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Abstract 

The paper presents a method for the calculation of fractal reaction dimension, D R, in dissolution studies of powdered 
substances with a given particle size distribution. An estimate for D R can be directly obtained from dissolution experiments 
using the well known Hixson-Crowell equations in a modified form. The estimation is accomplished with a special computer 
program in BASIC which was developed and applied to simulated errorless and contaminated data with very good results. A 
practical demonstration of the method's usefulness was shown on experimental data taken from the literature. 
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1. I n t r o d u c t i o n  

The concept of fractals is innovative in the field 
of pharmaceutical  sciences (Koch, 1993), al- 
though its use is widespread in the fields of 
chemistry (Amann  and Gans, 1989), physics 
(Pietronero and Tassati, 1986) and physiology 
(West and Goldberger,  1987). According to Man- 
delbrot  (1982), who introduced the term fractal, 
a system is fractally structured when one of its 
properties or quantities to be measured is, with 
certain limits, a function of the scale applied. As 
an example of fractal behaviour,  the surface area, 
A, of an object is a fiaultiple of the scale, e.g. a 
cm 2 and has a topological dimension d t = 2 ;  

however,  the measured surface area of an irregu- 
lar and rough surface increases with decreasing 
scale size according to its special structure. This 
surface is t e rmed 'fractal surface' (Koch, 1992) 
with a fractal dimension D lying between the 
topological and Euclidean dimensions,  i.e. 2 <  
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D < 3 .  In other  words, D may be a fractional 
number .  Fur thermore ,  Farin and Avnir (1987, 
1988) developed the concept of ffactal reaction 
dimension D R that is basically the effective frac- 
tal dimension of the object towards a reaction. 

Based on the findings of Avnir 's  research 
group (Avnir, 1987; Fafin and Avnir  1987, 1988; 
Farin et al., 1989) that the surfaces of most 
materials are fractal, Farin and Avnir (1992) 
were the first to use fractal geometry  to de- 
termine effects of surface morphology on drug 
dissolution. The Hixson-Crowell cube root  law 
equations (Hixson and Crowell, 1931) were 
appropriately modified (Fafin and Avnir,  1992) 
to include surface roughness effects on the disso- 
lution rate of drugs. Eq. 1 was derived for the 
general case of the entire time course of dissolu- 
tion while Eq. 2 adheres to sink conditions (Farin 
and Avnir,  1992): 

3 (w--DR/3 DR -- Wo °R/3) = kt (1) 

( 3 )-DR')(W~o3-DR)/3-- W(3-DR'/3)= Wekt (2) 
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where we, wo,  and w are the weight of the drug 
necessary to saturate the solution, the initial 
weight of the drug, and the weight of the drug 
after time t, respectively; k is the dissolution rate 
constant. Apparently, Eqs. 1 and 2 are valid as 
long as the value of D R remains constant. How- 
ever, two studies (Farin and Avnir, 1987; Fer- 
nandez Hervas et al., 1994) have shown that the 
value of D R remains constant almost throughout 
the dissolution process. 

According to Farin and Avnir (1987), an 
estimate for D R can be obtained from the slope 
of a log-log plot of the initial rate of dissolution v 
versus the radius R of the various particle sizes 
tested. In reality, this kind of calculation is based 
on the fundamental proportionality (Farin and 
Avnir, 1987) 

O ~ S or. R DR-3 (3) 

where S is the effective surface area for dissolu- 
tion; obviously, by plotting log v as a function of 
log R a straight line with slope D R - 3  is ob- 
tained. In reality, the proportionality in Eq. 3 
between v and S is Wenzel's law (1777) for 
heterogeneous reactions which states that the 
larger the interface, the faster the reaction. 

However,  the calculation of D R from a log 
v - log R plot requires the execution of a number 
of dissolution experiments with a variety of 
particles of well defined sizes and shape charac- 
teristics. Nonetheless, pharmaceutical powders 
are almost always 'polydisperse' (Carstensen, 
1977); besides, multifractality may exist when a 
population of surface points can be divided into a 
number of sub-populations, each having a differ- 
ent reactivity towards the dissolution process 
(Stanley and Meakin, 1988; Carstensen and Fran- 
cini, 1993). In addition, the fractal dimension of a 
series of granules or particles can exhibit inter- 
series variability in the connectivity (Gouyet,  
1990) properties. Finally, violations of Wenzel's 
law are not unlikely to occur in diffusion con- 
trolled processes (Kopelman, 1988) like dissolu- 
tion. For all these reasons, the particles of the 
different sizes can exhibit different fractal reac- 
tion dimensions. Accordingly, it would be more 
reliable to determine the fractal reaction dimen- 
sion for each separate batch of particles. It is the 
purpose of this report to show that the calcula- 

tion of D R can be achieved directly from a 
dissolution run utilizing particles of a given size. 
This calculation does not require knowledge of 
either the surface or the radius of the particles 
and it is based on the assumption that the mass of 
the particles is related to the cube of the radius. 

2. Theoretical 

Eqs. 1 and 2 can be written more conveniently 
as Eqs. 4 and 5, respectively: 

- - a  - - a  

w - w o = a k t  (4) 
b b 

w o - w  = b w ~ k t  (5) 

where a = D R ~ 3  and b = ( 3 - D R ) ~ 3 .  As can be 
seen from Eqs. 4 and 5, on plotting the values of 
the left-hand side against time t, one can obtain 
the value of k from the slope of the straight line. 
In practice, this involves choosing a starting value 
for the fractal reaction dimension, DR, e.g. 2 
and, using an iterative method, searching for the 
linearity demanded by Eqs. 4 and 5 for the 
experimental data pairs (w, t). When this has 
been found, one knows both values for k and 
D R • 

For this purpose a computer program in 
BASIC was constructed. The program requires 
the values of w 0 and w e (only when Eq. 5 is 
used), an initial estimate and the range of values 
for DR, and the experimental data pairs (w, t). 
The program searches for the D R value that best 
satisfies the linearity demanded by Eqs. 4 and 5, 
optimising the minimisation of SS (sum of 
squared discrepancies between the observed val- 
ues and the values given by the model). At each 
iteration a new D R value is selected using a step 
which is shortened as D R approaches its optimum 
value. The program can be obtained from the 
authors upon request. 

S i m u l a t i o n  s t u d i e s .  Simulated data, both error- 
free and erroneous, were used to evaluate the 
proposed method. Error-free simulated data (w) 
were generated according to Eqs. 1 and 2, for 
various D R values (1.7, 2.3, 2.5, 2.7) while the 
values 100 and 1000 were assigned for w 0 and w e, 
respectively. The range of the independent vari- 
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able (t) values was also assigned. It was 0-100 in 
the case of Eq. 1 which describes the dissolution 
process when carried out under conditions which 
are allowed to develop up to saturation, and 0-10 
in the case of Eq. 2, which adheres to sink 
conditions. 

Erroneous simulated data, with various de- 
grees of error, were generated by adding to each 
error-free w-value a pseudorandom normal var- 
iate of mean zero and relative standard deviation 
equal to 1-10% of the error-free value. Both 
error-free and erroneous simulated data were 
analysed according to the proposed method. 

In order to get an idea about the deviation 
from linearity of the Hixson-Crowell plots when 
D R # 2, the simulated error-free data (w, t) were 
also used for the construction of conventional 
Hixson-Crowell plots. 

Dbssolution studies. The proposed method was 
further applied to experimental dissolution data 
taken from the literature (Nobuyoshi and 
Nobutoshi, 1974; Carstensen and Mahendra,  
1975). Both studies deal with the effect of par- 
ticle size on the dissolution rate of sulfonamides 
(Nobuyoshi and Nobutoshi, 1974) and oxalic acid 
(Carstensen and Mahendra,  1975). 

3. Results and discussion 

Simulation studies. Figs. 1A and 1B are graphi- 
cal representations of Eqs. 4 and 5, respectively, 
for error-free simulated data treated according to 
the proposed method. The y-values for each time 
point in Figs. 1A and 1B are based on the 
estimate for D R derived from the computer 
analysis of data. In all cases, the calculated and 
theoretical D R values were  found to be identical. 
The estimated values for k were also almost 
identical to the theoretical value ( l x  10-3), 
while the correlation coefficient is very close to 
unity in all cases studied. 

The results from the analysis of erroneous 
simulated data according to Eqs. 4 and 5 are 
shown graphically in Fig. 2. Fig. 2A represents 
the dependence of the estimates for D R and k on 
the percent error of data resembling the general 
case of the entire course of dissolution (Eq. 4). 
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Fig .  1. Graphical  representat ions of (A) Eq.  4 and (B) Eq.  
5 for er ror- f ree  simulated data t reated according to the 
p roposed  method.  The  calculated and theoret ical  D R and 
k-values were  found to be identical (k,h . . . . .  ical = 1 X 10-3). 
Key: ( 0 )  D R = 1.7; (V)  D R = 2.3; (A)  D R = 2.5; (C]) D R = 
2.7. 

The almost zero slope of the graph reflects the 
ability of the proposed method to give valid 
estimates of the parameters under conditions of 
experimental error. A similar plot for erroneous 
simulated data resembling dissolution under sink 
conditions is shown in Fig. 2B. The larger scatter- 



166  G. Valsami, P. Macheras / European Journal of Pharmaceutical Sciences 3 (1995) 163-169 

5.5 

5.0 

@ 
© 
E 

2.5 
u~ 

2.0 

~.5 

o o o o  ~ • q~ 

I [ 

0 4 8 1 

% error 

5 0  

4.0 

0 . 1 6  ~- 

0 . 1 2  

3.0 

- o 

® 0 , 0 8  2 0 ~  I 

cw 
1 

3~ 
~o  

0 . 0 4  

0.0 

3.0 5 0 

0 . 0 0  

[ ]  
0 

0 
[] 

0 
[ ]  

o 

A oo == 
0 & 

D & • 
& • V •  • 

[] ~ &  V •  o & • 

Q ~ • •  0 ~ 0 0  

t 0 ' ' 0 | .  I 

20  40  60 80  100  

t ime  ( a r b i t r a r y  uni ts)  

© 

"6 
E 

2.5 o o o o  o o 

0 0 0 0  • • • • 

4.0 

o 
8 

2 . 0 ~  

1 0  

2.0 i -.. ~ 0.0 
0 4- 8 12 

% error 

Fig. 2. Dependence of the estimates for DR and k on the 
percent error of data resembling: (A) the general case of the 
entire course of dissolution (Eq. 4); (B) dissolution under 
sink conditions (Eq. 5). Key: (©) DR; (O) k. 

ing of the parameter estimates in Fig. 2A than in 
Fig. 2B originates, probably, from different prop- 
agation of  error between Eqs. 4 and 5, since the 
error added on the values of  the dependent 
variable, w, is the same in both cases. 

Figs. 3A and 313 are graphical representations 
of  the Hixson-Crowell  equations for the same 
error-free simulated data. It should be recalled 
that Eqs. 4 and 5 collapse to the Hixson-Crowell  
equations by substituting D R = 2. The degree of 
deviation of  the graph from linearity becomes 
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Fig. 3. Graphical representations of the Hixson-Crowell 
equations for error-free simulated data resembling: (A) the 
general case of the entire course of dissolution; (B) dissolu- 
tion under sink conditions, when D R # 2. Key: (0)  D R = 
1.7; ( V )  D R = 2 .3;  (ZX) O R = 2.5;  ( [ ] )  D R = 2.7.  

more pronounced as the value of  D R deviates 
from 2. The more intense deviation from linearity 
is observed in cases of dissolution under sink 
conditions (Eq. 5). This is associated with the 
value of  the exponent of the dependent variable. 
For a given D R value, the relative deviation of 
the exponent b = ( 3 -  DR) /3  in Eq. 5 from the 
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value of 1/3 is greater than that of the exponent 
a = DR~3 in Eq. 4 from the value of 2/3, 

Dissolution studies. Nobuyoshi and Nobutoslai 
(1974) have studied the effect of particle size on 
the dissolution rate of sulphadiazine. A re-analy- 
sis of their data was performed utilizing our 
proposed method. The results are shown in Fig. 
4. The estimates for D R were found to be 2.09, 
1.97 and 1.90 (mean 1.99---0.1) for the drug 
particle sizes 132, 186 and 332/zm, respectively. 
In all cases, a smooth surface is revealed since 
the dimension of the surface is =2 .  However, 
this observation is not unexpected if one takes 
into account the linear Hixson-Crowell plots 
reported by the authors (Nobuyoshi and 
Nobutoshi, 1974) in conjunction with the results 
presented in Fig. 3. Thus, dissolution occurs only 
at the outer exposed regions of the drug crystal 
since only the outer portions of the drug surface 
are accessible to the solvent molecules. 

The second set of experimental data concerns 
the dissolution of oxalic acid dihydrate crystals of 
log-normal particle-size distribution (Carstensen 
and Mahendra, 1975). The authors found a 
biphasic Hixson-Crowell plot with an initial linear 
part up to a critical time t c which corresponds to 

the dissolution of the particles of the smallest 
diameter. Beyond this point, the cube root plot 
changes slope. The analysis of the data according 
to the proposed method, using Eq. 5, was per- 
formed by segmenting the data as suggested in 
the study (Carstensen and Mahendra, 1975). The 
first four points, which correspond to the dissolu- 
tion of the smallest particles were analyzed separ- 
ately from the last five points which correspond 
to the dissolution of the particles with the greater 
diameter. For the first four points a value of D R 
equal to 3.0 was determined, while for the last 
five points the estimate for D R was found to be 
2.16. The results obtained are shown in Fig. 5. 

The value of D R for the smallest particles, 3.0, 
indicates that dissolution occurs at equal rates 
from all the bulk of the particles (Farin and 
Avnir, 1992). According to Farin and Avnir 
(1992) the first-order decay equation: 

dw 
dt - kw~w (6) 

is obtained from the fractal form of the Noyes- 
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Fig. 4. Graphical representation of Eq. 4 for data taken 
from Nobuyoshi and Nobutoshi (1974), reanalysed accord- 
ing to the proposed method. Key: particle size (O) 132 p.m; 
(0 )  186 tzm; (IV) 332 p.m. 
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Fig. 5. Graphical representation of Eq. 5 for data taken 
from Carstensen and Mahendra (1975), reanalysed accord- 
ing to the proposed method, segmented as suggested by the 
authors. Key: (O) analysis of the first four points (left-hand 
side ordinate), which correspond to the dissolution of the 
smallest particles and (0 )  analysis of the last five points 
(right-hand side ordinate) which correspond to the dissolu- 
tion of the particles with the greater diameter. 
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Whitney  equat ion  adhering to dissolution under  
sink condit ions (Farin and Avnir,  1992): 

dw 
d t  - kWeWDR/3 (7) 

will facilitate the application of  fractal geomet ry  
(Farin and Avnir ,  1992; Avnir ,  1994) to dissolu- 
tion studies. 

after  substi tut ion for D R ---3. The estimate for 
D R = 3.0 for the dissolution of the smallest par- 
ticles of  the oxalic acid dihydrate powder  fits 
nicely to the above  interpretat ion.  It should be 
ment ioned ,  however ,  that the Hixson-Crowell  
plot for D R = 3 is not  linear (see Fig. 3). This 
discrepancy is a t t r ibuted to the fact that the four 
data  points cor respond to the initial part of  the 
curved Hixson-CroweU plot when D R = 3. 

The value for DR, 2.16, est imated from the 
analysis of  the last five data points, could be 
related with the value of the surface fractal 
dimension,  D,  of  the greater  particles of  the 
oxalic acid powder .  Since the whole spectrum of 
relation be tween  D and D R is possible (Avnir, 
1994) and the value of  D is not known, it is 
rather  difficult to distinguish be tween  a D R ~ D, 
a D R > D or a D R = D case. However ,  a D R < D 
case seems to be unlikely to occur since oxalic 
acid is not  a sparingly soluble substance (Farin 
and Avnir ,  1992). If this is a valid hypothesis 
then it is more  reasonable  to argue that a D R ~- D 
case operates .  In fact, the est imated value for 
DR, 2.16, is quite close to 2, and indicates a 
classical Wenzel 's  law situation where all surface 
oxalic acid molecules  participate in the dissolu- 
tion process.  On the other  hand, special circum- 
stances may yield D R > D  (Farin and Avnir,  
1987; Avnir ,  1994). If this is the case, then the 
de te rmined  D R value indicates roughening of the 
substance surface characterized by cracks, defects 
and narrow pores.  

In conclusion,-the present  approach adds to the 
convent ional  analysis based on Hixson-Crowell  
plots .Thus,  non linear Hixson-Crowell  plots can 
be explained on the basis of  surface irregularity 
as shown in Fig. 3, while an est imate for D R can 
be obta ined  from a single set of experimental  
dissolution data  utilising a simple computer  pro- 
gram. The knowledge  of  D R , if coupled with an 
est imate  for D,  can provide information on the 
mechanism of  dissolution of  drugs. It is hoped  
that the present  approach of  the estimation of  D R 
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