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INTRODUCTION

Biopharmaceutics and pharmacokinetics have been
developed and expanded, as have many other
scientific subjects, based on conceptions of
homogeneity and linearity.

Homogeneity or homogeneous conditions are a
presupposition in almost all studies in this field of re-
search. For example, the shape of a drug particle is
assumed to be an ideal sphere and its surface smooth,
the permeability of the intestinal complex membrane
is considered constant along the gastrointestinal (GI)
tract, the concentration of drug is postulated to be
homogeneous in the GI fluids as well as in each of the
hypothetical compartments of multicompartment
models, etc. However, common intuition and scientific
knowledge tell us that the drug particle is not an ideal
sphere, while its surface is not smooth, the
permeability of the GI wall is position and time de-
pendent, the concentration homogeneity of drug in the
GI tract and the peripheral compartments is
synonymous with a well mixed system which is by far
beyond the realms of reality.

Linearity is the basic principle of biopharmaceutics
and pharmacokinetics. Formally, a system is linear if
the output of an operation is proportional to the input.
This property of proportionality along with the
property of independence, ie. the response of the
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system to an action is equal to the sum of the resuits
of the values of the separate factors, are the
fundamental features of linear systems. The biological
systems we deal with are complicated systems, each of
which consists of a number of factors. For example,
GI absorption is a complicated process with many
participating factors, such as solubility and dissolution
rate of drug, volume, pH, composition and flow rate of
GI fluids, biological membrane. However, a simple
passive or active mechanism of drug transport is
routinely used to model drug absorption. This
approach is basically linear since the interaction of the
variable of interest, i.e. the concentration of drug in
the GI fluids with the other variables constituting the
system, is considered weak or negligible.
Nevertheless, the concentration of drug in the GI tract
cannot be considered to be detached from the
remainder of the system.

In various fields of research, e.g. physics,
chemistry and physiology, scientists are increasingly
finding that at the research level it is the nonlinear
phenomena that control the game; physical or
physiological heterogeneity is everywhere while
heterogeneous conditions prevail in numerous
physical, physiological and biochemical processes.
Today’s science shows that the real world is
relentlessly nonlinear and, therefore, the techniques of
nonlinear dynamics are required to analyse the
nonlinear phenomena. In parallel, structural and
functional heterogeneities can be described and
understood with the concept of fractals.

Kinetic processes in various scientific fields are
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traditionally treated with classical kinetics. The latter
is quite satisfactory for reactions and processes in well
stirred media, i.e. under ‘homogeneous’ conditions. In
fact, the kinetics of diffusion-controlled processes and
reactions in three dimensional homogeneous systems
obey the classical laws of diffusion where the rate
constant of the process is linearly proportional to the
diffusion coefficient. However, this proportionality is
not valid for systems with smaller dimensions, fractal
spaces, or disordered systems since the laws of
transport are different in these media. Accordingly,
fractal kinetics has been developed since classical
kinetics was found to be unsatisfactory under
dimensional constraints, e.g. phase boundaries,
understirred media or membrane reactions.

The main objectives of this work are: (i) to present
basic ideas of nonlinear dynamics and chaos, fractals
and fractal Kinetics; and (ii) to give some examples
and applications in different areas relevant to drug re-
search.

NON LINEAR DYNAMICS AND CHAOS

The dynamical systems theory is an important field of
interest in many disciplines, such as physics,
chemistry, biology, physiology, economics, etc.
Dynamical systems are described with deterministic
equations which can be linear or nonlinear differential
(continuous) or difference (discrete) equations. In
principle, the future behaviour of a dynamical system
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can be predicted from given initial conditions. How-
ever, predictability is ensured when the system’s
equations are linear but this is not always true when
the equations are nonlinear. In the real world, most of
the systems are described by nonlinear equations and
the main goal is to predict the behaviour of a system
after a long period of time. If this long term behaviour
is unpredictable the system is characterised as chaotic.

Generally, deterministic chaos denotes the irregular
or chaotic behaviour that is genmerated in nonlinear
dynamical systems. Nonlinearity is a necessary, but
not a sufficient, condition for a system to exhibit
chaotic behaviour. A criterion for a system to be
chaotic is its sensitivity dependence upon initial
conditions; if two states of a system starting with
slightly different initial conditions grow exponentially
in time then the state of the system becomes
essentially unknown after some time.

The sensitivity dependence on initial conditions
was first recognised by Poincare (1) at the turn of the
century who stated that small differences in the initial
conditions can produce large differences in the final
phenomena and thus prediction becomes impossible.
However, it is well known today that the ‘sensitivity’
is not the only necessary condition for a system to be
chaotic (2).

Poincare’s ideas were based on the study of a
system of nonlinear differential equations (the
equations of the famous three-body problem of
celestial mechanics) introducing qualitative methods
of geometry and topology instead of the strict
analytical methods, to discuss the global properties of
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Fig. 1 : (A) The attractor solution to the Lorenz system of equations depicted in a 2-dimensional phase space (X,Z) [see (5)]. (B)
Poincare surface of section x = 0, E(energy) = 1/6 for Henon-Heiles system [see (6)].
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the system. Poincare’s ideas were extended by
Birckhoff (3) who demonstrated the importance of
discrete systems (mappings) for a better understanding
of the dynamics arising from differential equations.

The deterministic dynamical systems can be
divided into two distinct classes, conservative and
dissipative systems depending upon whether they
preserve or not their volumes in the corresponding
phase space (see Phase space, below). Both classes
can be described by differential equations or maps
(difference equations) and thus one can understand the
behaviour of a given system by solving the
corresponding equations and constructing the phase
space portrait (3,4). Lorenz (5) and Henon-Heiles (6)
were the first to identify chaotic behaviour by
investigating the phase space of systems which
describe the flow of air in the earth’s atmosphere
(dissipative system) and the motion of a star near the
center of a flat galaxy (conservative system),
respectively (Fig. 1).

Phase space

In equations describing physical systems there are
typically one or more variables needed to describe the
system, the environment, and their interaction. The
most common way to simulate the system under study
is with the use of differential equations describing
how the variables change in time. Usually, a system of
m independent variables is described by m-coupled
differential equations of the general formula

dX/dt = G [X(1)] Eq. 1

where X is an m-component vector. The best way to
study the evolution of the system in time is to
integrate the equations (analytically or numerically).
The solution is depicted by a curve in m-dimensional
space (the phase space) where the coordinate axes
correspond to the continuum of values of the
components of vector X. Such a plot is a geometric
construction which traces out the evolution of the
system in time and is called a phase curve or a
trajectory in phase space. Thus, a trajectory in phase
space represents the evolution of the system and each
point of the trajectory represents the state of the
system at the corresponding time. Furthermore,
because of the uniqueness of the solutions of
differential  equations, different phase space
trajectories cannot cross each other.

The characteristic property of the preservation or
not of the volume in the phase space is used for the

discernment of the dissipative or conservative charac-
ter of a dynamical system. This discernment is very
important since several features are not common in
these two types of systems. For example, important
differences in the mechanisms leading to chaos exist
between the dissipative and conservative systems.
Furthermore, dissipative systems have attractors which
in some cases are ‘strange’ while conservative systems
do not have attractors. The fractal dimension (see
Fractals, below) of the attractor is an integer number.
When the dimension is not an integer then the
corresponding attractor is called ‘strange’. Finally, it
should be mentioned that a chaotic system can consist
of a single equation with one variable if it is discrete,
or a set of coupled equations with at least three
variables if it is continuous.

The dynamical behaviour of a system depends on
the stability of its fixed points which can be either pe-
riodic orbits or equilibrium points. The study of the
stability of its fixed points is accomplished by
linearising at this point each of the equations of the
dynamical system. The eigenvalues of the system of
the linearised equations provide information about the
stability of the corresponding fixed point.
Furthermore, one can get an insight into the eévolution
of nearby trajectories. Since the stability of a fixed
point and the calculated corresponding eigenvalues are
dependant on the values of the parameters of the
physical system, the stability can change as the values
of the parameters change. Thus, dynamical systems
can exhibit rich behaviour due to the stability charac-
teristics of the fixed points.

Chaos in the population paradigm using a
difference equation

For a great number of biological systems the variables
are not considered to be continuous function of time.
For example, the growth of one population of a single
species in a closed environment is a function of a
discrete time index specifying successive generations.
Such a system can be described by the difference
equation:

xt+1 = £ (x¢) Eq. 2

where x; and xt+1 are the numbers of individuals in
two successive generations, i.e. in time t and t+1,
respectively, and f is a function that relates the value
of xt+1 to x¢. To illustrate the population growth, the
functional form of f in Equation 2 was assumed to be
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a guadratic function (7):
xt+1 = 1xe(1 — Xt) Eq. 3

where t is the birth rate which relates proportionally to
the numbers of individuals xt+1 and x; while the term
(1 - xt) denotes the restriction towards the unlimited
growth due to limited resources. Equation 3 is one of
the simplest nonlinear difference equations which is
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usually called ‘quadratic or ‘logistic’ (7).

The discrete representation of a difference equation
is called a map which provides the time evolution of
the system and is based on the repeated application of
the mapping operation (iteration) to the newly
generated points. For Equation 3, the iteration requires
only to assign a value for r which is inherently linked
with the system under study, e.g. a high value for r
means high fertility and/or rich feeding grounds.
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Fig. 2 : Various choices of the parameter r result in different solutions of the Equation 3 using in all cases the same initial point xo =
0.7. (a) The value of xq after some iterations becomes constant, x; = 0.5, for r = 2.0. (b) The value of x, alternates between
two values (2-cycle periodic orbit) for r = 3.25. (c) The value of x, alternates between two large values and two small values
(4-cycle periodic orbit) for r = 3.53. (d) The orbit is chaotic for r = 3.8.
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Iterations based on Equation 3, reveal that the
population can become extinct or the size of the
population can be stable, oscillating or chaotic
depending on the value of the rate parameter r (Fig.
2). It is interesting to see that when Equation 3 is
written in the form using Xt = Xt+1 = Xss:

X532 +(1-1/r)xss =0

two fixed points (steady-state solutions) xss = 0 and
xss = 1 — (1/r) are found. The population evolves as
time passes to the steady-state values and becomes
either extinct (xss = 0 for r < 1) or approaches the
constant value 1 —r * when 1 < r < 3. This means that
whatever the size of the original population, the
population will vanish if 1 < 1. In other words, for r <
1 and irrespective of the initial state of the system, all
trajectories are attracted to zero because it is a stable
point, x = 0, which is called an attracting fixed point
or attractor. (Formally, an attractor is a set of points
S such that for almost any point in the neighbourhood
of S the dynamics approaches S as time approaches
infinity.) When the birth rate is in the interval 1 <r <
3, the population approaches the fixed point xgs = 1 —
(1/r) which is another attractor since it is approached
by all initial conditions, i.e. 0 < X < 1. For example,
for r = 2, xss= 1 — (1/2) = 0.50, i.e. half of the initial
value of the population (Fig. 2a). These two steady
states, x = 0 and x = 1 — (1/1), are attractors with a
very simple geometric structure, i.e. a point with
dimension 0.

The most astonishing behaviour is observed with
birth rates greater than three (r > 3) where the system
looses its stability. Thus, when r = 3.25 the size of the
population oscillates between two values, i.e. a fixed
point of period 2 can be seen (Fig. 2b). This change in
qualitative dynamics is called bifurcation since the
fixed point for r = 3 becomes unstable and bifurcates
into a new family of fixed points of period 2. Thus,
the attractor is no longer the fixed point but a cycle of
period 2. A slight increase of r, r = 3.44, produces a
cycle of period 4. Accordingly, the cycle of period 4
becomes the attractor of the system (Fig. 2c¢). In
general, as r increases in the range 3.0 < r < 3.57
stable cycles of periods 2, 4, 8, 16, 32, 64, ... are
generated. This pattern is called pitchfork or period-
doubling bifurcation which is the classical ‘route to
chaos’. In fact, chaos occurs as r continues to increase
in the range 3.57 < 1 < 4. For r = 3.57, the system
becomes aperiodic since the end point of the period
doubling process is an orbit with an infinite period
(zero frequency, Fig.2d). This behaviour which is
generated from the deterministic system of Equation 3

for certain values of the parameter r is termed chaetic
in an attempt to describe the geometric features of the
attractor.

One might wonder now if the aforementioned
analysis is relevant to drug research and biomedical
sciences or it is restricted to the example considered.
Possible applications of the difference equations (Eq.
2) of a single variable, x, may be the study of: (i) the
change in the gene frequency in successive
generations caused by a drug or disease; (ii) the
number of individuals infected at various time
intervals when studying the dynamics of epidemics; or
(iii) the number of people using a dietetic as a result
of a campaign at time t and the successive propagation
of its use in the targeted population. In all these cases,
appropriate definition of the function f should be made
(see Eq. 2).

FRACTALS

Our understanding of nature has been based on the
classical geometrical figures of smooth line, triangle,
circle, cube, sphere, etc. Each one of these regular
forms can be determined by a characteristic scale. For
example, the length of a straight line can be measured
with a ruler having a resolution finer than the entire
length of the line. In general, each Euclidean object
has a unique value for its properties (length, area or
volume). It is also known that when these objects are
viewed at higher magnification they do not reveal any
new features.

In the real world, however, the objects we see in
nature and the traditional geometric shapes do not bear
much resemblance to one another. Benoit Mandelbrot
(8) was the first to state the structural irregularity of
the natural world: ‘clouds are not spheres, mountains
are not cones, coast lines are not circles, and bark is
not smooth, nor does lightning travel in a straight
line’. Mandelbrot (8) coined the word fractal for
structures in space and processes in time that cannot
be characterised by one spatial or temporal scale. In
fact, the fractal objects and processes in time have
multiscale properties, i.e. they continue to exhibit
detailed structure over a large range, of scales.
Consequently, the value of a property of a fractal
object or process depends on the spatial or temporal
characteristic scale measurement (‘ruler size’) used.

The physiological implications of the fractal
concepts are serious since fractal structures and
processes are ubiquitous in living things (9-12), e.g.
the lung, the vascular system, neural networks, the
convoluted surface of the brain, ion channel kinetics,
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and the distribution of blood flow through the blood
vessels. Besides, many applications of fractals are to
the physics of surfaces, e.g. the surface area of a drug
particle, surface reactions on proteins. Thus, fractal
geometry allows scientists to develop alternative
hypotheses for experimental observations which lead
to more realistic explanations than the traditional
approaches. The ‘fractal hypotheses’ can be expressed
in quantitative terms by quantifying the fractal
properties of the system under study as delineated
below.

Properties of fractals

The most interesting property of fractals is the
geometric self-similarity which means that the parts
of a fractal object are smaller exact copies of the
whole object. Geometrical fractals can be generated by
a line replacement algorithm. For example, the Koch
curve shown in Figure 3 can be produced after infinite
recursions if the middle third of the length of the line
at each stage is replaced by two lines of the same
length. The biological objects with a fractal structure
cannot be characterised by geometric self-similarity
but rather they can be specified by statistical self-
similarity. This is due to the fact that the parts of
fractal biological objects resemble the whole object
instead of being exact copies of the whole. Self-
similarity has an important effect on the properties of
fractal objects measured either on a part of the object
or on the entire object. Thus, if one measures the
value of a property L(q) on the entire object at
resolution ¢, the corresponding value at finer
resolution L(ar) with a < 1 measured on a piece of the
object, will be proportional to L(q), i.e. L(aq) = KL(q).
The above delineated dependency of the values of
the measurements on the resolution applied allows
someone to infer that there is no true value for the
measured property. Instead, a scaling relationship
exists between the values measured and the
corresponding resolutions utilised which
mathematically has the form of a scaling power law:

L(g) = Aq® Eq. 4
where A and o are constants for the given fractal
object or process studied. Equation 4 can be
linearised:

log L(q) = log A + alog q Eq.5

The last equation reveals that when measurements

st

Fig. 3 : The first four iterations of the Koch curve. The
fractal dimension is D = (log4/log3) = 1.2619.

for fractal objects or processes are carried out at
various resolutions, the log—log plot of the measured
property L(q) and the scale g used are linearly related.
The degree of irregularity of a fractal object is
quantified with the fractal dimension, D. This term is
used to show that apart from the Euclidean integer
dimensions (1 or 2 or 3) for the usual geometric
forms, fractal objects have noninteger dimensions. For
geometrically  self-similar fractals, the fractal
dimension can be determined either from self-
similarity or from power law scaling (Eq. 4). The
value of D can be derived from Equation 6 if we
count the number N of the exact copies of the entire
geometrical fractal which are observed when the
resolution of scale is changed by a factor of F:

N=F° Eq. 6

Thus, the value of D can be calculated from the
equation:

D =log N/log F Eq. 7
For example, the fractal dimension of the Koch

curve in Figure 3 is 1.2619 since four (N = 4) identical
objects are found when the length scale is reduced by
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a factor F = 3, i.e. D = logd/log3 = 1.2619. For
statistically self-similar objects, the calculation of D is
accomplished with various practical methods, the most
common of which is called box counting. This
method involves covering the object under study either
with circles or spheres of various radii for two and
three dimensional objects, respectively. Then, the
minimum number of ‘balls’ (circles or spheres) N(q)
of size g needed to cover the object are calculated.
Finally, the fractal box dimension is calculated from
the relationship:

D =lim log N(g) Eq. 8

FRACTAL KINETICS

In actual practice, many reactions and processes take
place under dimensional or topological constraints. A
diffusion process under such conditions is highly
influenced, drastically changing its properties. A
general, well-known, result is that in such constrained
spaces diffusion is slowed down. This is manifested,
for example, by the mean square displacement, which
in normal spaces has a universal linear behaviour with
time. It is now known that this behaviour is in fact
sublinear (e.g. an exponent of 0.7 instead of 1) and
causes the ‘slowing-down’ of the process. The same
idea is manifested in chemical reactions, in which the
reactants are treated as diffusing molecules, which can
be spatially constrained by either walls or phase
boundaries, depending on the system, with the end
result that the reaction becomes heterogeneous. This
holds for all types of bimolecular reactions, which are
very common in our world (13).

Classical homogeneous kinetics assumes that the
reactants are located in a 3-dimensional vessel, and
that during the reaction process the system is
constantly stirred, thus causing the positions
(locations) of the reactants to be constantly re-
randomized as a function of time. If/when such
stirring does not take place, correlations begin to
develop between the particle positions, which sub-
sequently have a profound effect on the rate of the
reaction. The build-up of such correlations is strongly
dependent on the dimensionality, being more
pronounced the further one gets from D = 3. This is so
because quantitatively the parameter values in the
diffusion laws are very different in different
dimensionalities. In addition, if the space where the
reaction takes place is not smooth, but highly
irregular, this has an added effect on the building of

such correlations. This happens if the space is a fractal
structure characterized by its own dimensionality,
which as discussed above, could be different from 1,
2, 0or 3.

The particle correlations result in building a
depletion zone around each reactant, which grows
steadily with time. This means that in the close
neighbourhood of each particle there is a void, a space
that is empty of particles. Naturally, the reaction slows
down as particles must get further apart, to longer
distances to find another particle to react with. A very
‘curious’ effect now is that the rate constant of the
reaction is not ‘constant’ anymore, but depends on the
growth of this depletion zone and, consequently, is
time dependent. This modifies the kinetic differential
equations and their solutions. For example, for the
reaction A + A — Products, which is a prototype
bimolecular reaction, the classical rate is :

Rate = k[A]? Eq.9

the exponent 2 signifying the bimolecular character of
the reaction. It turns out that on a fractal surface that
has a dimensionality of 4/3 instead of 2, the rate for
this reaction becomes:

Rate = k[A]2-5 Eq. 10
Furthermore, the ‘constant’ k now becomes:
k(t) = kg 1 Eq. 11

where h = 1/3. Similar changes take place in other
reactions and other spaces. Such findings are well es-
tablished today, and they have been observed both
experimentally and theoretically. Also, data for
Monte-Carlo simulations (a powerful tool in this field)
are in very good agreement with these findings.

APPLICATIONS OF
FRACTALS, FRACTAL KINETICS
AND CHAOS IN DRUG RESEARCH
AND RELEVANT TOPICS

Fractal applications

Although the first review article in the pharmaceutical
literature related to fractals was written in 1993 by
Koch (14), the pioneering work of Avnir and his
coworkers during the last 15 years revealed the fractal
nature of molecule—surface interactions and reactions
such as dissolution and adsorption. In a series of
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studies, scaling laws, which describe quantitatively
molecule—surface interactions, in adsorption were
developed (15-19). Furthermore, the concept of fractal
reaction dimension DR was introduced to define the
fractal dimension of the sub-set of reactive surface
sites in adsorption (15,19) and dissolution (20,21).

Most of the recent applications of fractal geometry
in drug research focus on the surface morphology of
drug particles and their relevant properties (22).
Leuenberger et al. (23) reviewed the application of
percolation theory and fractal geometry to tablet
compaction. In another study (24), the perimeter
fractal dimension of insulin zinc crystals was assessed
according to the walk-around step procedure. It was
found that small changes in morphic features of
insulin zinc crystals produced during crystallization
and dissolution can be quantitatively assessed by this
parameter (24). The fractal dimensions of lactose (25)
and modified lactoses (26) were also measured to
study the effect of particle morphology on the flow
and packing properties of these materials. In addition,
studies on fractal morphology of drug aggregates in
aerosol propellant suspensions have shown that
aggregation follows a diffusion limited cluster—cluster
mechanism (27). It was also shown that the
morphology of aggregates is significantly altered in
the presence of a surfactant (27). In another field of
research, Goetze and Brickhmann (28) have
determined the fractal dimension of the surface of 53
proteins since the morphology of a protein’s surface is
associated with drug—receptor interactions or, in
general, with molecular recognition. They found that
the proteins have a surface fractal dimension ranging
from 2.45-2.65 and self-similar surfaces within a
range of 1.5-15 A,

It is not only the surface of the materials or
molecules to which the fractal concept has been
applied. Kontturi et al. (29) have studied the effect of
penetration enhancers on the fractal dimension of
human skin and found that the enhancers increase the
heterogeneity of skin surface. Applications of the
fractal theory to pharmacokinetics and
pharmacodynamics have been also published. Thus,
the determination of fractal dimension of blood
concentration-time curves and excretion-time profiles
have been suggested (30,31) instead of the common
practice of ‘smoothing out’ the unevenness of curves
by fitting prbcedures. In parallel, Ragazzi (32,33) has
discussed aspects of fractal theory relevant to
pharmacodynamics.

Fractal kinetics applications

Fractal kinetics has been applied to enzyme kinetics
described by the well known Michaelis-Menten
equation. It is suggested (34,35) that under
dimensionally-restricted conditions, the reaction of
substrate—enzyme does not follow classical mass-
action Kkinetics, but fractal kinetics. The modified
‘fractal” Michaelis-Menten relationships can be more
suitable for in vivo reactions which are confined to
2-dimensional membranes or 1-dimensional channels.
Besides, the same concept has been applied (36) to
carrier mediated transport studies which obey the
Michaelian formalism under homogeneous conditions.
The modified equation derived (36), which adheres to
a transport process under dimensional constraints,
seems to nicely describe experimental data, previously
interpreted on the basis of a combined mechanism of
passive and active transport.

Of particular interest is the application of fractal
kinetics to ion channel kinetics in the cell membrane
(37). It has been found that the ion channel proteins
have discrete conformational states which are linked
by physical mechanisms that result in fractal scaling
(37-39). In this field of research, Li et al. (40) have
shown that fractal mechanisms are associated with the
allosteric effects of proteins and enzymes. It was
proven that the Hill coefficient of the Hill equation,
used in cooperative binding, is related to the fractal
and spectral dimension of the protein (40).

Finally, theoretical aspects of fractal kinetics on
controlled diffusion-limited drug release from a leaky
matrix has been reported (41). It was found that the
nature of drug release depends drastically on the
dimension of the matrix and is dependent on whether
the matrix is an Euclidean space or a fractal material

(41).

Applications of chaos theory

Although the applications of chaos theory (or, better,
of nonlinear dynamics) are very limited in drug re-
search, the article of van Rossum et al. (42) with the
intriguing title Chaos and illusion demonstrates clearly
the potential applications of nonlinear dynamics to
pharmacotherapy. It is clearly stated that the human
body is a dynamic system with a large number of
variables operating simultaneously. Therefore, the
‘effect’ induced by a drug should not be viewed as a
single entity, but rather as a change of several
variables which are interrelated nonlinearly. The group
of van Rossum (43) was the first to introduce the
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concept of attractor in the pharmaceutical literature,
suggesting that pharmacokinetics is a simple case of
chaos theory since it is dominated by a point attractor.
However, their analysis was restricted to classical
decay curves of drug in plasma.

In the field of basic research, analysis of the mass-
action binding based on the fundamental ligand-
receptor interaction using the techniques of nonlinear
dynamics has been recently reported by Tallarida (44—
48). In this series of articles, a common approach is
adopted, i.e. the intensity of the feedback signal is
modelled as a term which is a function of the
concentration of ligand-bound receptors. The solution
of the system of differential equations reveal chaotic
behaviour as the values of the parameters are varied.

Analysis of time series data both from
electrocardiograms and electroencephalograms exhibit
irregular and apparently unpredictable or random
behaviour. The application of nonlinear dynamics to
drug effects on the activity of cardiac pulses and the
brain are in its infancy. A characteristic example of
application is the chaotic cycling of excitation
blocking the sodium pump induced by a high dosage
of ouabain on the isolated perfused rabbit
interventricular septum (49).
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