mannitol and xylitol as well as lactulose (Adkin et al., 1995a,b;
Read et al., 1982; Salminen et al., 1989; Staniforth, 1989). Other
examples are sodium acid pyrophosphate, polyethylene glycol
and sorbitol (Adkin et al., 1995a; Basit et al., 2001, 2002; Chen
et al., 2007; Chusid and Chusid, 1981; Islam and Sakaguchi,
2006; Koch et al., 1993; Payne et al., 1997; Schulze et al.,
2003). The EMA pointed out that, since there is no information
on the actual threshold of an effect of sorbitol on the PK of highly
permeable drugs, strict compliance with the BE guideline is rec-
ommended, i.e., quantitative differences are not accepted in the
context of biowaivers (EMA, 2010, 2013). Other excipients that
are known to enhance GI motility are mentioned in Table 5.
There are also excipients that increase the intestinal transit time
such as oleic acid and lipids in general (Dobson et al., 1999;
Martinez et al., 1995; Pilichiewicz et al., 2006). Formulations
containing large amounts of lipids, like self-emulsifying systems,
liposomes or micelles have the potential to modulate of
intestinal transit times, especially for digestible lipids (Porter
et al., 2004).

9.7. Modulation of GI fluids

Excipients may also affect the composition of the matrix in
which the drug is transported through the GI tract. Lipid excip-
ients in conjunction with the role of the animal model and its
gastrointestinal fluid composition in characterizing the perfor-
mance of lipid excipients containing dosage forms has been
reviewed elsewhere (Hauss, 2007). Mucus formation may also
be influenced by the presence of excipients; mucolytic agents
are discussed above in the context of the intestinal surface area.
Osmotic effects are discussed in the section on transit time, but
could also be considered as an effect of modulation of the GI
fluid content.
served effect Reference

stric retention Foster et al. (2012)
stric retention Kubo et al. (2003)
stric retention Klausner et al. (2002)
stric retention Ahmed and Ayres (2007)

stric retention Longer et al. (1985)
stric retention Preda and Leucuta (2003)

duced gastric emptying time Hannula et al. (1991)
creased small intestinal transit
e

Adkin et al. (1995a), Koch et al. (1993)

creased small intestinal transit
e

Adkin et al. (1995a,b), Read et al. (1982),
Salminen et al. (1989), Staniforth (1989)
Basit et al. (2001, 2002), Schulze et al. (2003)
Chen et al. (2007), Chusid and Chusid (1981),
Islam and Sakaguchi (2006), Payne et al. (1997)

creased intestinal transit time Dobson et al. (1999)
hanced gastrointestinal
otility

Martinez et al. (1995), Pilichiewicz et al. (2006)

bsorption – Comparative physiologies, model selection, correlations with
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9.8. Modulation of metabolism and intestinal degradation processes

Pharmaceutical excipients may interact with metabolic
enzymes in the GI tract. Particularly nonionic surfactants and
polymers have been shown to inhibit CYP activity. Examples of ex-
cipients with documented in vitro effect on CYP3A include different
types of polyethylene glycol, Tween, Cremophor, Triton x, SLS, sol-
utol, Lecithin and Vit C (Bittner et al., 2002; Bravo Gonzalez et al.,
2002; Christiansen et al., 2011; Rao et al., 2010; Ren et al., 2009,
2008; Tompkins et al., 2010; Wandel et al., 2003). PEG 400 also
inhibited CYP3A metabolism of Digoxin and Verapamil in excised
rat jejunum (Johnson et al., 2002). Another type of excipient,
b-cyclodextrin inhibited CYP3A4 and CYP2C19 in vitro on cDNA ex-
pressed human cytochrome P-450 (Ishikawa et al., 2005). As
shown by the above examples, the excipients vary in their inducing
or inhibiting effects on CYPs. It is also conceivable that excipients
affect other metabolising enzymes than CYPs, e.g., UGTs and SULT.
In vitro digestion models are available that simulate the digestion
of formulations in (parts of) the GI tract (Dahan and Hoffman,
2008; Mohsin, 2012; Versantvoort et al., 2004), but publications
in the context of excipient effects are limited. In vitro tests to study
specific enzyme interactions also exist, but are mainly used in the
context of drug–drug interactions (EMA, 2012). Generally there is a
lack of in vivo data on excipients inhibition effects, in particularly
in humans, so extrapolations of in vitro effects to the in vivo situa-
tion are difficult.

A combination of carboxymethyl-starch excipients and enzyme
inhibitors may enhance the gastroresistance and stability against
gastrointestinal enzymes of an active substance in the GIT (De Kon-
inck et al., 2010; Nassar et al., 2008). In addition to their potential
role in increasing the solubility of the API as discussed above, cy-
clodextrines may form a non-degradable complex with the API
thereby protecting it from degradation and increasing its bioavail-
ability (Challa et al., 2005).
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9.9. Modulation of membrane transport

Polarity of the molecule and characteristics like particle size
determine the intrinsic permeability of the API. These aspects
could also be modulated in presence of specific excipients.
Micronisation to microparticles or even nanoscale particle size
increases the contact surface of the active substance with the
intestinal membrane. Ross and Toth reviewed the use of micro-
particles and nanoparticles containing heparins that enlarged
the contact surface of the heparin (Ross and Toth, 2005). Biode-
gradable poly-caprolactone and poly(lactic-co-glycolic acid) and
nonbiodegradable positively charged polymers such as Eudragit
RS and RL were reported to enhance the absorption of heparin.
The polymers were used alone or in 1:1 combination and both mi-
cro- and nanoparticles were shown to increase the bioavailability
of heparin. The mechanism of the nanoparticles absorption
enhancement was however not determined. Ross and Toth also
described how polyanionic low molecular weight heparins
(LMWH) were paired with polycationic lipophilic-core dendrons
(PLCDs) (Ross and Toth, 2005). Lipoamino acids were designed
to increase the lipophilicity of the complex. These PLCDs may also
act by perturbing the cell membrane. Several successful studies in
which the concept of lipophilic ion-pairing with diamines, triam-
ines and lipoamino acids was shown were summarized (Ross and
Toth, 2005). However, according to the authors, the variety of
models (in vivo models like rat oral gavage, rat intraduodenal,
mouse oral gavage, pig intraduodenal, rabbit oral gavage, monkey
oral gavage, dog oral gavage and also Caco-2 cell monolayers and
Ussing chamber) made it difficult to compare the results of
different studies.
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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9.9.1. Paracellular route: tight junction modulation
Several authors reviewed possibilities for absorption enhance-

ment by the paracellular pathway (Cano-Cebrian et al., 2005) and
the implication of tight junction modulation for drug delivery
(Salama et al., 2006). Numerous potential modulators have been
investigated with the purpose of increasing permeability by open-
ing tight junctions. For many of these compounds, the dose needed
to reach an effect was so high that cytotoxicity limited the applica-
tion and further explorations were stopped. This applied for exam-
ple for calcium chelator EDTA, sodium dodecyl sulfate,
cytochalasins, saponines and acylcarnitines. These compounds
were tested mainly in cell culture models like Caco-2 and/or on
intestinal mucosa (Maher et al., 2008), but some also in animal
studies (see above at modulation of the intestinal surface).

Some permeability enhancers, such as medium-chain amphi-
pathic fatty acid like sodium caprate and polymeric enhancers like
chitosan and its derivatives, carbomers and thiolated polymers,
reached the phase of in vivo studies in pre-clinical species, e.g., rats,
pigs and dogs, as well as in the clinic (Cano-Cebrian et al., 2005;
Maher et al., 2008; Thanou et al., 2001b).

Permeability can also be enhanced by making use of the struc-
tural similarity of the active substance and the enhancers. The
absorption process of peptide drugs may be improved by
peptide-based permeability enhancers, which being proteins
themselves, share physicochemical properties, diffusion character-
istics and stability issues with the therapeutic proteins being
delivered (Maher et al., 2008). However, oral formulations are
not available as far as known to the authors of this paper. Clinical
studies suggest that there is no toxicity of concern and the absorp-
tion-promoting effects were transient and complete in <1 h. Other
examples of compounds which have been studied for their effects
on the paracellular transport are listed in Table 6.

9.9.2. Transporter-mediated absorption
The influence of excipients on transporter-mediated absorption

(Table 7) has lately been reviewed by Grube and Langguth and by
Goole et al. (Goole et al., 2010; Grube and Langguth, 2007). Maher
described cell-penetrating peptides (CPP’s) that have been studied
to improve the delivery of protein drugs in the target cells (Maher
et al., 2008). These cationic amphipathic peptides include poly-L-
lysines, poly-L-arginine. These two peptides were mainly studied
for delivery in the nasal or tracheal epithelial cells. Transportan
and penetratin are two other CPP’s having cell-penetrating effects
of which analogs are thought to be potentially interesting perme-
ability enhancers.

9.9.3. Passive diffusion and endocytosis
Passive diffusion could be affected by changes in either the

apical or the basolateral membrane. Guan et al. describe an inves-
tigation of the mechanisms of improved oral bioavailability of
bergenin by complexation of bergenin with phospholipid and con-
clude that the complex could transport across enterocytes by both
passive diffusion and active transport by receptor-mediated endo-
cytosis (Guan et al., 2013). The authors used experimental models
such as the ex vivo everted rat gut sac model and in vitro Caco-2 cell
monolayers and the effect was limited (Guan et al., 2013).

9.10. Models for testing excipient effects and their application for
biowaivers

To study the effects of excipients on the bioavailability the
pharmaceutical industry and academia apply different techniques,
each with their own limitations.

The current regulatory biowaiver guidance limits itself to the first
step in the GI absorption of the API from an immediate release solid
oral dosage form: drug release (EMA, 2010). As the review above
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Table 6
Examples of paracellular transport modulators and marker compounds.

Excipient/modulator Drug/marker
compound

Model Observed effect Reference

EDTA PEG4000 Caco-2 Enhanced permeability Tomita et al. (1994)
EDTA Iron Caco-2 Increased absorptoin Kibangou et al. (2008)
Sodium caprate Macromolecules Intestinal cells Increased permeation Krug et al. (2013)
Sodium decanoate Antisense

oligonucleotides
Pigs Enhanced bioavailability Raoof et al. (2002)

Sodium decanoate Cefmetazole In situ loop study Increased jejunal
absorption

Tomita et al. (1992)

Sodium decanoate Ampicillin Human Absorption after rectal
administration increased

Lindmark et al. (1997)

Sodium decanoate in GIPET Acycline Human Oral Amory et al. (2009)
Palmitoyl carnitine Mannitol and PEG

4000
Caco-2 and IEC-18 Enhanced permeability Duizer et al. (1998)

Palmitoyl carnitine Cefoxitin Dogs and rats Enahanced bioavailability Sutton et al. (1993)
Chitosan-coated nanoparticles Insulin Rats Lin et al. (2007)
Chitosan Oxaprozin Caco-2 Enhanced permeability Maestrelli et al. (2011)
Chitosan hydrochloride and glutamate salts Peptides In vitro Enhanced absorption Kotzé et al. (1997)
Chitosan hydrochloride Rats Enhanced absorption Luessen et al. (1996)
Trimethyl chitosan Octreotid acetate Pigs Intraduodenal application

increased bioavailablity
Thanou et al. (2001c)

N-sulfonato-N,O-carboxymethylchitosan Macromolecules Caco-2 Enhanced permeation Thanou et al. (2007)
Mono-N-carboxymethyl chitosan Low molecular

weight heparin
In vitro and in vivo rat
model

Increased intestinal
absorption

Thanou et al., 2001a

N-trimethyl chitosan (TMC) Insulin loaded
nanoparticles

Caco-2 and excised rat
jejunum

Increased permeation Sandri et al. (2010)

N-trimethyl chitosan (TMC) Buserelin and
octreotid acetate

Rat and pig Enhanced bioavailability Thanou et al. (2007, 2001c)

Sodium lauryl sufate Cefradoxil Rat duodenum Enhanced absorption Sancho-Chust et al. (1995)
Tetradecylmaltoside Enoxaparin C2BBe1-cells and Rats Enhanced absorption Yang et al. (2005)
Octylglucoside Insulin Caco-2 and T84

monolayers
Enhanced permeation Tirumalasetty and Eley (2006)

Chenodeoxycholates Oligonucleotides Rat jejunum and ilem Enhanced paracellular
diffusion

Tsutsumi et al. (2008)

Sodium taurocholate Insulin Caco-2 Increased permeation Degim et al. (2004)
Thiolated polycarbophil/glutathione FITC dextran and

sodium fluorescein
Excised rat jejunum Perera et al. (2011)

Other thiolated polymers (e.g. chitosan-cysteine
and chitosan-4-thio-butylamidine)

Hydrophilic
compounds

In vitro Enhanced permeability Bernkop-Schnurch et al. (2004),
Bernkop-Schnürch et al. (1999)

Butylated methacrylate copolymer (Eudragit E
�
) Mannitol, Talinolol,

and Trospium
Caco-2 Enhanced permeability Grube et al. (2008)
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shows, animal models are commonly applied by pharmaceutical
industry to test differences in drug release from pharmaceutical
formulations. However, in the context of BE questions, these models
do play a limited role: animal models are not approved as models for
biowaivers. From a regulatory perspective, a human volunteer is the
only acceptable ‘model’ for comparative bioavailability testing
when biowaiver conditions are not met and in absence of an
in vivo in vitro correlation of the dissolution versus plasma data.

Cell culture models for testing permeability effects are
well-known and in vitro digestion models and enzyme interaction
models also exist. However, these are not approved to confirm BE
of formulations either. The GI transit of APIs can be studied using
different in vivo techniques, but comparative in vitro models vali-
dated for their biorelevance of this parameter are not known to
the authors. In conclusion, apart from the dissolution test, there
is no comparative in vitro test model validated and approved for
comparative testing of disposition effects.

The regulatory guidance is limited as to allowed (difference in)
levels of excipients: as a general rule for BCS class I and III drug
substances well-established excipients in usual amounts should
be employed and possible interactions affecting drug bioavailabil-
ity and/or solubility characteristics should be considered and dis-
cussed. Even in the case of Class I drugs it is advisable to use
similar amounts of the same excipients in the composition of test
like in the reference product. If a biowaiver is applied for a BCS
class III drug substance, excipients have to be qualitatively the
same and quantitatively very similar (EMA, 2010). Effects on
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
in vitro methods (IVIVC), and applications for formulation/API/excipient ch
dx.doi.org/10.1016/j.ejps.2014.02.010
disintegration or dissolution could be tested by the pharmacopoe-
ial models; however, no specific excipient information or other de-
tails are given on the evaluation of any test outcome.

9.11. Gap analysis and consequences for biowaivers

Excipients may theoretically affect the GI absorption of API in
many ways. However, the in vivo relevance of data obtained by
models is not always clear.

In addition, the current usability of the available models to
detect excipient effects in the context of regulatory applications
in the EU is limited. Only one in vitro model is sufficiently validated
and approved from a regulatory point of view: the dissolution test.
However, many other models exist and many relevant data on
excipient effects are available at pharmaceutical industry. Little
of this knowledge obtained in drug development studies is
currently translated into regulatory guidance on excipients.
Authorities may, therefore, seem unnecessary restrictive in the
acceptance of differences in excipients. However, it should also
be noted that authorities do not dispose of these, mostly confiden-
tial, company data and development of regulatory acceptable mod-
els depends on the availability of public data and shared
knowledge.

The available guidance on biowaivers shows that EU regulators
are in principle open to submissions including adequate justifica-
tion of full BCS based biowaivers or waivers in the context of a
change in composition of the product. For BCS class I biowaivers
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Table 7
Examples of modulators of transporter mediated absorption.

Excipient/modulator Drug/marker compound Model Observed effect Reference

Acconon E Digoxin Everted rat gut sac Increased uptake Cornaire et al. (2004)
Cholesterol cytotoxic agents ? ATPase activity of P-gp Shu and Liu (2007)
Cremophor EL Digoxin Everted rat gut sac Increased uptake Cornaire et al. (2004)
Cremophor EL Rhodamine 123 Caco-2 and rat intestinal

membranes
Increased transport Rege et al. (2002)

Cremophor EL Taxol Caco2 Increased transport Hugger et al. (2002b)
Cremophor RH 40 Digoxin Human Reduced bioavailability Tayrouz et al. (2003)
Imwitor 742 Digoxin Everted rat gut sac Increased uptake Cornaire et al. (2004)
Labrasol Celiprolol Everted rat gut sac Increased uptake Cornaire et al. (2004)
Miglyol Digoxin Everted rat gut sac Increased uptake Cornaire et al. (2004)
MS-310, MO-310 and MS-500 Ceftibuten BBM Vesicles Increased uptake Koga et al. (2000)
N-dodecyl-b-D-maltopyranoside Rhodamine 123 Rat intestinal membrane Increased transport Shono et al. (2004)
PEG 300 Taxol Caco-2 and MDR1-MDCK

cells
Increased transport Hugger et al. (2002a)

PEG 400 Digoxin Rat jejunal tissue Inhibition of efflux Johnson et al. (2002)
Pluronic L61 Vinblastine LLC-MDR1 cells Increased transport Evers et al. (2000)
Different types of Pluronics Rhodamine 123 KBv cells Increased uptake Batrakova et al. (1999a)
Pluronic P85 Different substances Caco-2- and BBMEC-cells Increased transport Batrakova et al. (1999b)
Polysorbate 20 Digoxin Everted rat gut sac Increased uptake Cornaire et al. (2004)
Polysorbate 20 Ceftibuten BBMV vesicles Increased uptake Cornaire et al. (2004)
Polysorbate 40 Ceftibuten BBMV vesicles Increased uptake Koga et al. (2000)
Polysorbate 80 Rhodamine 123 and other

substances
Caco2-cell-monolayers and
rat intestinal membrane

Increased transport Rege et al. (2001)

Sodium lauryl sulfate Different substances Caco-2 Increased transport Cornaire et al. (2004)
Softigen 767 and SS-500 Digoxin Everted rat gut sac Increased uptake Cornaire et al. (2004)
TGPS 1000 Talinolol Caco-2 and human Increased trasnport and

increased AUC
Rege et al. (2002)

TGPS Colchicine and doxorubicin G185 cells Decreased permeation Dintaman and Silverman (1999)
TGPS 800 and TS-500 Ceftibuten BBMV vesicles Increased uptake Koga et al. (2000)
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‘qualitative differences’ are acceptable, if appropriately justified
and provided that excipients that might affect the bioavailability
are qualitatively and quantitatively the same. In case of a change
in composition, ‘minor changes’ in excipient content may be ac-
cepted based on dissolution data only i.e. without addressing other
steps in the absorption process. In such a case, the classification of
the change as ‘minor’ is to be assessed on a case-by-case basis.

To avoid the need for comparative testing of each difference in
composition and clarify the classification of changes as ‘minor’ or
‘major’, publication of information of the effects of specific
excipients in combination with specific APIs seems useful. Formu-
lation development handbooks advise on usual concentrations of
well-known excipients but do not indicate ‘no effect levels’ of
excipients or ‘safe windows’ in the context of their effect on the
bioavailability of active substances. And, information on the quan-
titative composition of pharmaceutical products is confidential
while actual levels of excipients are not clear in the EU. So far,
the FDA Inactive Ingredients Database is used by some authors to
refer to actually approved levels of excipients, e.g. in the biowaiver
monographs published by the FIP on http://www.fip.org/bcs. A
public database on excipient effects could lead to cut-off values
for specific excipient effects and may allow building up ‘safe
excipient ranges’ or a ‘safe space’ per excipient. In addition, such
database could clarify which excipients are known to physiologi-
cally affect the bioavailability of APIs and identify ‘suspect excipi-
ents’ or ‘bioavailability modulators’ in the context of biowaivers.

10. Food effects

10.1. Introduction

Altered human drug PK in the presence of food (including dietary
supplements and nutraceuticals) has been extensively examined
from a scientific and regulatory perspective (Abdel-Rahman et al.,
2011; Boullata and Hudson, 2012; Chan, 2002; Custodio et al.,
2008; Fleisher et al., 1999; Genser, 2008; Joshi and Medhi, 2008;
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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Mills et al., 2005; Rodriguez-Fragoso et al., 2011; Schmidt and
Dalhoff, 2002; Singh, 1999; Welling, 1977; Won et al., 2010, 2012).

Food effects are derived from two basic principles of mecha-
nisms: the impact of the meal’s content itself and the postprandial
changes of GI physiology. From a physiological perspective, food
intake, compared to the fasted state, can particularly provoke
(Fleisher et al., 1999; Welling, 1977):

� Changes of visceral blood and lymph flow.
� Intraluminal composition in qualitative and quantitative terms.
� Time- and region-specific alterations of hydrodynamics and

mechanical forces within the GI tract.
� Modulation of drug metabolizing enzymes and transporters

resulting in distinct absorption, distribution and elimination
characteristics.

Despite these physiological and physicochemical variations,
based on the BCS, several reviews stated the absence of food effects
on the oral drug bioavailability for BCS class I compounds (Custo-
dio et al., 2008; Fleisher et al., 1999). Likewise, the positive effect
of high-fat meals on the absorption of non-ionizable and weak
acidic BCS class II drugs in immediate-release formulations seems
to be predictable (Custodio et al., 2008; Fleisher et al., 1999).
Including transporter-related aspects according to the BDDCS, Cus-
todio et al. (2008) hypothesized distinct trends to be expected for
the oral bioavailability of BDDCS class I and II compounds with
concomitant food intake (Custodio et al., 2008). For modified-re-
lease formulations, BCS class III and IV drugs, however, the inter-
play of various parameters in the fed state can yield more
complex scenarios – in vivo models could be of great value in these
cases, presuming that the species characteristics regarding certain
physiological parameters are kept in mind.

Categorizing different effects of food based on the biopharma-
ceutical processes that are affected, the next paragraphs of this re-
view focus on the use of common laboratory animals to evaluate
food effects in vivo.
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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10.2. In vivo assessment of food effects on the pharmacokinetics of
orally administered drugs

10.2.1. Disintegration, dissolution, diffusivity and intra-luminal
reactions

Modified dissolution and precipitation characteristics via solu-
bilization (Charman et al., 1993; Rolan et al., 1994), pH alteration
(Carver et al., 1999; Zimmermann et al., 1994) and reactions with
meal components (Huupponen et al., 1984; Jung et al., 1997;
Neuvonen et al., 1991) have been proposed to explain changes of
human drug pharmacokinetics in the presence of food. To elucidate
these mechanisms, intestinal perfusion techniques can be of great
value. Fuse et al. (1989), for example, investigated the influence of
pectin as dietary fiber by means of intestinal perfusion in rats and
humans, concluding that not binding of bile acids, but expansion of
the unstirred water layer is the major factor leading to decreased
absorption of linoleic acid and glucose (Fuse et al., 1989). With a
porcine intestinal perfusion model, Persson et al. (2008) showed
that solubilization rather than P-gp inhibition is responsible for
the positive food effect observed for danazol as a model compound
for low solubility drugs (Persson et al., 2008).

Among whole animal models, the dog model seems most
appropriate to investigate food effects on the disintegration and
dissolution of oral solid formulations (Abrahamsson et al., 2004;
Wu et al., 2004), due to physiological and dosage form related
advantages as well as the suitability to receive infrequent large
meals on command (Lentz, 2008; Sutton, 2004). In contrast, over-
prediction of the solubility enhancing impact of food (Campbell
and Rosin, 1998; Humberstone et al., 1996; Paulson et al., 2001;
Xu et al., 2012) and insufficient differentiation between fasted
and fed state with respect to dose dumping behavior of a matrix
tablet formulation have been reported (McInnes et al., 2008). Con-
sequently, higher bile salts level (Carlsson et al., 2002; Dressman,
1986; Kalantzi et al., 2006), lower gastric acidity in fasted state
opposing lower postprandial pH (Dressman, 1986; Lui et al.,
1986; Mahar et al., 2012; Sagawa et al., 2009) (Table 1) and higher
mechanical forces in the in the stomach (Kamba et al., 2001, 2002)
are some physiological factors that need to be considered when
extrapolating from canine disintegration and dissolution data to
human. Looking at the controversial comparative solubility data
in fed intestinal aspirates (Kalantzi et al., 2006; Persson et al.,
2005) and the variety of applied test meals reviewed by Lentz
et al. (Lentz, 2008), meal volume and composition should be stan-
dardized to improve correlations. Simulating human stomach pH
by stimulating gastric acid secretion, e.g. with pentagastrin, is an
additional approach that requires further validation for fasted ver-
sus fed state comparisons (Ajayi et al., 1999; Akimoto et al., 2000;
Fancher et al., 2011; Lentz et al., 2007; Polentarutti et al., 2010).

Other species, e.g. rats (Morita et al., 2006), rabbits (Dongowski
et al., 2005) and pigs (Grove et al., 2007), are less represented
throughout literature concerning the impact of food on GI absorp-
tion. The pig might be an alternative to the canine model for solu-
bility related food effects (Grove et al., 2007) as the biliary system
and pancreatic duct of minipigs, for example, are more consistent
with human data in size and function (Kararli, 1995; Swindle and
Smith, 1998). In principle, the monkey could also serve as an
animal model to study the effect of food on drug absorption, albeit
reported human-primate discrepancies with respect to intestinal
metabolism which is addressed in another paragraph of this review
(Ikegami et al., 2003). Still, apart from ethical aspects as well as
difficulties in animal supply, handling and high costs, defining a
suitable standard meal yielding postprandial pH profiles compara-
ble to human appears to be one of the major obstacles for the use of
the monkey model for predicting food effects on absorption. In spite
of quantitative discrepancies probably attributable to the different
measuring techniques, two studies indicated that the overall time
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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needed to return to basal acidity after food digestion is significantly
longer in monkey than in human (Chen et al., 2008; Kondo et al.,
2003a). This was so even after replacing the standard biscuit-type
meal by fruits or jelly type food, respectively (Kondo et al., 2003b).

Summarizing the available reports, the effect of food on drug sol-
ubility and stability has been vastly investigated, mostly using dogs,
GI aspirates and perfusion studies, whereas the dietary impact on
formulation integrity and diffusivity of the released drug to the GI
mucosa is scarcely described for any species. There is evidence that
the poor correlation of food-induced enhancement of solubility
with dissolution rates in vivo might be ascribed to reduced diffusiv-
ity of the forming mixed micelles (Charman et al., 1997; Lennernäs,
2007c). Moreover, studies in dogs and humans implicated that post-
prandial increased viscosity in the upper GI tract modulated
absorption profiles by decreasing gastric emptying times, dissolu-
tion rates and diffusivity of drugs with pronounced region-specific
absorption (Pao et al., 1998; Reppas et al., 1998). Hence, combining
methods to assess mechanical forces (Marciani et al., 2001b; McIn-
nes et al., 2008), media conditions e.g. viscosity (Marciani et al.,
2000, 2001b, 1998) and fluid volumes (Schiller et al., 2005) as well
as in vivo dosage form performance (Sutton, 2004) should be con-
sidered in future in vivo food effect studies.

10.2.2. Permeability and region-specific absorption
With respect to para- and transcellular transport, food may

modulate intestinal permeability by direct, bile salts-induced or
microflora-mediated changes in membrane integrity and fluidity
(Bagchi et al., 1998; Kvietys et al., 1991; Ten Bruggencate et al.,
2006), altering the pH dependent extent of ionization (Charman
et al., 1997; Marasanapalle et al., 2009), forming mixed bile salt
micelles thus reducing the free fraction of lipophilic drugs
(Charman et al., 1997; Poelma et al., 1991) and increasing fluid flux
facilitated passive diffusion (Kitazawa et al., 1978; Lane et al.,
2006; Lu et al., 1992; See and Bass, 1993). The latter has been sub-
ject of controversial discussion since contrary to data generated in
rodent models, the nutrient-induced solvent drag effect on
intestinal permeability has not always been observed in human
(Fagerholm et al., 1995; Fine et al., 1993; Lennernäs, 1995; Nilsson
et al., 1994). This apparently is due to the complexity of factors in-
volved such as molecular weight, ionization, segmental difference,
ion partitioning effects, bulk flow transport towards the intestinal
wall, tight junction contribution, motility and relative magnitude
of transcellular versus paracellular water movement (Fagerholm
et al., 1999; Johno and Kitazawa, 1985; Lennernäs, 1995, 1998;
Pappenheimer and Reiss, 1987; Soergel, 1993).

There are evident physiological and methodological discrepan-
cies for estimating intestinal permeability between rats and hu-
mans, including about 4-fold higher thickness of the unstirred
water layer in the rat (DeSesso and Jacobson, 2001; Hurst et al.,
2007; Kararli, 1995), dynamic changes of the functional absorptive
area as a function of the species, interspecies differences in villus
tip osmolality and unknown transporter contribution, anesthesia
effects and segmental distensions in situ (Bijlsma et al., 1995;
Lennernäs, 2007a). Nevertheless reviews confirmed reasonable
correlation between the jejunal permeability of rat and human
for passively transported drugs, regardless of the permeability
classification of the compounds (Lennernäs, 1998, 2007c), and
the suitability of the rat model as a predictor of the fraction of drug
absorbed in human (Chiou and Barve, 1998). For this reason, the rat
is the most used model for determining permeability-related nutri-
ent–drug interactions, either by using in vivo perfusion techniques
or noninvasive differential urinary excretion approach (Lane et al.,
2006; Lu et al., 1992; Schepens et al., 2008; See and Bass, 1993;
Song et al., 2011; Suzuki and Hara, 2010).

Compared to the rat, the canine small intestine exposes a higher
permeability to hydrophilic substances which is presumably
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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related to differences in the paracellular pathway and villi
morphology (He et al., 1998; Lennernäs, 2007a; Martinez et al.,
2002; Sutton, 2004) resulting in a poor correlation of fraction of
dose absorbed in man (Chiou et al., 2000). Similarly, studies con-
ducted at whole-animal level indicated that paracellular absorp-
tion is higher in pigs than in rats, while the underlying
mechanism is still unknown (Delahunty and Hollander, 1987;
Lavin et al., 2007). Therefore, the use of pigs and dogs for
nutrient-induced modulation of drug permeability is limited. Still,
dietary effects need to be accounted for during breeding as certain
food constituents may alter mucosal integrity and function in these
mammals (Watson et al., 2006; Zhang and Guo, 2009).

Although the upper GI segments are considered to be the main
site of absorption, distal regions including ileum and colon can sig-
nificantly contribute to the overall absorption as well. Segmental
single-pass perfusion (Fagerholm et al., 1997) and site-specific
administration (Lindahl et al., 2004) have been applied to the rat
intestine to investigate regional differences in absorption. Sakuma
et al. (2007) demonstrated by using a rat model in vivo combined
with surgical assessment of GI transit of food components that
varying the administration site could help decreasing the negative
food effect for several model drugs (Sakuma et al., 2007). Yet, un-
like human, the absorptive surface area is more evenly distributed
in the rat (DeSesso and Jacobson, 2002) and some inconclusive re-
sults e.g. regarding colonic permeability (Fagerholm et al., 1997;
Hollander et al., 1989; Krugliak et al., 1994) along with solid dos-
age form related restrictions as mentioned elsewhere limit the
use of the rodent model for the prediction of more complex
absorption profiles. Moreover, despite the development of sophis-
ticated intubation techniques to study regional absorption in
human such as triple-lumen tubing and rectal perfusion (Gramatte,
1994; Lennernäs et al., 1995), directly in vivo obtained permeabil-
ity values for human ileum and colon are lacking, most likely due
to experimental difficulties (Lennernäs, 2007a). Hence, extrapola-
tion from preclinical data to human is a delicate challenge for
low permeability drugs and formulations for which the distal
region is the preferable site of drug release and absorption.
However, efforts are being made to develop more precise preclin-
ical models for this purpose, e.g. by using GI transit time controlled
beagle dogs for the successful estimation of the bioavailability of
paracetamol from a sustained-release formulation (Yamada et al.,
1995) or by introducing a canine colonoscopy model as a surrogate
for human intubation studies exploring controlled-release formu-
lation behavior (Sutton et al., 2006). All the same, the suitability
of the dog for investigating modified-release formulation and
site-specific absorption – with or without food – has been contro-
versially evaluated (Akimoto et al., 1995; Cook et al., 1990; Ishib-
ashi et al., 1999a,b; Kulkarni et al., 2012; Li et al., 2001; Pao
et al., 1998; Sutton, 2004, 2009, 2006; Wu et al., 2004; Yamada
et al., 1995). For extended release formulations, the porcine model
might be preferred which can partly be explained by more similar
GI surface area and transit times to human (Kulkarni et al., 2012;
Lennernäs, 2007a). Despite some shortcomings in terms of quanti-
tative estimation, the dog remains a useful model to explore
underlying mechanisms of food effects on oral dosage form behav-
ior, irrespective of dissolution (Wu et al., 2004) or permeation
dependent regional differences in absorption (Li et al., 2001; Pao
et al., 1998; Sutton, 2004). Nonetheless, especially for modified-re-
lease formulations and compounds with site-specific absorption,
food-induced changes in GI transit times have to be taken into ac-
count which is addressed in the next paragraph.

10.2.3. Transit times
Food intake is known to influence GI transit times (GITT), e.g. by

delaying gastric emptying time in dependence of volume, caloric
content, stomach pH, viscosity, lipid digestion and timing rela-
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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tively to the interdigestive migrating motility complex (Collins
et al., 1996; Davis et al., 1986; Fleisher et al., 1999; Kaniwa et al.,
1988b; Lin et al., 1993; Meyer et al., 1985; Welling, 1977). Thus,
postprandial conditions are often associated with altered absorp-
tion profiles of substrates and drug formulations with pronounced
absorption window due to site-specific dissolution, instability,
targeting concept et cetera (Gouda et al., 1987; Ishibashi et al.,
1999a; Marathe et al., 1998; Pao et al., 1998; Sunesen et al.,
2005; Yuen, 2010). For BCS Class I and III compounds which are
rapidly absorbed in proximal parts, for example, gastric emptying
is critical for the absorption rate, but not necessarily for the overall
extent of absorption (Fleisher et al., 1999; Pao et al., 1998).

Although the SI transit times (SITT) is hardly affected by con-
comitant food consumption (Billa et al., 2000; Davis et al., 1986;
Fleisher et al., 1999; Kararli, 1995; Kenyon et al., 1995; Yuen
et al., 1993), some nutrient-induced feedback mechanisms on gas-
tric emptying (Lin et al., 1993, 1992), species difference in the
fasted state (Kararli, 1995) and the gastro-ileocaecal reflex (Fadda
et al., 2009; Kerlin et al., 1982; Schiller et al., 2005) can have
consequences on fasted versus fed state comparisons. The in vivo
relevance of these alterations has to be evaluated in dependence
of the dosage form – monolithic formulations, for example, have
been reported to be more affected than multiparticulate prepara-
tions (Fadda et al., 2009; Mundy et al., 1989; Yuen et al., 1993).

Overall, substantial interspecies differences in GITT in fasted
and fed state mitigate the accuracy in predicting food effects, as
summarized in several reviews (Martinez et al., 2002; Martinez
and Papich, 2009; Sutton, 2009). Moreover, uncertainties in captur-
ing the known influence of meal viscosity, lipid digestion products
and breed size, etc. on GITT (Bourreau et al., 2004; Ehrlein and
Prove, 1982; Fix et al., 1993; Meyer et al., 1994) can impair the
prediction quality of in vivo models.

Nutrient-induced alterations of GITT seem to be similar in qual-
itative terms, but highly variable in quantitative evaluations. Again,
the dog is the most studied preclinical model in this aspect, show-
ing rather poor correlation up to over-prediction of food effects due
to more pronounced postprandial delay of gastric emptying and
faster GITT in the fasted state as compared to human (Campbell
and Rosin, 1998; Kaniwa et al., 1988a; Paulson et al., 2001) (Table
1). For the assessment of modified-release formulation behavior
in both fasted and fed state, human-canine dissimilarities in bio-
availability have also been partly attributed to distinct residence
times in the targeted region, especially for monolithic dosage forms
(Fix et al., 1993; Ishibashi et al., 1999a; Kabanda et al., 1994). The
porcine model, too, has to be evaluated with caution, since its stom-
ach residence time is remarkably longer than in human (Aoyagi
et al., 1992), although the overall GITT time seems to be more com-
parable to human than that obtained from the canine model (Karar-
li, 1995; Kulkarni et al., 2012). Considering the rat which may be
used for oral disperse formulations, there are indeed some similar-
ities e.g. regarding the intestinal transit time (Hurst et al., 2007), but
obviously, rodent models are inappropriate for large infrequent
meals which is needed to simulate human dietary behavior. With
respect to GITT in fasted and postprandial conditions, the monkey
appears most suitable albeit some dissimilarities in SITT, according
to Ikegami et al. (2003). Its application remains limited for reasons
mentioned above, though.

Regardless of which in vivo model is employed, if food-induced
alteration of the GI residence times of a dosage form occurs, the
risk of subsequent changed stability, unexpected absorption path-
ways as well as modified metabolism and transport pattern should
be taken into consideration which, in turn, varies across species.

10.2.4. Lymphatic uptake
Intestinal lymphatic transport is considered a relevant pathway

to circumvent hepatic first pass extraction and for the delivery of
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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certain antiviral, immuno-modulatory and anticancer drugs
(Porter and Charman, 2001; Trevaskis et al., 2008; Yáñez et al.,
2011). The contribution of lymphatic uptake to oral bioavailability
can be estimated from physicochemical characteristics of the mol-
ecules, still, it is important to take account of the very low rate of
lymphatic fluid transport – approx. 0.2% (v/v) – relative to portal
blood (Charman et al., 1997). In general, fat-soluble vitamins,
dietary or synthetic lipids and lipophilic peptide-like compounds
are prone to absorption into the lymphatic system (Charman
et al., 1997; Porter and Charman, 2001; Trevaskis et al., 2008;
Yáñez et al., 2011).

The postprandial increase of luminal lipid concentration
evidently favoured lymphatic uptake of the lipophilic prodrug tes-
tosterone undecanoat relative to testosterone resulting in higher
systemic exposure of the former in the fed state (Bagchus et al.,
2003; Frey et al., 1979). The absorption of halofantrine, a com-
pound with remarkable positive food effect (Milton et al., 1989),
has also been proven to be mediated by lymphatic transport (Por-
ter et al., 1996). All the same, the interplay of bile salts and pH on
solubility and extent of ionization should be considered when eval-
uating the potential of a drug to be associated to lipid digestion
products for the subsequent transport into the lymph (Charman
et al., 1997; Yáñez et al., 2011). The role of lymphatic transport is
hardly sufficiently assessed by plasma concentration–time profiles
only, since the increased lymphatic uptake after a high-fat meal
may result in lower plasma levels of the drug in question (Charman
et al., 1997; Porter and Charman, 2001). Therefore, animal models
allowing sampling or exhaustive collection of lymph are indispens-
able to assess the contribution of lymphatic transport to enhanced
postprandial bioavailability. Theoretical and practical aspects of
the sophisticated techniques including advantages and limitations
of the respective models have been described profoundly in
reviews on this topic (Edwards et al., 2001; Trevaskis et al.,
2008; Yáñez et al., 2011). Briefly, the conscious and unconscious,
restrained or unrestrained rat models have been widely used to
gain mechanistic understanding of lymphatic contribution to drug
absorption (Charman et al., 1986; Jandacek et al., 2009; Porter
et al., 1996; Turner and Barrowman, 1977). Larger animal models
like dogs, pigs, sheep and rabbits as well as an indirect pharmaco-
logical approach avoiding lymph-duct canulation have also been
developed (Dahan and Hoffman, 2005; Khoo et al., 1998, 2002,
2003; Shackleford et al., 2003; White et al., 1991; Yáñez et al.,
2011). In summary, reports on lymphatic transport and veterinary
drug absorption stated the more representative fasted and fed
states of the porcine and canine model, but also outlined the gen-
eral restriction in comparability of the models among each other
and relative to human. This is mainly because of experimentally
caused bias related to the variable surgical and anaesthetic
methodologies and the overall insufficient knowledge of species
difference in drug lymphatic uptake (Cook et al., 1998; Hurst
et al., 2007; Martinez et al., 2002; Trevaskis et al., 2008; Yáñez
et al., 2011). Hence, investigations on the impact of food with re-
spect to lymphatic transport remain rather case-specific, and the
relevance with respect to the drug systemic exposure in vivo can
be considerably affected by interspecies differences regarding lym-
phatic flow and mechanism of lymphatic absorption.

10.2.5. Metabolism
Food may interfere with drug metabolism or enterohepatic

recirculation, e.g. by inhibiting hydrolytic enzymes produced by
intestinal bacteria (Schmidt and Dalhoff, 2002).

Metabolism-related food–drug interactions are highly
dependent on the composition of the food, namely, they are mostly
associated with fruits, vegetables, alcoholic beverages, teas and
herbs (Rodriguez-Fragoso et al., 2011; Won et al., 2012). Above
all, fruit juices and food-derived flavonoids have evoked tremen-
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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dous interest, as reflected in myriad reports and reviews on this to-
pic which often refer to results obtained from rodent and human
studies (Farkas and Greenblatt, 2008; Fuhr, 1998; Mandlekar
et al., 2006; Rodriguez-Fragoso et al., 2011; Won et al., 2010).
However, clinical relevance is drug-dependent, and the metabo-
lism model used is critical for extrapolation to human, since the
amount, activity, substrate specificity and tissue distribution of
metabolic enzymes considerably vary across species (Hurst et al.,
2007; Komura and Iwaki, 2011; Martignoni et al., 2006; Tang and
Prueksaritanont, 2010). For instance, intestinal metabolism has
been reported to be remarkably more extensive in cynomolgus
monkey than in human (Komura and Iwaki, 2011; Takahashi
et al., 2009, 2010). Appreciable interspecies dissimilarities in met-
abolic fate have been shown for indinavir and atomoxetine, among
others, contributing to up to 10-fold difference in oral bioavailabil-
ity (Lin et al., 1996; Mattiuz et al., 2003). In addition, typically
diminished metabolic reactions have been outlined for distinct
species such as acetylation in dogs or sulfate conjugation in pigs
(Martinez et al., 2002).

According to a recent review by Tang et al. (2010), multiple ani-
mal models can be used for CYP3A inhibition studies, whereas
induction data may be better gained with rhesus monkeys, cyno-
molgus monkeys and beagle dogs, under the tacit assumption that
standard inhibitors and inducers are involved (Tang and Prueksa-
ritanont, 2010). The porcine model has been excluded from most
of the reviews evaluating animal models for predicting drug
metabolism (Martignoni et al., 2006; Tang and Prueksaritanont,
2010). Porcine CYP3A29 is known to exhibit comparably high pro-
tein similarity to human CYP3A4 (Suenderhauf and Parrott, 2013)
and the pig has been sporadically used for assessing drug–nutrient
interactions at the metabolic level (Wein et al., 2012). There is a
need for more detailed investigations on porcine drug-metaboliz-
ing enzymes, though (Puccinelli et al., 2011). The shortcomings
of in vivo models to assess intestinal microflora metabolism as
implicated by the development of a rat model with associated
human colonic bacteria (Hurst et al., 2007) may be faced with
the porcine model since the pig’s colon is populated with bacterial
microflora resembling human conditions (Martinez et al., 2002).
However, the (intermediate) metabolites from fermented sub-
strates produced by pig colon microbiota can be very different
from that of human colon microbiota, indicating that the microbial
composition on species/strain level is different between pigs and
humans.

Especially for the pig which, being fed ad libitum, is sometimes
used to model obesity, but for any in vivo metabolism model in
general, diet restrictions and standardization are recommendable,
since dietary habits can confound metabolic activities (Martinez
et al., 2002; Suenderhauf and Parrott, 2013). In general, the rodent
model appears to be less appropriate for compounds that undergo
extensive intestinal metabolism, as indicated by qualitative and
quantitative human-rodent discrepancies in the expression of
major intestinal drug metabolizing enzymes (Cao et al., 2006;
Komura and Iwaki, 2008; Tang and Prueksaritanont, 2010), even
in transgenic rodents expressing human CYP3A4 (Lin, 2008).
Irrespective of the animal model, knowledge about the absorption,
disposition and metabolism profile of both drug and nutrient is
essential for in vivo–in vivo extrapolation of food–drug interactions
(Benet, 2009; Wu and Benet, 2005).

10.2.6. Transporter-mediated processes
Transporter-related nutrient–drug interactions can occur at any

site with absorptive and extractive characteristics. Intestinal,
hepatobiliary and renal carrier-mediated transport as well as
transporter modulation at the blood–brain barrier have been of
predominant concern throughout literature (Chandra and Brou-
wer, 2004; ITC, 2010; Lai, 2009; Tang and Prueksaritanont, 2010;
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Won et al., 2012; Xia et al., 2007). Food-induced modulation of
transporter processes can therefore affect absorption, distribution,
metabolism and excretion to different extents in dependence of the
exposure to the causative ingredients at the various sites. Similar
to metabolism-related interactions, fruits, vegetables, herbs and
their secondary metabolites have drawn increasing attention with
respect to modulation of transporters during the last two decades,
starting with the intensively described inhibition of P-gp and CYP
3A4 by grapefruit juice and gradually widening out to specific phy-
tochemical-based alteration of both influx and efflux processes
(Bailey, 2010; Deferme and Augustijns, 2003; Rodriguez-Fragoso
et al., 2011; Won et al., 2012; Zhang et al., 2009). Interestingly,
lipids and bile salts can also contribute to a decrease of transporter
function in the postprandial intestine, implicating that not only
specific food products and phytochemicals derived therefrom can
affect transporter-mediated drug absorption, but also the ingestion
of a fat-containing meal in general (Custodio et al., 2008).

Focusing on intestinal absorption, perfusion studies in rodents
appear to be advantageous for elucidating mechanisms and regio-
nal characteristics of interactions, allowing simultaneous and
localized assessment of intestinal permeability, metabolism and
transport (Deferme et al., 2002; Lennernäs, 2007a; Shirasaka
et al., 2010). Excluding the poor correlation with respect to intesti-
nal metabolism and oral bioavailability, Cao et al. (2006) depicted
reasonable similarities between rat and human regarding drug
intestinal absorption profiles and expression pattern of PepT1,
SGLT-1, GLUT5 and MRP2 in the small intestine (Cao et al., 2006).
Detailed reviews of in vitro and in vivo models used for the evalu-
ation of transporter-mediated interactions have been published
(ITC, 2010; Xia et al., 2007). In summary, comprehensive investiga-
tions of transporter expression and activities in large animal
models such as pig, dog and monkey are requisite to establish bet-
ter in vivo surrogates of transporter-related interaction studies in
human. Moreover, selective inhibitors or antibodies have not yet
been identified for most transporters, especially with respect to
drug uptake pathways (Xia et al., 2007).

10.3. Conclusions on food effects and in vivo model selection

It is evident that well defined procedures are required to
encompass the variety of potential drug–nutrient interactions to
ensure therapeutic efficacy in clinical practice. For this purpose,
in vivo models are indispensable tools since the impact of food
digestion is best assessed in intact animals expressing dynamic
responses in drug absorption, distribution, metabolism and
elimination rates in accordance to the complexity of physiological
reactions to food intake in human.

Animal models usually require highly sophisticated approaches
comprising varied types of formulation, administration sites and
probe substrates with defined sampling schemes and surgical
interventions. These efforts allow the estimation of the extent to
which food and food-derived components affect drug exposure in
plasma and specific tissues. Combination with in vivo imaging
techniques, ex vivo and post mortem investigations is recommend-
able for an improved understanding of the relevance of food effect
in oral drug bioavailability. Since the mechanisms of drug absorp-
tion and distribution often differ across species, comprehensive
knowledge about model-specific pathways is necessary. Especially
for large laboratory animals such as pigs, dogs and monkeys, qual-
itative and quantitative information about transporter and enzyme
expression and function is poor.

Overall, the dog is the most studied in vivo model to evaluate
common food effects on drug absorption due to physiological and
dosage form related advantages as well as the ability to consume
large infrequent meals on command. For mechanistic studies and
investigations requiring extensive surgical or genetic interventions,
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rodent models are preferred as in case of permeability, lymphatic
uptake or transporter-related interaction studies. Pigs and monkeys
are alternative preclinical surrogates which require more validated
approaches in assessing drug bioavailability in the fed state. The
monkey seems to bear potential for overcoming physiological lim-
itations of the canine model. Irrespective of the animal model, in-
tra-species differences in the postprandial state related to sex,
age, strain, diet and housing conditions need to be assessed system-
atically in future work for estimating the robustness of each model
and establishing adequate ranges of study parameters.

Adaptation of the study performance might be considered to
yield GI responses which best resemble human postprandial condi-
tions. For example by pharmacological stimulation of gastric acid
secretion and gastric emptying time controlling in the dog or diet
restriction in the pig (Lentz et al., 2007; Suenderhauf and Parrott,
2013; Yamada et al., 1995). Of course, each additional modification
needs to be validated carefully and progressive use of standardized
techniques is necessary to confirm the benefits and uncover sys-
tematic limitations, respectively. With regard to the standard
meals recommended by the regulators for human studies, there
is an urgent need to define specific meal compositions to be
applied in fed animal studies, as the common practice ranges
between liquid diet mixtures, standard or enriched animal and hu-
man diet of various quantities (Kondo et al., 2003b; Lentz, 2008).
Looking beyond acute responses to meal digestion, well defined
feeding experiments can provide interesting insights into the effect
of dietary habits on drug absorption, distribution and metabolism.
This aspect has been accounted for in the draft guidance on drug
interaction studies released by the FDA in 2012, recommending
that uncontrolled consumption of dietary/nutritional supplements
and distinct food products or beverages containing alcohol, grape-
fruit, apple, orange, vegetable from the mustard green family,
chargrilled meat and tobacco should be avoided for 1 week prior
to the start of the interaction study until its conclusion (FDA,
2012). Focusing further on possible effects of distinct food compo-
nents on drug bioavailability, determining food-derived causative
ingredients and exploring their pharmacokinetic properties as well
as (multiple) interaction mechanisms across species are challenges
yet to be faced. Eventually, the evaluation of the BCS and BDDCS in
common laboratory species revealing interspecies classification
differences and similarities might be a reasonable approach bene-
ficial to both veterinary and human pharmaceutical research.
11. In vitro in vivo correlations

It is necessary to understand how changes during development
to formulation and/or manufacturing process affect in vivo perfor-
mance, and thereby safety and efficacy. This is also a central aspect
to ensure that batches produced during routine manufacture will
continue to give consistent local and/or systemic exposures to
those evaluated in the pivotal clinical studies. As it is not practical
to measure the PK of every batch of drug product in man, some of
this understanding and verification must be based on in vitro test-
ing. The development of IVIVC or in vivo in vitro relationship
(IVIVR) is a key topic in all drug development programs and
submission for marketing approvals, as this is the basis for under-
standing how product performance measured in vitro is likely to
relate to performance in vivo. The gaps and issues in developing
IVIVC or IVIVR for orally administered drug products are discussed
from an industrial and regulatory perspective.
11.1. Definitions

An IVIVC is traditionally defined as a predictive mathematical
relationship between in vitro dissolution and some aspect of
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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in vivo exposure, covering either the entire absorption curve (Level
A) or an individual parameter associated with the rate or extent of
absorption (as in Level C correlations). However, in literature and
practice the term IVIVC is often used in a more holistic sense, to
describe a wide range of approaches linking some aspect of
in vitro formulation behavior to the measured or predicted clinical
performance of dosage forms. Indeed, the BCS system represents
an example of a different kind of IVIVR, as it defines when changes
in in vitro dissolution will have no impact on BE, for specific
compound types and test conditions. This thinking is effectively
the basis of biowaivers for BCS Class I (and BCS class III within
EU) compounds. Stimulated by the advent of QbD, this thinking
has recently evolved further into the ‘safe space’ concept, in which
a risk-based approach is applied to determine the range over which
dissolution may vary without altering bioavailability, for a specific
drug product and API. This concept has been proposed as a basis for
setting in vivo relevant in vitro specifications in the same manner
as a traditional IVIVC.

There are three possible relationships between in vitro dissolu-
tion and in vivo performance, as described by Dickinson et al.
(2008).

1. A mathematical correlation between in vitro dissolution and
in vivo performance, such that a given change in in vitro disso-
lution can be used to predict the corresponding change in an
in vivo exposure parameter (e.g. area under the curve (AUC)
or maximum concentration), i.e. a classical IVIVC.

2. Changes in in vitro dissolution can be tolerated without any
impact on in vivo performance, resulting in a dissolution ‘safe
space’.

3. Small changes in in vitro dissolution performance have no
impact on in vivo exposures, but larger changes do.

For the purposes of this article, the term ‘IVIVR’ will be used to
refer to scenarios 2 and 3 above, i.e., relationships other than a
classical IVIVC, developed using both in vivo and in vitro data, that
enables the impact of a given in vitro dissolution profile on in vivo
performance to be understood. This is sometimes described by
other authors as a nonlinear IVIVC (e.g., Polli, 2000) (this is not
the same as a mathematical nonlinear correlation e.g., a nonlinear
Level A) (Polli, 2000). It should be noted that these three scenarios
are part of a continuum – ultimately when dissolution is slowed
beyond a certain rate it will begin to impact in vivo exposures.
The relationship detected in an in vivo study depends on where
in the dissolution space the profiles to be tested lie. All three sce-
narios can be used to understand the relevance of a particular
in vitro test result for in vivo performance. Scenarios 1 and 3, i.e.,
where at least one of the profiles tested produces a change in expo-
sures, are perceived to offer a greater degree of control, as the
detectability of an in vivo ‘failure’ provides assurance of the rele-
vance of the dissolution test. However, for routine manufacture
Scenario 2 offers a greater degree of assurance, as it demonstrates
that the product lies within a ‘safe space’ where changes in in vitro
performance will not be reflected in vivo.

11.2. Purposes of IVIVC/IVIVR in drug development

The purpose and application of IVIVC/R will evolve as a drug
progresses through development. In the early phases, the focus is
likely to be on establishing understanding of the potential clinical
impact of formulation switches and changes made during manu-
facturing process development. At this stage, IVIVC/R tends to be
drawn from across several data sources (e.g., performance of sim-
ple formulations in SAD/MAD studies vs. early solid dosage form
prototypes, data form preclinical studies, TNO-TIM1) to create a
holistic picture of the likely impact of a given change in man. At la-
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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ter stages of development (i.e., during and after the pivotal clinical
safety and efficacy studies), IVIVC/R is used to provide regulatory
evidence of relative bioavailability or BE to support formulation
and process changes, definition of manufacturing ranges or design
space. Here, the evidence to support IVIVC/R is more likely to be
drawn from a single appropriately powered human bioavailability
study performed specifically for this purpose. At the time of
product registration, the understanding gained from IVIVC/R is also
useful to link the proposed in vitro quality control release methods
and acceptance criteria to in vivo performance registration, to give
assurance that batches produced during routine commercial man-
ufacture will be of appropriate clinical quality (i.e. be bioequivalent
to batches used in the pivotal safety and efficacy studies). From a
regulatory perspective, it is of course desirable to have a dissolu-
tion test and acceptance criterion which are not only discriminat-
ing between batches of different quality, but are also relevant for
in vivo performance. However, while the guidances from FDA and
EMA allows for biowaivers based on IVIVC or BCS, there is cur-
rently no regulatory guidance which mentions the use of other
forms of IVIVR in this context.

11.3. Learning from previous reviews of IVIVC/IVIVR

The gaps and limitations in the practice of IVIVC and IVIVR have
previously been discussed by other authors. These reviews have
mainly focused on modified release MR formulations, which repre-
sent a high proportion of IVIVC studies described in the literature.
This is unsurprising, as this formulation type is a priori more likely
to produce IVIVC, having been purposefully designed so that disso-
lution will become rate limiting for the overall absorption. The
main points from each of these reviews which are pertinent to
the topic under discussion are recapped below.

Dokoumetzidis and Macheras (2008) ascribe failure of IVIVC
for MR products to an inability to adequately reproduce or
simulate the complexity of the holistic in vivo environment using
current in vitro or in silico techniques (Dokoumetzidis and
Macheras, 2008). Specific examples of this cited by the authors
include:

� Inability to adequately replicate the composition of the luminal
media in which in vivo dissolution takes place, including
changes in composition along the intestine (which can poten-
tially bring about an interplay between hydrodynamics, luminal
fluid composition and dissolution behavior).
� Under-stirring and heterogeneity of mixing meaning that what

appears to be a well-controlled and reproducible dissolution
behavior in vitro is not the case in vivo.
� Inability to adequately simulate intestinal hydrodynamics and

flow, which may lead to a discrepancy between in vitro and
in vivo results, or induce such a high degree of variability for
drug products which are sensitive to these factors that IVIVC
is not shown.
� Complex dynamic interplay between several characteristics of

the in vivo environment which are important for dissolution,
which cannot be adequately captured by reproducing these
individual factors in vitro or in silico.

Cardot and Davit (2012) described some of the limitations of
performing mathematical IVIVC for MR and IR formulations (Car-
dot and Davit, 2012). The authors describe several aspects of the
data manipulation step which must be carefully considered to
maximize the likelihood of successful IVIVC:

� The use of mean vs. individual in vivo curves.
� Whether it is appropriate to correct for a lag time or apply time

scaling.
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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� The potential confounding effects of ‘flip-flop’ kinetics (where
absorption rate is significantly slower than elimination rate),
or using data from formulations with different bioavailabilities.
� Differences between subjects used to build the original IVIVC

and those used to validate its predictive ability.

The authors describe a potential error in correcting for lag time
when this is caused by gastric emptying, stating that this is not
reproducible between subjects and so should not be corrected
for. They also raise the issue that an IVIVC for highly variable drugs
is problematic, as within-subject variability may mask formulation
differences. Taken together, these two points highlight an interest-
ing assumption inherent in the in vivo component of IVIVC/R stud-
ies, namely that the in vivo factors which govern dissolution of the
dosage form are so reproducible between individuals that they do
not affect the outcome of the study. In addition, variability in the
in vivo factors governing dissolution can have an impact on
whether an IVIVC is likely to be successful. This emphasizes a
gap in current practices of clinical IVIVC studies – when perform-
ing in vitro dissolution measurements we need to routinely moni-
tor and control aspects of the system to ensure that differences in
the testing apparatus do not confound our ability to measure the
performance of the dosage form. However, no such characteriza-
tion of the in vivo system can be performed, despite the fact that
the scope for variation between test systems here is far greater.
Characterization of parameters such as gastric emptying time, local
pH or even pressure forces prevalent in the GI environment could
be performed in a relatively simple and non-invasive manner. The
collection of such data on each individual dosing occasion may en-
hance our interpretation of the PK and increase the likelihood of
building a quality IVIVR.

Jiang et al. (2011) discussed the use of physiologically based
biopharmaceutical modeling in drug development (establishing
IVIVC) from a regulatory perspective (Jiang et al., 2011). This mod-
eling is a valuable tool in the development and regulatory environ-
ments, in particular providing opportunities for exploring BE of
complex drug products and in the QbD environment, and
encourage drug companies to explore its application. However,
they express concerns over the ‘black box’ nature of many in silico
models, and suggest that the same scientific question should be as-
sessed using more than one modeling software package to ensure
that consistent results are obtained. Additionally, a need for stan-
dard modeling study designs and acceptance criteria is identified.

Polli (2000) states that a Level A IVIVC is the least likely
outcome for IR products, as they tend not to have dissolution-rate
limited absorption (Polli, 2000). However, nonlinear forms of
IVIVC, (i.e., where the plot of fraction dose absorbed vs. fraction
dissolved is non-linear, with dissolution occurring faster than
absorption) are applicable and useful. Polli argues that the term
‘IVIVR’ is preferable to ‘IVIVC’, to remove the implication that a
study has failed if a linear mathematical relationship is not devel-
oped. To maximize the benefits of IVIVR in drug development and
in the regulatory context, a better understanding of both in vivo
dissolution and the in vitro dissolution test is needed.

11.4. IVIVC for IR products

In general, the topic of IVIVC and IVIVR for IR products has not
received the same level of attention in the literature as IVIVC for
MR products, but there exist a number of reports where IVIVC
has been achieved. For instance, a Level C IVIVC was developed
for four marketed carbamazepine IR tablets (Lake et al., 1999).
The in vitro data from two simple pharmacopoeial-type dissolution
tests is related to their relative bioavailability in man, and used
to calculate a release specification which will assure formulation
BE. Rouini et al. (2008) reported a similar example for five
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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marketed gemfibrozil formulations, using dissolution tests in
simple pharmacopoeial apparatus (Rouini et al., 2008). Kovacevic
et al. (2009) report Level A IVIVC for carbamazepine developed
across both IR and MR formulations, again relating to a
simple pharmacopoieal dissolution test and media (Kovacevic
et al., 2009).

For other compounds, use of more complex in vitro systems has
enabled an IVIVC to be developed. Buch et al. (2009) describe the
use of a combined dissolution and permeation system, to predict
the in vivo performance of fenofibrate (Buch et al., 2009). Six differ-
ent fenofibrate formulations were tested in this system using bio-
relevant dissolution media, and the in vitro data obtained was
shown to correlate with exposure in the rat. In a later study, it
was necessary to modify this system to predict the performance
of formulations in man, to focus mainly on the effect of micellar
entrapment by surfactant in the formulations on the permeation
step (Buch et al., 2011). Dissolution testing in USP2/Paddle appara-
tus was not able to predict the in vivo performance of the formula-
tions. Okumu et al. (2008) studied the dissolution behavior of
montelukast sodium tablets in USP4/Flow-through cell apparatus,
using biorelevant dissolution media and a dynamic pH change pro-
tocol (Okumu et al., 2008). By using the dissolution profile from
this system in combination with Gastroplus� modeling, they were
able to obtain a good fit for the in vivo plasma profile obtained from
this formulation. Dissolution profiles from USP2/Paddle apparatus
under various testing conditions were not able to model the clini-
cal data as closely.

The examples above demonstrate that the use of more complex
in vitro dissolution systems and protocols may increase the likeli-
hood of a successful IVIVC, as they mimic the in vivo dissolution/
absorption environment more closely than simple USP1/Basket or
USP2/Paddle apparatus. However, while they are very useful to
guide formulation and process development, these systems are
not suitable for routine batch release testing. Simpler release tests
more suitable for routine use would therefore need to be devel-
oped to utilize the full benefits of IVIVC during and after product
registration. However, the mechanistic understanding gleaned
from more complex in vitro systems may enable the rate
controlling mechanisms for dissolution to be determined, so that
a simpler test which reflects these can subsequently be
developed.

The majority of reports in the literature where IVIVC has been
attempted utilize BCS Class II compounds. Due to the lack of
reporting of failed IVIVCs, it cannot be stated with certainty
whether this is due to a lack of effort for drugs from other BCS clas-
ses, or whether a large number of examples of failed attempts for
these classes exists which have not been reported. The former sit-
uation seems the more likely. The boundaries for ‘high’ solubility
and permeability in the BCS system are set very conservatively,
which is appropriate to their current use in defining an area of very
low risk for biowaivers which encompasses any given formulation,
drug substance properties, manufacturing process and manufac-
turing site.

However, in practicality this also means that, with the excep-
tion of BCS Class I, each BCS class will contain compounds with a
broad spectrum of properties, and therefore potentially different
rate limiting steps for absorption. For example, a low solubility
compound which narrowly misses the 90% fabs boundary (or
85% for EMA) would fall into BCS Class IV, and yet is very
unlikely to have permeability-limited absorption – for such a
compound, IVIVC is still likely to be possible irrespective of its
BCS IV classification. Similarly, not all compounds in Class II
should be expected to show IVIVR, an example of which is
described below. The BCS as it currently stands is therefore an
inadequate system to assess the likelihood of IVIVC for a partic-
ular compound.
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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11.5. IVIVR for IR products

The implementation of QbD has lead to a renewed focus on the
relationship between formulation and manufacturing process vari-
ables and in vivo performance during product development. This
has led to the establishment of dissolution tests and release spec-
ifications based on clinical bioavailability data, which are used in
defining the Design Space and are a key component of the Control
Strategy. Dickinson et al. (2008) present a case study applying this
approach to a BCS Class II compound (Dickinson et al., 2008).
Tablet variants were manufactured based on the commercial
formulation but incorporating the highest risk process and formu-
lation dissolution failure modes, as determined by a product-spe-
cific Quality Risk Assessment. These tablet variants were then
dosed in a clinical relative bioavailability study, and exposures
compared to the standard tablet and an oral solution. The study
showed that all of the tablet variants gave equivalent exposures
to the standard tablet, despite having slower dissolution in vitro.
Additionally, even the slowest dissolving tablet variant gave
equivalent exposures to the oral solution. Thus, a ‘safe space’ for
dissolution performance had been established, i.e. a range of disso-
lution profiles which would result in BE in vivo. This indicates that
dissolution was not rate-limiting over the range of profiles tested.
The authors hypothesized that this was due to sufficiently high sol-
ubility so that the dissolution was faster than other physiological
processes (such as permeability and/or gastric emptying), despite
that it is classified as a BCS Class II compound. The authors subse-
quently used the results of the clinical relative bioavailability study
to select an appropriate dissolution test, and set a release specifica-
tion which would assure BE was maintained. Similarly, Buggins
et al. (2011) described a case study for a BCS Class IV compound,
where three tablet variants with slowed in vitro dissolution profiles
encompassing the highest risk failure modes for dissolution gave
equivalent exposures to a standard tablet (Buggins et al., 2011).
This was attributed to the fact that the compound had good
permeability and high intestinal solubility, despite its BCS IV
classification.

This approach is starting to gain acceptance from a regulatory
perspective. In a recent FDA presentation, the ‘safe space’ concept
was included as a method of setting dissolution specifications
which are linked to clinical performance, which may lead to a
wider dissolution specification being granted than if no data
linking dissolution to in vivo performance had been generated
(Pope Miksinski, 2011). However, the IVIVR/‘safe space’ concept
is not currently included in any regulatory guidance documents,
meaning it is not as well established from a regulatory perspective
as traditional IVIVC. This is somewhat paradoxical, as it is more
difficult to gain regulatory flexibility for a product where in vivo
performance has been proven to be insensitive to dissolution
changes, than for a product where any change in dissolution re-
lease rate results in measurable changes in the rate or extent of
absorption. This may be because for IVIVC, the presence of a math-
ematical correlation can be perceived to give a greater assurance of
control. Incorporation of in silico modeling approaches into the de-
sign and interpretation of ’safe space’ studies may help to dispel
this perception, for example by demonstrating that in vivo perfor-
mance would not be expected to show sensitivity to dissolution
over the range of profiles tested in the clinical study.

The examples above indicate that, for a well designed IR tablet,
‘safe space’ may be a more likely outcome than IVIVC. They also
demonstrate that the use of BCS class alone can be misleading
regarding the likelihood of IVIVC development. A more detailed
understanding of the space over which formulation dissolution is
truly rate limiting for a particular API from a particular formulation
is needed. As well as enabling more efficient design of IVIVC/IVIVR
studies and development programs from an industrial perspective,
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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this would help set expectation regarding whether an IVIVC could
truly be developed, or whether other outcomes such as ‘safe space‘
are more likely, and may thus give additional confidence to regula-
tors when these outcomes are achieved.

An interesting gap in the reported data in the literature is the
absence of IVIVC or IVIVR studies in patient groups. Naturally,
healthy volunteers are usually the dosing group of choice for
relative bioavailability and BE studies, as the absence of the con-
founding effects of disease and co-medications on the absorptive
environment should reduce the ‘noise’ and make them more dis-
criminatory for detecting differences in formulation performance.
However, for certain classes of compound (e.g., cytotoxics used in
the oncology setting), studies in healthy volunteers are not permit-
ted from a safety perspective. Additionally, it would be unethical to
dose formulation variants which may have suboptimal perfor-
mance to patients who are expecting to receive therapeutic benefit
from the treatment. This raises the question of how best to link
in vitro and in vivo performance for these compound types. During
development, increased reliance is likely to be placed on pre-clin-
ical studies, complex in vitro dissolution (e.g.TNO-TIM-1) and in
silico modeling to support formulation bridges and design the dis-
solution release test. However, the absence of a robust way to
prove that these models to adequately describe drug absorption
in man for the compound in question limits the degree of reliance
which can be placed on them. More work is needed to develop
innovative ways of defining IVIVR for these compound types, for
use both during development and in the regulatory BE
environment.

11.6. Gaps in the current state of the art in IVIVC/R

While there are some interesting and innovative examples of
the development and application of IVIVC and IVIVR in product
development, further work is needed to increase the likelihood of
developing a successful IVIVC/IVIVR, and enable them to be fully
utilized in drug development and regulatory practice. Current gaps
in the state of the art are summarized below.

11.6.1. General gaps

� Better understanding and mapping of the compound space over
which dissolution is likely to be rate determining for in vivo
exposures is needed. This would form the basis for intelligent
design of IVIVC/R studies, and provide a platform of common
understanding on which to base discussions with health
authorities. The current BCS system does not adequately fulfil
this, and can create false expectation as to the likelihood and
risk associated with IVIVR in the minds of scientists and health
authority reviewers.
� More examples of IVIVR are needed in healthy volunteers and

patients, to enable success factors and limitations to be better
understood.
� More examples of the use of in silico simulations as part of

IVIVC/R, and an understanding of how to use these in a regula-
tory context.
� Better knowledge is needed about the acceptable use of IVIVR

and the ‘safe space’ concept in the regulatory environment, as
this is currently not described in any of the BE guidelines. The
current guidances allow for biowaivers based on IVIVC or BCS
Class I and III ‘safe spaces’, but do not allow for compound-spe-
cific ‘safe spaces’.
� More examples of the use of IVIVR as part of an overall QbD

strategy are needed, including examples of selection of tablet
variants on the basis of highest product specific risk mecha-
nisms. Also, better understanding of the use of such IVIVRs in
the regulatory context is required.
bsorption – Comparative physiologies, model selection, correlations with
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11.6.2. In vitro systems

� Difficulty in mimicking the complex and dynamic environment
for in vivo dissolution in vitro.
� Difficulty in translating the understanding gained form complex

in vitro apparatus into a simple pharmacopoeial-type test and
acceptance criterion.

11.6.3. Difficult compound types

� Compounds where human studies cannot be performed in
healthy volunteers (e.g. oncology) – how do we generate under-
standing for these compounds to support relevant dissolution
tests and specifications?
� Highly variable drugs – how do we demonstrate IVIVR for these

compounds without dissolution changes being swamped by
in vivo variability?
� Failed attempts at IVIVC/R are not generally reported, making it

difficult to fully define which other types of compound are
problematic.

11.6.4. Use of innovative clinical study designs

� In vivo factors impacting dissolution are not routinely
characterized in IVIVR studies, however this would enrich the
information gained and aid data interpretation.
� Adaptive study designs appear to be under-utilized in IVIVR.

This approach is likely to increase the efficiency of IVIVR stud-
ies, reducing the number of testing arms by allowing the study
either to stop once the ‘safe space’ region is reached, or allowing
specific mechanisms to be probed based on feedback from the
initial study arms.

11.7. Conclusion regarding IVIVR/IVIVC

Developing an understanding of the link between in vitro
performance and clinical exposures is of critical importance for
all drug products. This understanding is needed in order to stream-
line the development process, to understand the risk of a change in
formulation or process significantly affecting bioavailability, and
ultimately to provide assurance of consistent clinical quality of
batches produced during routine manufacture. However, several
gaps in the current state of the art impede the full and efficient uti-
lization of IVIVC and IVIVR approaches. Working to address these
will be of benefit to both drug developers and regulators, and ulti-
mately to the patient.
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12. Models for predicting API and API-formulation approaches
and their correlation with in vitro and human

Processes for appropriately and accurately selecting formulation
strategies to progress important drug candidates have a number of
benefits. These include directing the right resources to the right prob-
lems at the right time with the right level of effort. Aligning formula-
tion strategies that provide for adequate pharmaceutical and
biopharmaceutical performance as well as clinical outcomes without
using systems that exaggerate needs and costs are crucial to effective
drug development. The earlier that these concerns can be addressed,
the lower will be the need for rework with ensuring shorter cycle
times, lower costs and potentially higher overall quality.

The purpose of this section is to present formulation selection
philosophies focussing on preclinical in vivo tools. This section will
also include a discussion on important drug candidate properties
impinging on formulation selection such as API physicochemical
properties, pharmaceutical manifestations and biopharmaceutical
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interactions as well as early approaches to frame formulation
appropriateness as a function of two important drivers including
the needs of the compound and the ability of a particular organiza-
tion to address these needs into which category items such as
downstream capabilities and capacity, cost of goods and related
factors fall. Ultimately, deciding whether a simple formulation
platform could be considered or if enabled strategies are required
is the goal of these evaluation methodologies.

For discovery-based projects, the opportunity exists for an early
assessment of drug characteristics and contribute to the compound
selection and development (Ding et al., 2012; Ku, 2008; Li and
Zhao, 2007; Maas et al., 2007; Saxena et al., 2009). These working
models have been evolving over time in many organizations. This
evolution relies on interconnectivity with upstream medicinal
chemistry and biological assessments components. To this end,
problematic compounds and projects are often identified at early
stages allowing for drug-ability, formulate-ability and formulation
process-ability assessments to be leveraged early in the develop-
ment cycle. These evaluations which are part and parcel of the
internal formulation decision tree will be outlines as a function
of this section.

The general formalism of a formulation decision tree is rooted
in a number of science-based, data-driven factors incorporated into
pharmaceutical company practices that are refined by experience
as well as the information from the external scientific community.
The general strategy for selecting a formulation often follows the
suggestion of Branchu et al. (2007) which divides the problems
into three parts (Fig. 9) (Branchu et al., 2007):

1. What is the nature of the formulation challenge and are conven-
tional or enabled strategies most appropriate for the selected
API.

2. If enablement is needed which enabled system is most
appropriate.

3. For a selected enabled formulation strategy, what are the most
important design space considerations that can be suggested
based on the nature of the data available.

These factors, by definition, heavily target ‘‘compound need’’
elements and how these are balanced with capacity, capability
and costs represent important downstream considerations in
bringing the successful product to the market.

A variety of factors may contribute to deciding whether formu-
lation enablement will be likely needed. API properties are crucial
to understanding how a compound should be formulated and these
are derived from several important assessments associated with
drug absorption. While there are many factors that impact the
PK and PD aspects of a drug candidate, the most important feature
include the exposure of the body to the drug candidates both in
terms of its rate and extent of absorption. Thus for an IR solid oral
dosage form (representing about 80% of current formulation devel-
opment), it must disintegrate and dissolve releasing the API in a
solubilized form. Solubility and permeability therefore form the
basis for BCS which attempts to describe and categorize drugs
based on their biopharmaceutical properties. The scale-up and post
approval change (SUPAC) apply BCS in regulatory decision. These
values and boundary conditions incorporated in the BCS are
intended as guidelines for granting biowaivers for clinical studies
intended to validate formulation changes post-approval meaning
that the definitions are designed to be strict and specific to that
purpose. While solubility and permeability are essential to
understand when and how much support is needed to validating
a formulation change, the underpinning scientific framework is
also useful in assessing drug candidates in terms of their formu-
late-ability (Wei et al., 2008). This is done using a variant of the
BCS, i.e. the developability classification system or DCS (Butler
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Fig. 9. Selection strategy for enabled (non-conventional) formulations.
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and Dressman, 2010). This paradigm differs from BCS in that it
focuses on the formulation rather than on the API and attempts
to assess factors useful in judging the formulation difficulty which
may be encountered. The DCS separates Class II candidates into
two types: namely Class IIa, compounds which are dissolution-rate
limited in terms of their oral bioavailability and Class IIb,
compounds which are solubility limited. This difference can be
appreciated by considering the Noyes–Whitney equation:

dC
dt
¼ DA

VhðCs � CtÞ

where dC/dt is the dissolution rate, A is the surface area of the
drug, D is the diffusion coefficient of the drug, V is the system
volume, h is the thickness of the unstirred water layer separating
the drug and bulk media, Cs is the saturation solubility of the
drug and Ct is the concentration of drug at time, t. In a formula-
tion context, if reducing the particle size or increasing wettability
(i.e., increasing A or decreasing h) leads to an increased oral bio-
availability, then such API’s could be considered as dissolution-
rate limited. If these manipulations do not impact dissolution rate
or oral bioavailability, the system could be considered solubility-
limited. This latter situation suggests that either the drug form
should be changed to increase drug absorption (i.e., the chemical
potential of the API should be increased) or that the additives
should be included to decrease the chemical potential of the drug
in the dissolved state. Thus, both in the context of DCS
assessments and more broadly, knowledge of whether the drug
is dissolution-rate or solubility-limited in terms of its oral bio-
availability sets the stage for assessing formulation complexity.
That is, this simple system provides an interesting insight as to
the how the oral bioavailability of a drug candidate is limited
which, by inference, can suggest how the limitation is best ad-
dressed. Type I compounds are soluble and permeable meaning
that only factors that impact their ability to reach absorption
sites are of consequence (e.g., gastric emptying) making these
systems relatively formulation independent. Class II compounds
by contrast are limited in their absorption by their dissolution
rate or solubility meaning that factors which enhance these sys-
tem properties could be bioavailability-promoting.
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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12.1. Physicochemical API properties as indicators of oral delivery
challenges

For poorly water-soluble compounds, the causes of their poor
solubility can also aid in improving oral bioavailability through
appropriate formulation concepts. This can be appreciated by
assessing the empirical relationships described by Ran and
Yalkowsky such as the relationship presented below:

log Sw ¼ 0:5� log P � 0:01ðMP ð�CÞ � 25Þ

where the log of the water solubility is given as a function of the
logP and the melting point (MP) (Ran and Yalkowsky, 2001). In
other words, compounds can be limited in their aqueous solubility
by wettability factors or by crystal lattice forces. Knowing which
component is more influential in limiting the water-solubility can
be instructive in selecting a solubilization strategy. In addition,
the complexity of finding a solution is suggested by the two limiting
conditions wherein logP-limited water solubility is more easily ad-
dressed than melting point-limited solubility. When crystal lattice
energy limits solubility, the drug is not only insoluble in water
but in other solvents and carriers as well. Based on these two
factors, ‘‘grease-balls’’ (high logP materials) may be more easily for-
mulated using solubilizing strategies while ‘‘brick-dust’’ (high melt
point compounds) might lend themselves better to particle size
reduction.

Historically, many attempts have been made to use physico-
chemical properties to scout out formulation trajectories based
on the discussions outlined in the last few paragraphs. These
considerations together with permeability features were used to
suggest not only if an enabling formulation approach is needed
but also to give insight as to which systems might best add value.
This has taken the form of the following ‘‘play ground’’ diagram
(Fig. 10).

Assessing a large group of formulated drugs, Branchu et al.
assessed which were formulated conventionally and which were
formulated using enabled technologies and then deconvoluted
the physicochemical properties of the API (Branchu et al., 2007).
This retrospective analysis found that the two groups of com-
pounds had different properties which could be generally de-
scribed such that enabled formulation were needed if the logDo
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Fig. 10. Schematic view of solubility and derivative factors, including permeability, falling within conventional formulation space.
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(Dose Number) < 1.7, logD > 1.2, hydrogen-binding donors
(HBD) = 0, hydrogen-binding acceptors (HBA) < 7 and molecule
surface area >406 Å2. The usefulness of this and related approaches
has been limited when used prospectively with a number of root
causes associated with the poor predictivity in the guise of both
Type I and II errors. One of the most glaring is related to the biorel-
evance of these measurements. Thermodynamic solubilities, for
example, of drug candidates in compendial buffers under carefully
controlled conditions have the potential of dramatically over- or
underestimating the solubility of that drug material in the body
not only as a function of the dissolving media but also by inappro-
priately considering supersaturation and absorption.

12.2. Solution versus suspension dosing comparison as in vivo
formulation finding strategy

Intravenous drug testing is often important for deriving param-
eters such as intrinsic clearance and other factors associated with
the interaction of the drug with the biological systems (Balani
et al., 2005; Neervannan, 2006), however these screening vectors
do not provide insight as to whether a solid dosage form might
be useful. To this latter end, Mackie et al., described a simple
solution–suspension–intravenous comparison (Fig. 11) of drug
candidates in test animals, most usually the rat and dog (Mackie
et al., 2008). In this companion assay to API property and pharma-
ceutical assessments, a simple drug solution (generally as aqueous
20% w/v 2-hydroxypropyl-b-cyclodextrin (HPbCD)) is compared
with a drug suspension (usually as 0.5% Methocel�, processed
using a Covaris� homogenizer). The dose for both formulations is
10 mg/kg in the rat and 5 mg/kg in the dog. Blood levels are then
determined using appropriate LC/MS-based techniques. This sim-
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Fig. 11. Solution–suspension–intravenous outcomes in a test species and their
alignment with BCS.
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ple dosing design then generates a 2 � 2 matrix which can suggest
a formulation trajectory along with other experimental and theo-
retical findings.

If a solution and suspension give equivalent exposure, this sug-
gests that the in vivo dissolution rate of the suspension in no way
limits oral bioavailability. This suggests that the impact of a formu-
lation on the ability of the API to be absorbed is relatively low. For
cases where solution and suspension give similar exposure and the
absolute oral bioavailability is high, a BCS I or I-like system is sug-
gested. If on the other hand, a mismatch of expected maximum
bioavailability (based on intravenous clearance) and observed
bioavailability (lower than expected) occurs then this indicates
permeability issues or precipitation within the GI tract suggesting
a BCS III or III-like system or that the API is subject of high
first-pass effects. Again for both of these systems, conventional
formulation strategies would seem to be appropriate. For the
situation where a solution gives significantly higher exposure than
the suspension, the data suggests that in vivo dissolution rate or
solubility is limiting, pointing to a BCS II material and one likely
in need of enablement (i.e., a BCS II-complex compound). The
fourth possibility is one in which a suspension provides for better
oral bioavailability than a solution. Several root causes might be
ascribed to this behavior including poor chemical stability of the
API when in solution within the stomach environment, saturation
of an uptake transport mechanism or initial supersaturation fol-
lowed by precipitation of the API from the solution into a more
poorly dissolving form than that associated with the suspension.
If acid instability is assigned as the root cause, a number of formu-
lation design elements can be considered such as enteric coating or
co-administration of the drug with an antacid or proton pump
inhibitor, the latter under the assumption that no interactions
occur. Thus, the rat and dog are used as bioreactors to assess
solubility, dissolution rate and permeability.

This approach has now been applied to more than 100 com-
pounds (Mackie et al., 2012). Based on this perspective, a number
of points have been made: A suitable suspension could be prepared
for the vast majority of compounds using 0.5% w/v Methocel. In
two situations, a slight modification was needed such that Metho-
cel with Tween 20 was optimal for one compound and, in a second
case, where HPbCD and Tween 20 were the best suspending
agents. Drug solutions were possible using 20% HPbCD in 87% of
cases. Other systems that were assessed included water for injec-
tion (1%), citrate–phosphate buffer (1%), TPGS in oleic acid (1%),
SBEbCD (5%) and PEG400 (6%). Use of PEG 400 or others however
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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presents a difficult situation as PEG has influences on motility and
water flux in animals and humans to varying extents (Schulze
et al., 2003). It should be used cautiously or in low concentrations.
The 2 � 2 matrix could be bucketed using several classification
cut-offs with AUC ratios of solution–suspension dosing <0.8 (sus-
pension more bioavailable than solution), 0.8–1.2 (solution and
suspension gave equivalent bioavailabilities), 1.2–2 (solutions
were modestly better than suspensions) and >2 (solutions were
significantly better than suspensions). The data suggested that:
18% of compounds demonstrated better bioavailability from a sus-
pension than a solution, 45% of compounds demonstrated equiva-
lent exposure from a solution and a suspension, 26% of compounds
were modestly more bioavailable from a solution than a suspen-
sion and 10% of compounds were significantly more bioavailable
from a solution than a suspension. Application of traditional tools
based on thermodynamic solubility, logP, pKa, intrinsic dissolution
rate, PAMPA (parallel artificial membrane permeability assay) and
related assays suggested that approximately 65% of the
compounds would require some type of enablement to generate
a useful form preclinically or clinically. That suggests that using
only physicochemical properties may overdiscriminate the need
for enabled systems with the application of technologies of higher
complexities and costs than needed as well as a higher risk of
rework. This combination of API, pharmaceutical and biopharma-
ceutical data then suggest whether formulation enablement is
likely needed.

A similar suspension vs. solution approach has been performed
by Muenster et al. using a physicochemical diverse Bayer pipeline
compound set (Muenster et al., 2011). Here, a correlation of in vivo
dissolution in the rat at respective predicted therapeutic doses in
humans vs. actual in vivo dissolution data in humans (tablet or sus-
pension vs. solution) of the same compounds was established. Data
suggest that if AUCnorm suspension vs. AUCnorm solution in the rat is
>50%, in vivo dissolution in humans is sufficient for the develop-
ment of a standard IR tablet, without enabling technologies
needed. Furthermore, correlation of suspension vs. solution in rat
vs. dose/solubility ratios at various pH revealed a good correlation
at pH 4.5 and 7, indicating that at dose/solubility ratios of
<100 mL/kg (pH = 4.5) and <500 mL/kg (pH = 7) no enabling formu-
lation technology is needed for the development of an oral market
formulation for humans. However, a poor correlation between
in vivo dissolution in the rat and dose/solubility ratios at pH = 1
was observed, suggesting that the rat is good predictor for neutral
and acidic API dissolution, but may underestimate in vivo dissolu-
tion of weak bases in humans.

Early formulation finding strategies have also been described by
Maas et al. who also assessed API, formulation and biopharmaceuti-
cal factors (Maas et al., 2007). In their approach, a number of
formulation platforms are identified to address both simple-to-for-
mulation API’s as well as those in need of enablement. Intravenous
dosing is first completed to verify that PK properties are appropriate
and then is an oral suspension dosed, first in rat and subsequently in
dog. If exposure is satisfactory, formulation trajectories are selected
from the conventional toolbox. If suspension dosing provides for
poor exposure, other manipulations of the API are considered
including milling. These studies then chart a way forward for the
possible formulation possibilities. Saxena et al. used a similar strat-
egy with a comparison of drug solution and suspensions (Saxena
et al., 2009). This decision tree thus suggested that bioavailability
from a solution should be reasonable. If exposure of the suspension
was more than 2-fold lower, a number of alternative processing
technologies were suggested including salt screening, solid disper-
sions, lipid based methods and suspension/nanosuspensions. The
approach suggested that the preclinical formulations should result
in certain minimal pharmacokinetic properties to justify progress-
ing the compound including an acceptable terminal half-life, a total
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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clearance less than the hepatic blood flow and a bioavailability from
the selected formulation of >30%. Li and Zhao (2007) suggested a
similar approach with a comparison of solutions and suspensions
to suggest whether simple or complex formulation would likely
be of benefit (Li and Zhao, 2007). Zheng et al. (2012) suggested
assigning formulation risk based on in vitro solubility as well as
in vivo drug levels in test species after oral dosing of solutions
(Zheng et al., 2012). Low risk compounds were those generating
useful blood levels after dosing with vehicles containing <30% of
an organic modifier and high risk systems were those requiring
higher levels of an organic modifier. The decision tree outlined sug-
gested that low risk compounds could be formulated using salts or
particle size reduction while high risk compounds would likely re-
quire enabled systems including amorphous solid dispersions,
nanosuspensions or lipid-based strategies. Based on the possible
complexity of high risk systems, additional work in parallel was
suggested to optimize formulation finding.

12.3. Selection of the most appropriate formulation technology

The next step, after an assessment of formulation complexity is
derived, is then to suggest which enabled technology is best placed
to solve the specific issues associated with the drug candidates
being considered (Kawakami, 2009). One approach is to extract
value from various theoretical as well as down-scaled, automated
filters to align a formulation type with the compound of interest
(Fig. 12).

The philosophy associated with the formulation filters is based
on a deconstruction of important formulation elements and then
the development of tests to assess these aspects. Four possible en-
abled strategies are included in this process approach including
nano-crystalline suspensions, amorphous solid dispersion, liquid-
filled capsules and ‘‘others’’.

12.4. Inclusion of computational assessments as additional tools

Theoretical assessments are based on PBPK models with the two
main tools including GastroPlus™, an advanced compartmental and
transit (ACAT) model (SimulationsPlus, Lancaster, CA) and SimCyp,
an advanced dissolution, absorption and metabolism (ADAM) mod-
el (Simcyp, Sheffield, UK). GastroPlus™ can be used both to predict
API, pharmaceutical and biopharmaceutical properties based only
on the chemical structure or with additional experimentally
determined data with an increasing predictivity as a function of
more and higher quality data (Hosea and Jones, 2013; Kuentz
et al., 2006; Sjögren et al., 2013; Tsume et al., 2012). Thus, even with
only the chemical structure, initial suggestions of the compound
solubility and absorb-ability can be estimated and reported in terms
of a dose, dissolution and absorption number (Do, Dn and An, respec-
tively) as well as the maximum absorbable dose (MAD). The terms
are defined as follows:

� Dose number (Do) – the dose divided by the product of
delivered volume (250 mL) and solubility of the drug:
Do = Dose/(V � Cs) (the lower the better).

� Dissolution number (Dn) – the ratio of mean residence time and
mean dissolution time (the higher the better).
� Absorption number (An) – the ratio of the mean residence time

and mean absorption time (the higher the better).
� Maximum Absorbable Dose (MAD) – the product of the drug

solubility, absorption rate constant, fluid volume and transit
time (i.e., solubility and permeability are compensatory):
MAD = S � Ka � V � T.

An assessment of itraconazole (including API, pharmaceutical
and biopharmaceutical properties) was completed using only the
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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chemical structure of the compound. This information-risk read-
out suggests that itraconazole is a BCS Type II/DCS type IIb drug
with a low predicted water-solubility (�0.0006 mg/mL) and a
MAD of 48 mg. This is in contrast to doses that are needed to
generate a useful anti-fungal effect (200 mg loading dose and
100 mg maintained dose). A parameter sensitivity plot can also
be rendered that suggests what the effect of drug solubilization
might be on the fabs (in this case the amount of drug reaching
the portal blood) (Brewster et al., 2007).

These calculations suggest that the low fabs is strongly influ-
enced by the degree of drug solubilization and that even modest
increases in this factor can strongly influence the amount of drug
taken up into the presystemic circulation based on high intrinsic
permeability. This analysis suggests that increasing the drug
solubility from 0.0006 mg/mL to 0.1 mg/mL would make drug
absorption almost quantitative. This information may then initiate
an assessment of solubilizing technologies to generate an appropri-
ate liquid or solid dosage forms. In the case of itraconazole, two
useful solubilizing vehicles were identified including PEG400 (sol-
ubility of itraconazole = 2 mg/mL) and 40% w/v HPbCD (solubility
of itraconazole = 10 mg/mL). GastroPlus™ suggested that both of
these systems would increase the fabs and this was verified in both
animal and clinical studies. The HPbCD vehicle served as the basis
for a marketed oral solution and intravenous formulation. Another
use of the parameter sensitivity (spider plot) is to assess the possi-
ble application of an amorphous dosage form concept. In assessing
this trajectory, an estimate is made of the solubility enhancing
effect of converting the drug from its crystalline form to the
amorphous phase. A variety of approaches can be assessed. The
formalism of Hancock and Parks (2000) can be applied wherein
the increased solubility is inferred using thermo-analytical data
obtained by Differential Scanning Calorimetry (DSC) including
the melting point and heat of fusion of the crystalline phase, the
glass transition temperature and change in heat capacity at the
glass transition temperature (Tg) for the amorphous phase
(Hancock and Parks, 2000). In the case of itraconazole, the solubil-
ity ratio of amorphous/crystalline drug is 100. Assessing these data
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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and increasing the drug solubility from 0.0006 mg/mL to 0.06 mg/
mL would increase the drug fabs to >75%. Clearly, these are gross
estimates that do not take into account a number of important
processes and factors but these early assessments can give some
insight within a specified error as to whether a particular formula-
tion direction is possible or less interesting.

In addition to solubilizing strategies, PBPK modeling can also
shed light on the possible application of particle size reduction
with regard to improved oral bioavailability. This is again
completed using a parameter sensitivity analysis but in this case
the variable is API particle size. That is, the percent drug absorbed
(into the portal circulation) is assessed as a function of reducing
the particle size into the nano-domain. Data thus derived suggest
that, in this case, reducing the particle size even to 1 nm would
not influence the oral bioavailability. This finding has since been
corroborated in animal studies suggesting that the solubility of
the compound is so low that particle size reduction techniques
are not useful or that the saturation solubility is reached faster
than disappearance of dissolved API is happening by diffusion/
permeability.

Theoretical assessments (which are or are not bolstered by
other data) are useful inputs but cannot fully position or align a
formulation approach and compound. The formulation process is
based on several factors including the need for processing informa-
tion as well as data on the excipient design space, etc. To fill these
knowledge gaps, experimental work is suggested. In order to
complete these experiments in a time- and compound-efficient
manner, down-scaled, automated tests have been designed and
evolved to assess not only the most appropriate technology for
the particular API but also to give insight into processing aspects
of formulation. These miniaturized, automated workflows are de-
signed to address key formulation questions to help identify the
most appropriate dosage form platform, enabled strategy or direc-
tion as well as to eliminate possibilities that are not likely to add
value. Implicit in all of these simplified models is that their output
needs to be continuously confirmed and checked as a function of
compound development.
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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Key questions are therefore collected as a function of the four
formulation directions. For a nanosuspension to be useful, the abil-
ity to mill an API to a desired size is important (mill-ability) as is
the physical stability of the milled dispersion. For an amorphous
solid dispersion to be useful, glassy carriers that adequately dis-
perse the amorphous drug are needed and the resulting systems
need to be stable to phase separation and crystallization. Finally,
liquid-filled capsule strategies need to contain excipients that ade-
quately solubilize the drug dose in an appropriate volume and the
said dispersion needs to be stable both chemically and physically.
Thus once enablement is tangibly decided upon, all three enabled
possibilities are assessed using both fast and compound-sparing
experimental approaches with a selection based on the assigned
inclusion and exclusion criteria.

12.5. Nanosuspensions feasibility: mill-ability and dispersion stability

The workflow identified to assess the likelihood that a nanosus-
pension might serve as the enabled formulation strategy, are based
on several purpose-built and generic automation platforms
including a multiplexed nanomill. This attrition mill consists of
10 independent milling heads that can be independently con-
trolled both in terms of milling speed and time. The systems makes
use of 2.8 mL disposable milling chambers which can be filled
using automated workflows and each milling station is actively
cooled. Milling media are generally 0.5 mm highly reticulated
polystyrene beads and particle size analysis is completed by har-
vesting the nanosuspension using an insulin syringe (U-100,
0.5 mL, 0.33 mm � 12.7 mm) followed by the particle size distribu-
tion assessment measured using a Malvern Mastersizer coupled
with a Hydro lP dispersant unit and a Wyatt DLS plate reader.

The multiplexed mill is designed to assess multiple formulation
aspects and design space elements in a concerted fashion to rapidly
find fit-for-purpose formulations. In addition, the mill is configured
to scale to larger processing situations (i.e., to the nanomill,
dynomill and Netzsch mill). The experimental workflows generally
begin with an assessment of excipient space (including primary
and secondary stabilizers) and processing space (including milling
speed and time). The important endpoint derived from these
experiments includes mill-ability (the ability to reduce the particle
size to a proscribed average and distribution) and dispersion stabil-
ity over time and under various conditions.

A practical example may be useful in outlining the utility of this
approach. Itraconazole was evaluated as an injectable nanosuspen-
sion in several clinical studies (Mouton et al., 2006). In developing
this formulation, two key factors were screened as a function of
development including which surfactant manifested the best mill-
ing and stabilizer properties and what was the optimal milling
time. Both of these could be assessed in the downscaled
multiplexed mill. Itraconazole was milled in the presence of sev-
eral potential ionic and non-ionic stabilizers at ratios of 1:4 relative
to the API. Standard protocols included milling the material for
60 min at 4000 rpm in the presence of 0.5 mm highly reticulated
polystyrene milling media. Particle sizes were then assessed at
the end of milling as well as at one and two weeks after milling
with the samples stored at various conditions (5, 25 and 40 �C).
Of the 25 unitary or binary stabilizer systems assessed, Poloxamer
388 proved to be the most useful under these conditions. Based on
this excipient, milling curves were generated wherein itraconazole
was milled for times varying between 15 and 300 min with phys-
ical stability follow-up. Based on d90 and d99 measurements, a
suspension of a useful size could be generated after 120 min of
milling, less time generated undermilled systems. At long milling
times (i.e. 300 min), particle growth on storage was noted sug-
gested that these systems were overmilled. Conditions from the
downscaled multiplexed mill could be scaled to the Netzsch mill.
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12.6. Solid dispersion feasibility

Important elements in the construction of a useful amorphous
solid dispersion include the ability to dissolve or disperse a drug
in a glassy or semi-crystalline polymer as well as the stability of
the formed dispersion. As a consequence, amorphous solid disper-
sions should act as supersaturating drug delivery systems. That is,
the release of the amorphous API, the rate of which is ideally
governed by the dissolution of the glassy carrier, is such that nucle-
ation and crystal growth is delayed and the formed supersaturated
system is produced in a way to allow for sufficient drug absorption.
Thus, excipients that act as nucleation or crystal growth inhibitors
can increase the efficacy of the formulation. In the best case, the
precipitation inhibitor is the glassy carrier. Alternatively, precipita-
tion inhibitors can be added to the glassy carrier. Finding compo-
nents that may impact supersaturation stability is therefore
integral to building up a useful solid dispersion (Bevernage et al.,
2012; Brouwers et al., 2009; Takano et al., 2010). Specialized
workflows have been developed to screen for these and other prop-
erties. Specific tools to assess precipitation inhibition, film casting
and down-scaled processing are available and these will be
discussed in turn. Assessing whether excipients are available to
impact precipitation rate is conducting using a solvent shift/
quench approach (Vandecruys et al., 2007; Warren et al., 2010;
Yamashita et al., 2011). A supersaturated system is generated by
adding the drug dissolved in a water-miscible organic solvent to
an aqueous solution of the excipient of interest present at a con-
centration of 2.5% (w/v) at an appropriate pH. The concentration
achieved in this system as well as the rate of precipitation is
assessed analytically using either nephelometry or filtration fol-
lowed by UPLC (Ultra performance liquid chromatography) as a
function of time. Excipients usually used in this assay include
rheological and other polymers including cellulosic systems, sur-
factants, cyclodextrins and related materials. Both the extent and
stability of the formed supersaturated systems is important in
assessing the possible use of the excipients as components in the
amorphous solid dispersion-based formulation. Once this excipient
space has been assessed, these materials are used to form films
with the API. This exercise is intended to interrogate API-excipient
miscibility in the solid state as well as the tendency for the
dispersed API to remain as such over time (that is to maintain
the dispersion without phase separation or recrystallization)
(Janssens et al., 2010; Weuts et al., 2011). Films are case out of a
common solvent (a solvent providing for good solubility of both
the API and polymer/excipient) and the formed film is analytically
assessed (usually using white light and birefringence microscopy,
XRD and DSC). In addition, the dissolution properties of the films
are assessed to see whether supersaturation occurs and whether
the API remains in solution. These tasks are performed in an auto-
mated manner using specially designed 96-well plates to allow for
the analytical assessments as well as the dissolution evaluation
(Brewster et al., 2011). The microscopy can suggest changes in
the degree of miscibility including phase separation and crystalli-
zation while XRD and DSC are confirmatory method to assess
any increase in crystalline content over time.

The application of these approaches to a poorly water-soluble
drug candidate can be illustrative. A drug candidate has a melting
point of 270 �C and a measured Tg of 113 �C with a molecular
weight of 433 g/mol. The compound has a pKa of 3.5 and a solubil-
ity in simulated intestinal fluid of 0.6 lg/mL. Excipient screening
studies were completed using the automated 96-well plate meth-
od. In this screen a total of 41 excipients were assessed alone or in
combination at four different concentrations. The study suggested
that the following materials provided for significant effects on the
extent and duration of supersaturation: Solutol, Poloxamer 407
and TPGS. Films then were cast using the automated protocol in
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://

http://dx.doi.org/10.1016/j.ejps.2014.02.010
http://dx.doi.org/10.1016/j.ejps.2014.02.010


3757

3758

3759

3760

3761

3762

3763

3764

3765

3766

3767

3768

3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831

3832

3833

3834

3835

3836

3837

3838

3839

3840

3841

3842

3843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856

3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879

3880

3881

3882

3883

3884

E. Sjögren et al. / European Journal of Pharmaceutical Sciences xxx (2014) xxx–xxx 39

PHASCI 2973 No. of Pages 53, Model 5G

19 March 2014
which 95 excipients or excipient combinations were assessed
based on unitary, binary or ternary systems at two API to
excipient(s) ratios. Hits from the precipitation inhibition screen
were included in the film experiments. Identified dispersions
which were amorphous and stable over time included:
API:HPbCD:TPGS, API:HPbCD:HPMC, API:HPMC:Poloxamer 407,
API:HPMC-P:Poloxamer 407 and API:HPbCD:Solutol. Dissolution
profiles were completed for films that performed well in stability
and physicochemical property assessment using a 96-well two-
stage dissolution approach in which simulated gastric fluid is
added at time 0 followed by FaSSIF, which was added at 60 min.
This protocol assessed supersaturation under conditions which
might represent the stomach to intestine transition. Dissolution
profile for the API as well as for cast films suggested an increasing
supersaturation tendency in the order API < API:HPMC
< API:HPMC;TPGS < API:HPbCD:HPMC. In aggregate, the data sug-
gested that the most robust system was the API:HPbCD:HPMC in
terms of (1) manifesting good supersaturation, (2) showing mini-
mal precipitation upon SGF-FaSSIF transfer and (3) demonstrating
insensitivity to composition. These systems were then used to
configure test formulations to assess biopharmaceutics in the rat.
Formulations involved spray drying the ingredients and adminis-
tering the spray dried powders to rats by gavage in a 0.5% methocel
suspension. The test formulations administered in this way in-
cluded: API:HPbCD:TPGS (1:3:1), API:HPMC:TPGS (1:3:1),
API:HPMC (1:1), drug milled into the nano-domain and micronized
drug. Using the micronized suspension as a reference, all of the
enabled systems provided for varying degrees of benefit. The
nano-sized suspension was almost 3-fold more bioavailable than
the micronized suspension while the HPMC dispersion gave almost
4-fold higher exposure. Consistent with the dissolution profiles,
the best formulation in the rat was the API:HPbCD:TPGS which
gave an oral bioavailability almost 9-fold greater than that of the
simple micronized drug. These rough designs were then converted
to formulations that might be tested clinically. These more refined
systems included: (A) a spray-dried solid dispersion of
API:HPbCD:TPGS filled into a gelatin capsule, (B) a dispersion of
API:HPbCD:HPMC coated onto an inert Mono-N-carboxymethyl
chitosan sphere using a closed Wurster process and filled in a cap-
sule, (C) a solid dispersion of API:HPMC pressed into a tablet, (D) a
nanosuspension-based tablet and (E) API in capsule. These systems
were then assessed in a traditional USP II dissolution apparatus
using a two-phase transfer model approach. Not only did the opti-
mized formulations retain the dissolution profiles of the simple
dispersions from where they were derived, but the USP II data were
well correlated with the 96-well two-phase dissolution method.
Importantly, the oral bioavailability assessment seen in rats of
the simple systems was maintained in other animal models with
the optimized dosage forms.

12.7. Liquid-filled capsules (lipids/surfactants/S(M/N)EDDS/solvent)
feasibility

A third possible enabling formulation trajectory included sol-
vent-, lipid-, surfactant- or lipid/surfactant-based systems. These
are important in the industry with an estimated 2–4% of marketed
oral dosage forms using these concepts. Key questions that need to
be answered regarding the possible use of these technologies
include whether the intended dose can be solubilized in an appro-
priate volume of vehicle (capsules usually limit this to 1 mL) and at
an appropriate pill burden and whether the API so solubilized is
physically and chemically stable over time. In addition, if a S(M/
N)EDDS (Self microemulsifying/nanoemulsifying drug delivery
system) is intended, does the system perform in vivo as designed.
The pharmaceutical questions are assessed using an automated,
down-scaled workflow based on viscous liquid handling. Solvent
Please cite this article in press as: Sjögren, E., et al. In vivo methods for drug a
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systems showing good solubility can then be added to water to as-
sess emulsifying or self-emulsifying properties based on a two- or
three-phase diagram. Isotopically clear systems indicative of
micro/nano-emulsification can be assessed using white light and
birefringence microscopy.

A case study optimizing a poorly water-soluble drug candidate
as a self-emulsifying system was addressed. The compound gave
poor exposure when dosed as a suspension compared to a solution
(a relative bioavailability of 1.7%). Precipitation inhibition screen-
ing using a 96-well plate assay suggested that the best materials
were surfactants with the three most important hits being TPGS,
Cremophor RH40 and Tween 20. These materials were then in-
cluded in a larger SEDDS (self-emulsifying drug delivery system)
screen which made used of a list of 50 lipids and surfactants in
various ratios. In this assay, solubility was optimized with 18 hits
giving solubilities >50 mg/g. These hits were then screened for bio-
pharmaceutical properties in the rat and compared with a standard
solution (drug dissolved in TPGS/NMP). Based on the drug solution,
5 formulations gave significant increases in exposure with the best
formulation containing Capmul PG8, Cremophor RH40 and lauric
acid. This formulation gave a relative bioavailability of 165% versus
the drug solution and increased the absolute bioavailability to
almost 50%.

12.8. Predictability of animal models for humans

While these factors target API and pharmaceutical aspects in
formulation finding, an assessment of biopharmaceutical proper-
ties are likewise of interest. The selection of an appropriate animal
model to assess these formulation concepts is complex (see
sections above) and is impacted by an amalgam of API, pharmaceu-
tical and biopharmaceutical features. Wu et al. (2004) suggested
that the dog was a useful model for assessing nanosuspension
based on both translate-ability to man as well as the ability of
the dog model to predict food effects attenuated by the nanosus-
pension approach (Wu et al., 2004). The model compounds as-
sessed in these studies were MK-0869 (aprepitant). By contrast,
Mackie et al. (2009) and Ouwerkerk-Mahadevan et al. (2011) sug-
gested that the rat was a better model to assess nanosuspension
based on comparison of rat, dog and human clinical data (Mackie
et al., 2009; Ouwerkerk-Mahadevan et al., 2011). In these assess-
ments, two compounds were evaluated and the alignment of rat
and human data were thought to be related to pH difference in
the rat and dog GI tract as well as the more human-like transit
time. The differences in outcome of these two sets of studies
may be related to the API chemotype assessed in that aprepitant
(pKa = 9.7, MP = 254 �C, logP = 4.8 and water solubility of 3–7 lg/
mL) and the compounds from the second set of studies (Compound
A, pKa = 3.45, MP = 216 �C, logP = 3.1, water solubility <0.1 lg/mL;
Compound B, pKa < 2, MP = 156 �C, logP = 4.6, water solubility
<0.1 lg/mL) differ in several important respects. These include
the pKa and water solubility potentially biasing either the rat or
dog to be the better model of translation.

Newman et al. (2012) discussed the application of various
in vivo models in the assessment of solid dispersions (Newman
et al., 2012). In their retrospective analysis of 40 studies, the fol-
lowing animal models were described including the dog (41%),
rat (24%), rabbit (15%) and monkey (2%). In some cases, the dog
model was altered using agent to modify the GI pH. In
vitro–in vivo relationships could be constructed using animal and
dissolution data in all but 1 rat study, 3 rabbit studies and 2 dog
studies. Generally, selection criteria of the animal model for a par-
ticular formulation is most often aligned with biopharmaceutics
(including physiological and metabolic similarities to man, trans-
late-ability to man) and less on pharmaceutical and API properties.
Nonetheless, the appropriate selection of an animal model will
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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require all three axes to be incorporated into a decision tree includ-
ing comparisons of fluid volumes as a function of GI location (as
well as when comparing the fed and fasted model) as well as GI
regional pH, composition and ability to support supersaturation.
In a line of reasoning similar to the nanosuspension discussion
the selection of an animal model for amorphous solid dispersion
is best completed on a case-by-case basis – factors to be taken into
account include also the relevant API and its pharmaceutic and bio-
pharmaceutic properties. Other species such as the pig and minipig
may also be of value in these assessments in addition to the more
generally applied models (see Section 4).

Lipid-based formulations have a number of factors in common
with the other formulation types described but also a number of sig-
nificant differences. In common with other approaches, formulation
processing can generate supersaturation which may be an impor-
tant system aspect for enablement (Brouwers et al., 2009; Williams
et al., 2013). By contrast, lipid formulations may also be processed
by digestion and the API-lipid or digestion products may be useful
modalities for targeting lymphatic absorption. The importance of
these factors means that more animal model development and opti-
mization have to be completed as a function of the pharmaceutical
axis for these systems. In addition since a number of chemotype
rules have been postulated related to logP, molecular weight and li-
pid solubility requirements, more API insight is also applied to the
selection of an animal model. Generally, rat and dog studies are
used for all three assessments. The dog is more commonly used to
assess the effect of lipid on absorption consistent with its use in
evaluating food effects however models for lymph duct cannulation
are available for both species (Porter and Charman, 2007). Dogs also
have the advantage that human-scaled dosage forms can be admin-
istered (Charman et al., 1997; O’Driscoll, 2002).

As the use of enabling formulations increases and as API’s
becoming increasingly difficult to formulate, appropriate animal
models to study these systems are essential. While historically,
the focus associated with selecting an animal model has been bio-
pharmaceutical in nature, more and more, factors associated with
model alignment as a function of API properties and formulation
processing will likely grow in importance. This is based on both
the need for increased translation from the preclinical species to
man but also in an effort to generally reduce the number of
animals used in formulation optimization and drug development.
In vivo factors associated with supersaturation, excipient
processing and API uptake at the intestinal mucosa will also have
increasing impact on the choice of a useful animal model (Bever-
nage et al., 2012; Brouwers et al., 2009; Takano et al., 2010).

In contrast to the various animal models being available to
make predictions of in vivo dissolution and permeability for IR for-
mulations in humans, to date, there is no established animal model
published that would reliably predict colonic API stability
(microbiota), permeability, and dissolution. A biopharmaceutical
colon model would be of high interest for the developability
assessment of slow release formulations. Human microflora con-
sisting of 10–100 trillion cells, from �160 species is a complex
mixture which requires certain technical know-how to culture.
Also, it is important to keep the in vitro culture media to the most
physiological relevant composition to allow the microbiota to
exhibit their natural enzymatic activity (Qin et al., 2010). Experi-
mentally, in vitro API stability and dissolution experiments have
been performed (www.TNO.nl.pharma; www.prodigest.eu),
however, the number of compounds of which colonic stability
and dissolution data have been validated against human PK data
are very limited, and respective in vivo animal and human colonic
absorption and/or dissolution data are not publically available to
an extent that would allow the generation of a predictive biophar-
maceutical colon model.
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13. Overall gap analysis

This review has made clear that there are important gaps in our
understanding of the human GIT as well as the physiology of ani-
mals that are currently used for in vivo drug and formulation
characterization.

Typical gaps in knowledge about human GI physiology affecting
dosage form performance have been mentioned in this review
including e.g. intraluminal water availability in particular in seg-
ments that are low in water content but important for dosage form
performance and absorption such as the small and large intestines.
Likewise little information is available on the magnitude and fre-
quency of intraluminal pressures and hydrodynamics that act as
mechanical stress factors and thus affect the integrity of dosage
forms (disintegration, erosion). This information is however needed
in order to design more meaningful in vitro test systems that are
reflective of the in vivo situation. Relevant for the active ingredient
itself is the question about its mechanism of intestinal permeation
and possibly metabolism. In recent years some progress has been
made but not sufficient for a clear understanding about carrier-
mediated and passive components of drug absorption in the intes-
tine. Identification of carriers, their expression along the GIT and
relationships between expression and drug affinity are just some
examples where progress needs to be made. This holds true for hu-
mans but also for most of the animal models that are used for drug
and dosage form characterization. Important differences e.g. in gas-
tric and intestinal pH, gastric emptying and intestinal transit times
and motility as well as intestinal permeability may be taken as the
underlying cause for differences between animal species and insuf-
ficient predictability of the effects in humans. An analysis of dat-
abases covering different formulations and drugs in different
species is needed in order to better define the relationships between
chemical space of the compound, formulation space and usefulness
as screening tool and predictability for humans. Imaging tools for
animals and for humans represent important tools to investigate
some of these phenomena and need to be established further.

Progress needs also to be made in particular for understanding
and better predicting the activity of compounds exerting low water
solubility in order to design formulations that will predictively de-
liver their active ingredients in various patient groups. Among
these factors, variability in composition and relevance of GI fluids
for drug solubilization should be mentioned. On the same token lit-
tle is known about the intraluminal behavior of formulations, i.e.
the concentrations of drugs following oral administration of their
formulations in the lumen of the stomach and the small intestine,
their solubilization and precipitation also as a function of chemical
structure (acids versus bases versus neutral compounds) and sites
(stomach versus small intestine) and dose. This knowledge is
needed to understand the performance of enabling formulations
for low soluble compounds as well as to better reflect the solubil-
ity/permeability relationships that result from the dissolution and
solubilization of the API and its permeation across the intestinal
epithelium. Ignorance of these items leads to a trial and error ap-
proach in the design of in vitro experimental conditions that may
or may not reflect the in vivo situation appropriately.

In particular for controlled release dosage forms the knowledge
about their in vivo transit and processing as well as the absorption
of the released drug in different intestinal segments is crucial but
frequently not available. Thus sufficient resources may be spent
in vain trying to develop formulations for compounds that
intrinsically are not prone to be delivered in oral sustained release
systems simply as a consequence of their cumbersome absorption
and metabolism properties.

Another wide open field is the personalized medicine approach
and the need to predict drug product performance not just in
bsorption – Comparative physiologies, model selection, correlations with
aracterization including food effects. Eur. J. Pharm. Sci. (2014), http://
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healthy volunteers but also in the target patient group. For that
purpose, our knowledge gaps with respect to factors that differ
in patients versus volunteers and that are important determinants
for drug bioavailability need to be closed.

Needless to say is that our current knowledge on the predict-
ability of in vivo effects of excipients used for formulating oral drug
products as well as interactions between active pharmaceutical
ingredients and these excipients or food components or neutraceu-
ticals is still underdeveloped. Progress in these areas will have
important consequences not just for the development of optimized
drug products but also for streamlining the regulatory decision
making process since it can be done based on sound scientific facts
rather than being the result of sometimes overcautious regulatory
expectations putting the safety as the only and overall decision
guiding principle. For that purpose the concept of in vitro–in vivo
correlations needs to be expanded in various directions, for exam-
ple by making best use of the relationships found between in vitro
dissolution and in vivo pharmacokinetics.
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