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POINT-COUNTERPOINT

Bayesian Approach to Establish 
Bioequivalence: Why and How?
Carl C. Peck1,2  and Gregory Campbell3,4

A generic drug that is legally substitutable for its brand name 
predecessor drug (reference- listed drug (RLD)) is expected to be 
therapeutically equivalent (TE). Bioequivalence (BE) is a core 
requirement for TE and is established by statistical analysis of 
data in a small pharmacokinetic trial. Below, we discuss some 
concerns with the current statistical procedure used in this 
analysis and propose evaluation of a robust Bayesian approach to 
mitigate them.

DEFINITIONS AND CHALLENGES
BE is defined by an “absence of a signifi-
cant difference in the rate and extent to 
which the active ingredient … becomes 
available at the site of drug action when 
administered at the same molar dose under 
similar conditions in an appropriately de-
signed study.” For systemically acting oral 
drugs, this requirement is usually satisfied 
in a small, healthy volunteer, crossover 
pharmacokinetic study of the generic and 
RLD, comparing their respective bioavail-
ability (BA) properties. As the basis for ap-
proval of a new generic drug, the BE results 
are successful “surrogate” clinical trial end 
points, area under the curve (AUC), and 
maximum drug concentration (Cmax) for 
the safety and efficacy end points of the 
RLD.

Given reliance on BE of a generic prod-
uct, it is clear that conceptually, “prior” 

knowledge of the link of clinical safety 
and efficacy of the RLD to the BA ob-
served at the time of its US Food and Drug 
Administration (FDA) approval (BA- 0) 
plays a crucial role in concluding TE. Thus, 
generic drug approval can be viewed quali-
tatively as “Bayesian,” in the sense that the 
newly observed BA of the RLD is assumed 
to be substitutable, in this case with BA- 0.

Interestingly, the contemporary regula-
tory and statistical framework for evalua-
tion of BE ignores the BA- 0 data and relies 
solely on contemporaneous evaluation of 
the BE of an off- the- market- shelf formula-
tion of the RLD.

EVOLUTION OF THE CURRENT 
STATISTICAL FRAMEWORK FOR BE
According to Skelly,1 during the 1970s 
several statistical hypothesis testing pro-
cedures were proposed for BE studies, 

including the “Canadian±20% rule,” 
“Power Approach,” and “75/75” rule. In 
the 1980s, the FDA rejected Bayesian 
procedures in favor of the frequentist “av-
erage BE” “two one- sided test” (TOST) 
procedure of Schuirmann2,3 as a test of 
the equivalence of the ratios of generic and 
RLD average AUC and Cmax. The FDA’s 
criteria for inferring BE require rejection 
of the two hypotheses that these ratios lie 
outside of the predetermined BE limits, 
usually from 0.8 to 1.25.3 Alternatively, 
average BE is concluded when the 90% 
confidence intervals (CIs) of the ratios of 
the average AUC and Cmax for the generic 
drug compared with the RLD each fall 
within the BE limits.3 In TOST, the statis-
tical method with prespecified type 1 error 
rate (one- sided P < 0.05 for each of the two 
one- sided hypothesis tests), usually with 
power of 80–90%, is based on the untest-
able assumption of long- run repetition of 
the BE trial.

INVESTIGATIONS AND SUGGESTIONS 
FOR BAYESIAN APPROACHES FOR BE
During the same period and continuing 
until today, statisticians have advanced 
procedures for using a bayesian frame-
work for BE. For explanation of Bayesian 
approaches to clinical trials in contrast 
to non-Bayesian frequentist approaches, 
see the FDA’s Guidance for the Use of 
Bayesian Statistics in Medical Device 
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Clinical Trials.4 A good source of refer-
ences for the early work is in Selwyn and 
Hall5 using noninformative priors to gen-
erate the posterior distribution for the 
probability of BE rather than the frequen-
tist symmetric CIs of BE. More important, 
Selwyn and Hall5 emphasized the value of 
sensitivity analysis of competing prior dis-
tribution assumptions. Racine- Poon et al.6 
described a Bayesian adaptive procedure 
for efficient, sample size – sparing iden-
tification of non- BE drug formulations 
being tested during drug development. 
Ghosh and Gönen7 described a semipara-
metric Bayesian analysis procedure for si-
multaneous multivariate (AUC and Cmax) 
average BE assessment, using a Dirichlet 
process mixture prior, in which case it can 
be advantageous to put an informative 
prior on the correlation of AUC and Cmax. 
Recently, Longford8 presented the thesis 
that application of formal decision theory, 
informed by Bayesian or frequentist ana-
lytics, is more appropriate than hypothesis 
testing for evaluating drug effects in clin-
ical trials, including evaluation of average 
BE.

CHALLENGES AND CAVEATS OF THE 
TOST
The TOST of Schuirmann2 has several 
challenges and caveats. The first is that it 
is solely a hypothesis test that provides no 
other information than whether the hy-
pothesis is rejected or not. Furthermore, 
it does not provide a direct estimate of the 
probability of BE, much less an estimate of 
its entire distribution. Although TOST is 
equivalent to a procedure that constructs 
a CI and then checks to see it is enclosed 
in the equivalence bounds, these statisti-
cal inferences assume that the distribu-
tions of the individual AUC and Cmax are 
Normally distributed either before or after 
a logarithmic transformation. However, 
the number of subjects in BE trials is often 
small (12 or 24 is not uncommon), so the 
Central Limit Theorem does little to miti-
gate this strong assumption. A not uncom-
mon problem is that of outliers; outliers 
threaten the Normality assumption and 
can dramatically inflate variance esti-
mates. If the design is a parallel one, there 
are additional concerns about whether the 
variances in the two groups are equal or 
the sample sizes are similar. Last, TOST’s 

resulting P-values rely on the assumed 
long- term repetition of the trial for its 
Normal theory–based type 1 error control 
rather than simulation.

PROPOSAL FOR A ROBUST BAYESIAN 
APPROACH FOR BE—CHALLENGES 
AND CAVEATS
Notwithstanding the challenge of pro-
posing a Bayesian procedure in place of 
the traditional frequentist TOST anal-
ysis of BA data as a regulatory standard, 
an alternative BE statistical analysis that 
may mitigate the challenges of the TOST 
is a Bayesian procedure proposed by 
Kruschke.9 We call this procedure “BE- 
BEST” (BE- Bayesian Estimation, adapted 
from Kruschke’s9 more general acronym, 
“BEST”). Using noninformative priors, 
the information output of BE- BEST ex-
ceeds that of TOST. In contrast to the 
TOST acceptance/rejection hypothe-
sis tests of BE, the BE- BEST procedure  
enables checking whether the “credible 
interval” (Bayesian equivalent of CI) falls 
within the BE limits (e.g., region of prac-
tical equivalence, Kruschke and Liddell10) 
and can provide a direct assessment of the 
probability of the average BE, which can 
better ensure reproducibility. BE- BEST 
is robust to the Normality assumption of 
TOST and hence less sensitive to outliers 
by using a mixture model. Thus, BE- BEST 
can enable analysis of untransformed BE 
data, without the need to stabilize variance 
and Normalize the BA data via the FDA- 
recommended logarithmic transformation 
of the BE data. Computationally, the R 
Package BEST (https://cran.r-project.org/
web/packages/BEST/index.html) is read-
ily accessible and provides rapid computa-
tion of “Highest Density” (or symmetric) 
credibility intervals, model diagnostics, 
and plots. A drawback is that this software 
is not validated. The BE- BEST procedure 
provides rich information about the cred-
ibility intervals, distributions of BE ratios 
and SDs, and deviation from Normality of 
the data, which may offset perceptions of 
greater difficulty of the Bayesian approach.

If skeptically warranted, the BE- BEST 
procedure can also use informative prior 
distributions, which may broaden its 
applicability to sample size-sparing,  
formulation-bridging studies during de-
velopment of a new or generic drug. As in 

best- practices employment of the Bayesian 
approach for any clinical trial, intense pre-
trial planning, and precise prespecification 
of the analysis plan, including transforma-
tions and the treatment of outliers, sensi-
tivity analytics, and trial simulations under 
various design assumptions should be un-
dertaken to ensure type 1 error control and 
adequacy of statistical power.

DISCUSSION
Acknowledging successful generic drug 
approval in many cases, use of the TOST 
procedure has limitations among which 
are the failure to provide a direct esti-
mate of the probability of BE and reliance 
on vulnerable frequentist assumptions 
enumerated above. Shifting from the fre-
quentist statistical framework for BE to a 
Bayesian method using noninformative 
priors, such as BE- BEST, offers robust 
solutions to all of these limitations. More 
importantly, the Bayesian framework pre-
sented herein opens the door to related 
novel applications, such as the follow-
ing: (i) efficient employment in formu-
lation-bridging studies, (ii) evaluation of 
BA “drift” of RLD off- the- market- shelf 
BA from BA- 0, (iii) use in clinical efficacy 
trials other than for BE, (iv) evaluations 
of non- BE products in comparative BA 
studies for 505(b)(2) development pro-
grams, and (v) consideration of Bayesian 
decision analysis for regulatory approval. 
In the Bayesian BE approach, usually no 
influential prior information is used, and 
instead, noninformative priors are chosen 
for the parameters of interest. Simulations 
are required to ensure that the operating 
characteristics of the procedure are well 
controlled and understood, including the 
type I error probability and power for im-
portant alternatives. We propose that the 
BE- BEST procedure be further investi-
gated for BE and BA bridging applications 
as an alternative to TOST.
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