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Abstract

This study explores the utility of quantitative structure—pharmacokinetic relationship models of the disposition parameters: clearance
(CL), apparent volume of drug distributiok(), fractal clearancedL ), and fractal volumeu(), for a series of 23 cephalosporins used in
therapeutics. Data fo€L, V,, and elimination half-life were obtained from literature, wheré€as and v, were calculated from the
literature data foCL andV,, respectively. A variety of descriptors expressing acidity/basicity, lipophilicity, molecular size and hydrogen
bonding properties were estimated using computer packages. For each pharmacokinetic parameter, projection to latent structures (PLS
was applied to the total dataset. Adequate PLS models, with one principal component, were der®edGby, V,, andv,. Identical
descriptors were found to be significant for the two clearance as well as for the two volume of distributionCieramsl CL, expressed
similar performance while the predictive performancevpfvas much higher than that &f_. Multiple linear and non-linear regression
models were developed. The regression results were in agreement with the PLS models. The non-linear models were superior to the
relevant linear relationships. The worst models found were\/ggr(R2=0.523 andR?=0.571 for the linear and non-linear model,
respectively) and the best models found wereup(R?=0.729 andR*=0.824 for the linear and non-linear model, respectively).
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1. Introduction pharmacokinetic (PK) parameters=duchecourt et al.,
2001). The aim of such relationships is the prediction of

In recent years, the advent of combinatorial chemistry the pharmacokinetic behavior from easily measured/esti-
has increased the number of compounds entering drug mated physicochemical or molecular properties.
discovery process. However, this enormous amount of Several successful attempts have been reported to
candidate drugs forces for an early selection of the establish QSPR models for intestinal absorption within
compounds which have the greatest possibility of success. congeneric series of drug moBstalgsr{ and Rogers,
In this aspect, the focus is not only on achieving the best 1989; Esaki, 1987; Markin et al.,, 1988; Toma, 1989
pharmacological efficacy, but also on seeking desirable Moreover, QSPR models for human intestinal absorption
ADME (absorption, distribution, metabolism, excretion) of structurally unrelated compounds have been developed
characteristics Boobis et al., 2002; Kretz and Probst, (Klopman et al., 2002; Zhao et al., 2001a,However, this
2001). A variety of high throughput experimental and task becomes complicated for disposition pharmacokinetic
theoretical methods have arisen for screening candidate parameters and fewer articles have appeared in literatur

molecules. The development of quantitative structure— Gohkpuru and Shelver, 1995; Poulin and Theil, 2000;
pharmacokinetic relationships (QSPR) using ‘in-silico’ Poulin et al., 200L The difficulties in the development of
procedures is of special interest. QSPR models focus on successful QSPR models for disposition parameters shoul
the association of structural features of compounds to be attributed to the composite and interrelated nature of the
distribution and elimination processes. Besides, the fre-
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Recently, a more physiologically relevant description for
drug volume of distribution and clearance was reported,;
fractal volume of drug distributiony,, and fractal clear-
ance, CL;, were proposed as substitutes fof, and
clearance,CL, respectively Karalis et al., 2001; Karalis
and Macheras, 2002These two newly proposed parame-

ters were found to exhibit better properties in interspecies

allometric scaling Karalis et al., 2001; Karalis and Mach-
eras, 2002 QSPR modeling of the traditional,, and CL

as well as of the corresponding fractal parametersand

CL, for a large number of structurally unrelated drugs has
already been performed using multivariate statistics
(Karalis et al., 2002 An adequate model was developed
only for v, but not forCL; and the corresponding tradition-
al parameters. Next to the complexity of the disposition
parameters, the high degree of structural diversity of the
dataset was considered as an additional difficulty to
establish reliable models. In this context, we tried to apply
the same methodology in a congeneric set of drugs.
Cephalosporins comprise a widely used family of thera-

peutic agents and consequently the necessary phar-

macokinetic properties were available for 23 drugs in this
category. Both the conventional and fractal disposition

parameters of these drugs were analyzed by multivariate

data analysis (MVDA) Eriksson et al., 1995; Eriksson and

Johansson, 1996; Franke and Gruska, 1995; Wold, Y1995
and regression analysis using a variety of molecular
descriptors. The aim of this study was to explore the
potential differentiation in information content between

conventional and traditional disposition parameters and
especially the suitability o€L, andv, in QSPR studies.

2. Methods

Pharmacokinetic dateC(, V,, and elimination half-life,
t,,,) for the 23 cephalosporins used in this study were
obtained from a classic textbookdérdman et al., 1996
Values ofv, were estimated from the report&fl, values
(Hardman et al., 1996ausing Eq. (1) Karalis et al., 200X

(i-%)

\Y/
whereuv is the total volume of the species body (equivalent
to the total mass assuming a uniform density 1 g/ml), and
V. is the plasma volume of the species. In our study, the
typical human values for andV,, were used (70 and 3 |,
respectively). The clearance analog of, called for
reasons of uniformity fractal clearancél,, refers to the
portion ofv, which is cleared per unit of timeK@aralis and
Macheras, 200R CL, estimates were derived from Eq. (2)
using the reported elimination half-life, (,) values Hard-
man et al., 1995 and the calculated, values:

(1)

V=V, (v -

(2)
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Fraction of drug bound to plasma protginsas
obtained from the same bibliographic stardregh et
al., 1999 and was included as an important variant in the
analysis of the disposition parametdiable 1summarizes
the 23 cephalosporins used in this study along with the
utilized PK parameters.
A variety of physicochemical and molecular descriptors
(Table 2 expressing lipophilicity, ionization, molecular
size and hydrogen bonding capacity, were calculated using
HyperChem v.5.0/ChemPlus v.1.6 (Hypercube Inc.) and
Pallas 2.1 (Compudrug Chemistry Ltd).
Molecular size was expressed by a variety of descrip-
tors: molecular weiyhvY, molar refractivity (efr),
molecular polarizabilitgolfz), Van der Waals surface
aBdW) or volume YVdW), solvent accessible surface
&Baa ) (or volume Ysol). Polarity was expressed by
molecular polar surface area based on solvent accessible
surface aR&sol] or Van der Waals surface area
PSVdW). For this purpose, as polar atoms were considered
all O and N atoms, as well as all H atoms bound to O and
N atoms. The correspoomipgar surface areas,
nPSsol and nPSVdW, were obtained by subtractingSsol
HJWIW from Ssol and SVdW, respectively. All the
above molecular size and polarity descriptors were calcu-
lated using the ChemPlus v.1.6 module implemented in
Hyperchem v.5.0 after 3-D optimization. The geometry of
a given molecule was first optimized at the empirical level
using andMiMolecular mechanics force field, followed
by unrestricted geometric optimization at the semi-empiri-
cal level using an SCF calculation with convergence limit
set at 0.1 Kcal/mol.
Hydrogen bonding capacity was expressed with two
descriptors; the number of hydrogen bond donéiBQ@)
and the number of hydrogen bond acceptét&C). HDO
represents the number of all O—H and N—H fragments, but
excluding hydrogens belonging to all kind of acids and
thi@préa, 200D Likewise, HAC counts all oxygen
and nitrogen atoms, whereas exceptions were the nitrogen
in carbamides, sulfonamides, and the nitrogen atoms which
are bound with three alkyl groups.
Intrinsic lipophilicity was expressed by lo§ of the
neutral species. The ChemPlus module implemented in
Hyperchem v.5.0 was used for the estimation of Bg
values of the various compounds according to the original
Ghose—Crippen system (loBG) (Viswanadhan et al.,
1989.
Dissociation constants, expressed as acidic and basic
pK,, were estimated using theKp,. module of Pallas 2.1
and were used to estimate the fraction ionized. For
compounds with more than one acidic center, only the
pK,-value for the most potent acidic group was considered.
The descriptors used to derive the final models are
presented irrable 2.
Multivariate data analysis was performed using SIMCA-
P v.8.0 (Umetri AB, Umea, Sweden). Principal component
analysis (PCA) Franke and Gruska, 1995which is a
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Table 1
Values of the pharmacokinetic parameters for the cephalosporins under stadyman et al., 1996
Drug CL V., i), v} cLS f,
(I/min) (0) (min) ) (I/min)
1 Cefaclor 0.427 25.2 40.2 62.02 1.07 0.25
2 Cefadroxil 0.203 16.8 72 58.04 0.56 0.20
3 Cefamandole 0.196 11.2 46.8 52.05 0.77 0.74
4 Cefazolin 0.067 9.8 108 49.49 0.32 0.89
5 Cefixime 0.091 21.0 180 60.43 0.23 0.67
6 Cefmetazole 0.102 12.6 90 54.05 0.42 0.70
7 Cefonicid 0.022 7.7 264 43.90 0.12 0.98
8 Cefoperazone 0.084 9.8 132 49.49 0.26 0.91
9 Ceforanide 0.037 9.8 156 49.49 0.22 0.81
10 Cefotaxime 0.259 16.1 66 57.52 0.60 0.36
11 Cefotetan 0.039 9.8 216 49.49 0.16 0.85
12 Cefoxitine 0.426 17.5 45 58.51 0.90 0.73
13 Cefpodoxime 0.168 32.2 138 63.76 0.32 0.27
14 Ceftazidime 0.140 16.1 96 57.52 0.42 0.21
15 Ceftizoxime 0.142 25.2 108 62.02 0.40 0.28
16 Ceftriaxone 0.017 11.2 438 52.05 0.08 0.93
17 Cefuroxime 0.137 14.0 102 55.64 0.38 0.33
18 Cephalexin 0.301 18.2 54 58.96 0.76 0.14
19 Cephalothin 0.469 18.2 34.2 58.96 1.19 0.71
20 Cephapirin 0.483 14.7 43.2 56.33 0.90 0.62
21 Cephradine 0.336 32.2 54 63.76 0.82 0.14
22 Loracarbef 0.216 22.4 72 61.03 0.59 0.25
23 Moxalactame 0.130 17.5 126 58.51 0.32 0.60

®Calculated from Eq. (1).
® Calculated from Eq. (2).

multivariate projection method to extract the systemic separate PK paran@terC(;, V,, v, was further
variables in the data matrix, was applied to the total dataset explored by partial least squares analysiEr{lds®) (
of the PK parameters and the molecular descriptors. Eachet al., 1995; Eriksson and Johansson, 1996; Wold, 1995

Table 2
Cephalosporins and the corresponding calculated values of descriptors entering the final models
Drug Descriptors
log P Pssol HDO HAC MW Vsol VVdW

1 Cefaclor -0.92 101.3 3 5 367.8 926.1 289.7

2 Cefadroxil -0.83 122.4 4 6 363.4 956.0 298.2

3 Cefamandole 1.22 175.3 2 8 462.5 1168.5 368.3

4 Cefazolin 0.26 209.8 1 9 454.5 1096.9 344.0

5 Cefixime -1.43 180.2 3 10 453.4 1105.7 342.4

6 Cefmetazole 0.90 223.0 1 9 471.5 1149.2 366.2

7 Cefonicid 1.16 260.2 2 11 542.6 1277.6 404.1

8 Cefoperazone —-0.21 249.3 3 11 645.7 1558.3 514.6

9 Ceforanide 0.30 221.4 3 10 519.6 1298.6 4144
10 Cefotaxime —2.03 153.7 3 10 455.5 1134.0 349.9
11 Cefotetan 0.45 240.9 3 11 575.6 1297.4 420.2
12 Cefoxitine —2.26 136.9 3 7 427.5 1036.4 327.9
13 Cefpodoxime —1.88 123.1 3 9 427.5 1077.6 332.2
14 Ceftazidime 0.03 148.5 4 11 547.6 1359.2 437.1
15 Ceftizoxime -131 131.5 3 8 383.4 957.7 291.1
16 Ceftriaxone -0.79 208.6 4 12 554.6 1315.9 415.2
17 Cefuroxime —2.18 161.9 3 9 424.4 1054.9 324.5
18 Cephalexin —-0.54 99.3 3 5 347.4 935.3 292.2
19 Cephalothin —-2.79 132.1 1 6 396.4 999.6 309.8
20 Cephapirin -3.30 155.9 1 7 423.5 1006.5 335.5
21 Cephradine —1.05 111.6 3 5 349.4 962.2 298.9
22 Loracarbef -0.92 99.9 3 5 367.8 926.1 289.7
23 Moxalactame 0.01 244.7 2 11 520.5 1189.1 402.6
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PLS is a regression extension of PCA applied to connect Table 3 N L
the information in the two blocks of variables(descriptor ~ Correlation coefficientsR’, Q) and number of componenté)(for each
matrix) andY (PK parameters). The predictive ability of PLS model

the derived PLS models was assessed in three differentNo- PLS models n® R* Q* A

ways Oprea, 2000; Wold, 1995(i) using cross-validation  Total set

with the default values of SIMCA-P, (ii) randomly re- 1 CL 23 0.775 0.731 1

ordering the responsesy-flata) and evaluation of the CLy 23 0.753 0.709 1
. ) IR 3 A 23 0.592 0.554 1

properties of the derived models, and (iii) dividing each , vfp 23 0.754 0717 1

parent set into a training and a validation set for the
assessment each training’s set ability to accurately predictTraining set

the values of the validation set. CL 18 0.753 0.685 1

Multiple linear and non-linear regression analysis was CLy 18 0.718 0.656 1

. . v, 18 0.597 0.499 1
performed using Mathematica v.4.0 (Wolfram Research, o 18 0753 0691 1
Inc.). The development of multiple linear and non-linear — :
regression relationships was based on the best models bg“mb.e.r of compounds analyzed.
. . oefficient of determination.

obtained from the PLS analysis of each PK parameter. All <~ qs.validated coefficient of determination.
descriptors prior to their application to multiple regression
analysis were checked for linear interdependence assigning
as a limit R°<0.4. Ceftazidime was not included in the
regression analysis. This drug includes a permanently The validity of the derived PLS models was further
charged nitrogen atom in its molecule, which renders the examined by applying two additional statistical tools using
calculation of molecular descriptors by Hyperchem/Chem- permutation tests and division of parent data into training
Plus disputable or erroneous. MVDA can handle inaccurate and validation sets. In permutation testing, which is based
and missing values; however, this is not the case for on the randomization of responses (i.e. the original data
regression analysis. are permuted to appear in a different ordefy’ thed Q°

estimates of the scrambled data are plotted against the
R’-value of theY-vector itself. A good behavior for the

3. Results PLS models ofCL, CL, and v, was observed, since the
Y-intercepts of theR* andQ? estimates were very close to
According to the initial PCA (results not shown) applied zero (not shown). The splitting of the parent set into a
to the total dataset, no strong outliers were identified since training (18 drugs) and a test set (five drugs) was based or
all drugs were lying inside the 95% confidence ellipse a random generator program developed in Mathematica
(Hotelling T?). In addition, no separate groups were v.4.0. PLS analysis was applied to each training set
identified despite of the fact that the 23 cephalosporins can separately and the derived models were similar to those
be divided into two large groups in regard to their obtained with the total datd ablg 3. In Fig. 3A-D the
percentage of urinary excretion (less than 55% for seven predicted values are plotted versus the observed values o
compounds and much higher than this value for the CL, CL, V,,, anduv, for both the training and the test set.
remaining). Hence, all drugs were used to develop PLS The PLS models quoted above were used as the basi:
models for each PK parameter separately. The final models for the development of regression models in order to have
derived after variable selection were based on one princi- a simple and interpretable relationship between the PK
pal component withR* values between 0.592 and 0.775 parameters and the molecular propeabés.4summa-
and Q” values between 0.554 and 0.73Iable 3. The rizes the results of the regression models, while the
regression coefficients for each model describing the graphical representation of each PK parameter with the
response ofL, CL, V,,, andv, are shown inFig. 1A-D. relevant descriptors for the non-linear relationships, is
The two clearance expressio@, andCL,, were reflected shown ifig. 4A-D. In all cases, the derived non-linear
by identical molecular properties and exhibited approxi- relationships were superior to the corresponding linear
mately the sameQ?®-values, namely 0.731 and 0.709, models. The plots of the predicted values of the disposition
respectively. In contrast, the PLS models obtained for the parameters based on models B1-B4 qlctele i
volume expressiond/(, andv ) differ considerably in their versus the observed values are show#igins.

statistics although they include similar descriptors. An

adequate model was obtained for (Q°=0.717), while

the model forV,, was significantly inferior Q?=0.554).

Fig. 2A-D shows theu, vs.t, plots forCL, CL,, V,, and 4. Discussion

v;, respectively. These plots reveal that adequately linear

PLS inner relations forCL, CL;, and v, were derived, One component PLS models were derivegrCL,,

while a higher degree of scattering is observed\igr Vypandu ¢ Their validity was verified using the statistical
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Fig. 1. Regression coefficients for each PLS model describing the respo@e @), CL, (B), V,, (C), v, (D) for the utilized cephalosporins.

approaches described previously. &ir andCL;, both the could be explained on the basis of the different information
descriptive and the predictive ability were found to be content of the two volume parameters although they both
adequately high (models 1, Zable 3. Inspection of the lie within the physiological range<70 [) i.e. theV,,
regression coefficient plotsFig. 1) reveals that similar values range from 7.7 to 32.2 | whereas thalues range
descriptors, entering with the same sign, are responsible from 43.9 to 6Bable(D).
for the two clearance terms. Lipophilicity (IoB), polar Multiple regression analysis was based on the PLS
surface area RSsol) and hydrogen bonding properties models considering only the independent descriptors
(HDO, HAC) contributed negatively t&€L and CL,. among those which had been found to be significant for the

In the case of the volume parameters an adequate model PLS models. As mentioned in the Methods section, the
was derived fow,, while a significantly inferior model was parameters were considered to be linearly independent
found forV,, (models 3, 4Table 3. For bothV, andv whenR?<0.4. Thus,HAC could not be used in combina-
the dominating descriptor was the fraction of drug bound tion Wilsol and PSVdW. The relationships established
to plasma proteinsf(). Besides, volume parameters (Van are listedTable 4. The non-linear models B1-B4 of
der Waals molecular volume in the case\{f, solvent Table 4 were found to describe better the relationship
accessible volume in the casewgj, and lipophilicity were between the molecular properties and the pharmacokinetic
also found to be important for botk,, and v, The parameters. Such complex relationships are frequently
negative sign of the contribution df to theV,, and v, encountered in quantitative modelinBalm et al., 199%
models is a reasonable finding since drugs with a high PSsol was found to be incorporated with its inverse square
degree of protein binding exhibit smaller values of volume value in the relationships for both clearance parameters,
of distribution Qie, 1996; Urien et al., 2001 The while an additional parabolic log term was found

difference in the quality of the models 3 and 4Tadble 3 significant for CL.
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Fig. 2. Theu, vs.t, plots showing the PLS inner relation for the models ©f, (A), CL;, (B), V,,, (C), v, (D). u, andt, are the coordinates of the PK
parameter and the descriptor matrix after PLS, respectively. The numbers represent the cephalospdritse(ske

Replacement ofPSsol with the number of hydrogen V,,values lie well below the line of complete concordance.

acceptordHAC led to similar models both fo€L andCL, This means that model B3 significantly underpredicts the

with R® values equal to 0.724 and 0.641, respectively. This highewalues. The last observation should be consid-

is a reasonable finding becauB&sol is a polarity term ered in conjunction with the remarks regarding the validity

encoding information of hydrogen bonding capability and of experimevifalvalues when the latter considerably

a high degree of linear dependence was observed between exceed the plasma ¥@ahe ét al., 2001 In the

PSsol and HAC. same vein, one should also note that the scattering of data
Parabolic expressions were found for IBgandf, in the points in the relevant, plot, Fig. 4D, is much less.

non-linear regression equations \gf, and v (models B3, Some clarifications regarding the us§ af models A3,

B4; Table 4. V,, was found to be exclusively dependent A4, and B3, B4 are required §jrisenot a molecular

on f,. Although the negative sign df, in model B3 is a property but a pharmacokinetic parameter strongly related

reasonable finding, the poor statistical propertigé= to drug’s physicochemical characteristics. For this reason,

0.571) make the validity of th¥, ) model questionable. In attempts were made to find any possible relationship

contrast, satisfactory regression results were obtained for betiyyaed the utilized descriptors. PLS analysis, using

v;, R°=0.824 (model B4;Table 4. In this model apart f, as a dependent variable, showed that the best descriptive

from the negative contribution of,, lipophilicity was and predictive ability could be achieved whdk\, PSsol,

found to be an additional physicochemical descriptor HDO, fi ., andfi, were used as descriptors; the derived

contributing also in a negative way. The fitting results of model was based on one principal componeRft arith

the non-linear models to the experimental data are shownQ? values equal to 0.734 and 0.615, respectiviiyV and

in Fig. 4. PSsol contributed in a positive way, while the remaining
The plots of the predicted values by models B1-B4 parameters entered with a negative sign. In the case of

versus the observed values are showrFig. 5. A larger multiple regression analysis, the best-significant models for

scattering is observed for thg, plot, Fig. 5C.It is worthy f, were observed when onliiDO and MW were non-
to mention that the data points corresponding to the highest linearly expressed:
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Subsequently, regression models ¥y, and v, were
developed by replacingf, with its relevant molecular

—109.8(*13.3)+ 0.4(=0.1)- .
HDO descriptors. In both casdglW was found to contribute

f, =

0.013 L . .

+102.0(+12.3)- MW (3) significantly. A linear combination of lo§ andMW led to

a simple model for, with moderate statistics expressed
(R*=0.789, S.D=0.132) with Eq. (4)
Table 4
Models derived after multiple linear and non-linear regression analysis for each PK parameter using the 22 cephalosporins (ceftazidimedjot include
No. Regression model R*® S.D?
Linear models (A)
Al CL =0.57(+0.098)— 1.65- 10 *(+0.00) PSsol) — 3.63- 10 *(+0.02) (log P) 0.703 0.080
A2 CL, = 1.65(+0.17)— 4.60- 10 *(+0.01) PSsol) 0.685 0.176
A3 V,, = 26.47(2.15)— 17.46(+3.48) (f,) 0.523 4,752
A4 v, = 61.78(+1.49)— 1.55(+0.51) (logP) — 12.41(+2.17) (£.) 0.729 2.780
Non-linear models (B)
12332.1(:1912.8) ,
B1 CL = —0.079(:0.036)+ —rm) +0.0185¢:0.0058) (logP) 0.804 0.066
32819.5(-4254.6)
B2 e — 0.736 0.165
(PSsol)

B3 V,,=23.70(1.59)— 17.07(+3.17) ()’ 0.571 4.609
B4 v, =59.02(+0.91)— 12.92(+2.14) (f,)* — 0.76(=0.31) (logP)* — 2.50(:0.78) (logP) 0.824 2.291

® Coefficient of determination.
® Standard deviation.
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Fig. 5. Predicted versus observed values@r (A), CL, (B), V,, (C), andv, (D). The dashed line indicates complete concordance.
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v, = 73.6(+4.9)— 1.42(+0.65)- log P — 0.04(+0.01)
-MW (4)
(R’ =0.623, S.D= 3.35)

A significantly inferior model was obtained fov,,
while the best model foN,, was exclusively dependent
nonlinearly onMW:

_ 0.023
V,, = 1236.5¢-288.1)— 1060.0¢-250.4) MW (5)

(R* = 0.446, S.D=5.24)

5. Conclusions

Within the congeneric series of the cephalosporins
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studied, the conventional and fractal clearance parametersretz, 0., Probst, A., 2001. High-throughput ADE screening. In: Testa,

led to satisfactory and analogous results with PLS as well
as with multiple regression analysis. Regarding the volume

parameters however, it was not possible to find adequate

models foV,, although the volume values in this series of
drugs lie within the physiological range<(70 1). In
contrast,v, could be successfully modeled by both PLS
and regression analysis. This finding may further support
the assumption thab, constitutes a more suitable dis-

tribution parameter for QSPR studies.
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