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Some ideas are presented about a geometric motivation of the apparent capacity of generalized logistic 

equations to describe the outbreak of quite many epidemics, possibly including that of the COVID-19 

infection. This interpretation pivots on the complex, possibly fractal, structure of the locus describing the 

“contagion event set”, and on what can be learnt from the models of trophic webs with “herd behaviour”. 

Under the hypothesis that the total number of cases, as a function of time, is fitted by a solution of 

the Generalized Richards Model, it is argued that the exponents appearing in that differential equation, 

usually determined empirically, represent the geometric signature of the non-space filling, network-like 

locus on which contagious contacts take place. 
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. Introduction 

In these days of worldwide mourning for the human tragedy

ue to the COVID-19 pandemic, while experiencing a heavy lock-

own, and the fear of a possible forthcoming economical and so-

ial crisis, I think every scientist is reasoning about how to be of

elp, in terms of ideas and technical culture. Besides humbly ad-

itting this to be, first of all, the work of doctors, nurses, virolo-

ists, biologists and epidemiologists, not to mention the engineers

ho design medical and life-saving devices, each of us wonders

hat technical tools among ours might either help the fight, or at

east teach something about how the pandemic appears to work. I

rote down these thoughts when I went through the paper [1] , in

hich the authors perform a deep investigation of the behaviour

ith time of the “total number C ( t ) of people who have been in-

ected so far”, for the Chinese Province of Hubei, the other Chi-

ese Provinces, and few other countries undergoing the outbreak

f COVID-19, i.e. South Korea, Japan, Iran and Italy. It is important

o stress that [1] appeared on March 12, 2020, so the data those

uthors could use were just the ones available at that stage of the

pidemics: all the reasonings about their finding should be under-

tood to describe the contagion dynamics up to that time. 

What has attracted my attention in [1] , among the various re-

ults reported, is the apparently good performance, in fitting the

ontagion data, of the law C ( t ) solving the Generalized Richards

odel (GRM) [2] ; the latter is a modification of the well known
E-mail address: massimo.materassi@isc.cnr.it 
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ogistic equation 

˙ 
 = rC 

(
1 − C 

K 

)
: (1) 

n the GRM equation, the population variable appears with powers

ifferent from 1, typically between zero and 1: 

˙ 
 = rC p 

[
1 −

(
C 

K 

)α
]
, p, α ∈ [ 0 , 1 ] , α ≥ p (2)

despite they are omonimous, the coefficients r in (1) and (2) are

ot the same quantity: in particular, in (1) one has [ r ] = t −1 , while

n (2) one has [ r ] = [ C ] 
1 −p t −1 ). 

The Ordinary Differential Equation (ODE) (2) has been largely

nd succesfully employed in epidemiology, so there is no real sur-

rise in its applicability to the COVID-19 outbreak. However, the

uestion here is which “first principle meaning” should be given

o those powers p and α in (2) . In the literature, those parameters

re determined empirically, so to fit the experimental curve C ( t ) a

osteriori, once the epidemic is completely developed. Some study

oticeably put the ( p, α) values in relationship with the “micro-

copic contagion dynamics” [3] : it is shown that these constants

epend on the geography of contagion (whether the epidemic de-

elops in regions with clusters of population and communications,

ike towns of various size, or not) and on the sociology of contagion

in the case of HIV, for instance, whether this takes place via sexual

ntercourse, or via needle sharing); these “microscopic conditions”

ppear to be what gives the contagion network a different topol-

gy. Recently, the specific study [4] on the COVID-19 outbreak ar-

ued how the scale-free complex clusterization of contagion events

ould motivate a fractional kinetics for C ( t ), as in classical dynam-
BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ics of systems with complex structures in phase space. I am myself

involved, together with Giuseppe Consolini, in a study searching

for an ODE possibly solved by the best fit of the COVID-19 curve in

Italy [5] : indeed, the effects of dynamics with finite waiting time

(possibly encoding a complex phase space topology) appear to be

relevant. 

All in all, it is clear that deviations of the equation for C ( t ) from

the pure logistic ODE (1) points towards the departure of the real

laws governing the infection spread from the hypotheses one has

to assume, in order for C to satisfy (1) . 

One of the most important assumptions of the logistic equa-

tion, and of all ODEs regulating the kinetics of population growth,

is the so called mass hypothesis [6,7] : it is assumed that the mixing

of individuals is such, that all the microscopic actions represented

in the ODE are taken (on the average) by all the elements of the

population. This, roughly, gives rise to integer powers of popula-

tion variables in the ODEs. The argument here is that Eq. (2) may

be a consequence of mass hypothesis violation by the statistics of

the microscopic actions ( contagion events ), of which it represents a

mean field description. 

Why should a violation of the mass hypothesis take place?

The answer suggested here in inspired by the Trophic Web Theory

(TWT), where the dynamics of interacting populations in ecosys-

tems are represented via coupled ODEs. In TWT a form of segrega-

tion may take place, namely herd behaviour : this assumption, that

represents a topological correction to the mass hypothesis, leads

the population variables to appear in equations with non-integer

powers, exactly as in the GRM, so popular in epidemiology, and

that the authors of [1] claim to fit the curves of the COVID-19

epidemic. Here the suggestion is that the “abstract geometrical lo-

cus of contagion events” may have a fractal dimension , under the

assumption that the network of human contacts giving contagion

may be a scale-free network, with clusters of links on many scales,

just reflecting those geographical and sociological aspects evoked

by the authors of [3] (it may be of some use to stress that the

term “herd behaviour” here has nothing to do with the expression

“herd immunity” of epidemiology. Moreover, no obvious relation-

ship between the two “herd things” appear). 

The paper is organized as follows. 

In Section 2 the logistic ODE is recalled, and its non-integer

power generalization is presented. In Section 3 the concept of herd

behaviour in TWT is treated, with some examples from ecology

and ecoepidemic models. Then, its interpretation of the parame-

ters p and α in (2) is presented. 

Conclusions, and possible developments of these ideas, are

given in Section 4 . 

2. Logistic and generalized logistic equations 

As stated in the Section 1 , the ODE (2) is a form of generalized

logistic ODE , because it extends the original law (1) , to which it

reduces for p = α = 1 . The dynamics (1) describes a population C

that may grow from arbitrarily small positive amounts up to an

equilibrium value for C eq so that ˙ C 
(
C eq 

)
= 0 , that is realized for

 eq = K: this parameter K is referred to as carrying capacity . 

In order to understand a little bit more the roles of the various

terms in (1) , it is better to re-write it as 

˙ 
 = rC − r 

K 

C 2 : (3)

in this expression, one may distinguish the competition between

an exponential growth term rC and a self-limitation term − r 
K C 

2 .

The expression (3) is of help in understading the rationale of (1) :

we have a population dynamics in which all the C individuals take

part to both the exponetial growth and the self-limitation. In a

chemio-kinetic framework, the term rC would mean that, for each
f the C units, one more unit will be “created”, in a “reaction” of

he form C −→ C + C , every �t +1 = 

1 
r units of time; meanwhile,

he term − r 
K C 

2 would mean that, whenever each of the C indi-

iduals meets another one of the C individuals, one individual is

estroyed in a process C + C −→ C , that takes place every �t −1 =
K 
rC units of time (this �t −1 becomes smaller and smaller as the

mount C increases, making the frequency of destructive matches

row). Using (3) to describe the total-cases-up-to-now in an epi-

emic, the sensible interpretation of − r 
K C 

2 is that the rCdt new

ases produced by the C individuals in the dt should be diminished

y a term �C 2 dt proportional to the number of matches of two

nfected people, in which no new infected one is produced, being

= 

r 
K . r is the effectiveness of the +1 production process, while

r 
K measures the effectiveness of the −1 destruction process (here,

etter understood as “failure of +1 process”). Expression (3) is also

eferred to as Verhulst Equation (VE) [8] . 

It is important to underline the relationship between the mass

ypothesis and the mathematical nature of (3) . Indeed, the fact

hat the creation rate reads rC means that all of the C individuals

f the population do take part to the production process ; in the same

ay, the expression − r 
K C 

2 for the limitation rate means that there

s a possible “failure to spread” for each and every couple of the C in-

ividuals , being those couples as many as O 

(
C 2 

)
, because each of

he C units limits the contagion activity of all its fellows. 

Having these considerations about (1) in mind, we may re-write

he generalized logistic equation (2) as follows 

˙ 
 = rC p − r 

K 

α
C p+ α : (4)

e now have a production term rC p , with p < 1, and a self-

ompetition term − r 
K α C p+ α, with p + α < 2 . This expression (4) is

he one suggesting the interpretation presented here, in terms of

erd behaviour. 

. Herd behaviour and fractals 

To introduce the concept of herd behaviour in TWT, let us con-

ider two populations X and Y , respectively of prey and predators,

iving on a surface, e.g. the savannah, or a regular portion of the

eabed, i.e., 2-dimensional environments. The predator-prey inter-

ction, consisting of simple predation, gives rise to a term 

˙ 
 Y = −kX Y (5)

n a simple Lotka-Volterra model, or to something like 

˙ 
 Y = − h 

b + X 

X Y, (6)

f the model is more sophisticated and a Holling Type II response

unction is adopted to describe predation, as in [9] ( k, h and b are

onstants). In 

˙ X Y ( X, Y ) the number of prey and predators appears

o the first power: in (5) , each of the X prey units may “couple”

ith each of the Y predators with the same destruction rate k ;

n (6) , this happens, but with a rate h 
b+ X decreasing with the to-

al amount of prey. Under the idea that every prey can be reached

y every predator , there is clearly the mass hypothesis discussed in

ection 1 . 

In TWT a condition has been introduced [10] , that changes this

ypothesis and, accordingly, modifies the response terms, the so

alled herd behaviour . Let us suppose that the X prey units move in

ompact groups of finite size, that cannot be penetrated by preda-

ors: each of the Y predators can only pick their prey from the bor-

er of those groups. The right hypothesis is, then, not that each

rey is attacked by each predator, but that just the X ∂ prey units

long the group border will be. So, in the place of X in 

˙ X Y ( X, Y ) ,

ne has to put the number of prey units really involved in this

redation, the X ∂ ones sitting on the group border. Because the
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cene is 2-dimensional, under the hypothesis of homogeneos sur-

ace density (a necessary one, in order to discuss space-implicit

odels , describing everything via ODEs), comparing the number of

ndividuals along the border of a geometrical figure with that of all

he ones all over the figure is just as comparing the length of the

erimeter with the measure of the surface. If the figure at hand

as a “size” � , clearly the surface has a measure A = O 

(
� 2 

)
, so that

 = O 

(
X 

1 
2 

)
, while the perimeter scales as P = O ( � ) : one may con-

lude 

 ∂ = O 

(
X 

1 
2 

)
. 

s the prey move just in compact, predator-impenetrable groups,

.e. as they show herd behaviour, while predators are free to move

ll over the 2d space outside these groups, the predation terms in

5) and (6) will be re-written as 

˙ 
 Y = −k ′ 

√ 

X Y and 

˙ X Y = − h 

′ √ 

X 

b ′ + 

√ 

X 

Y (7)

espectively. 

That of the savannah is an R 

2 example, but the herd behaviour

an be generalized to other geometrical enrivonments: for in-

tance, if prey and predators move in R 

3 , as it happens to nekton

nimals in the sea, then one may state X = O 

(
� 3 

)
and X ∂ = O 

(
� 2 

)
,

o that the predation terms (7) will read: 

˙ 
 Y = −k ′′ X 

2 
3 Y, ˙ X Y = − h 

′′ X 

2 
3 

b ′′ + X 

2 
3 

Y. 

ore in general, if those species live in some R 

n , but the prey that

an be preyed on are segregated in a sub-ambient E act of dimen-

ion dim E act = m ≤ n, clearly some terms as 

˙ 
 Y = −ˆ k X 

ηY, ˙ X Y = −
ˆ h X 

η

ˆ b + X 

η
Y, η = 

m 

n 

≤ 1 (8)

ill appear in the prey population ODE. Note that, in the expres-

ions from (5) to (8) , a mass hypothesis is still active on predators,

hat are supposed to be “very mobile” and “enough mixed” out-

ide the groups of prey. If, instead, also the predators are scarcely

obile or slow, possibly packs of predators interact with herds of

rey just via their borders, so that, for instance, one should write

˙ 
 Y = −˜ k 

√ 

X Y and 

˙ X Y = −
˜ h 

√ 

X Y 

˜ b + 

√ 

X 

(9) 

nstead of (7) , and so on. The introduction of terms due to herd

ehaviours in population ODEs is studied in a wide literature,

anging from more properly ecological system theory, as in [11–

8] , where applications to epidemiology are however suggested;

o more strictly epidemiological cases, as in [19–21] . Very recently

22] , the use of terms as in (9) has been introduced to describe

ompetition between populations of algae, that live on the 2-

imensional seabed and show border competition and border graz-

ng by their “predators”. 

Applying these concepts to the epidemic growth given by

q. (4) requires some generalization of the ecological examples just

escribed. 

Suppose to deal with a population of infected people C occu-

ying an environment E of dimension dim E = ν: this number can

e, in principle, any real, positive number, as we are imaging pop-

lations living in any fractal subset of R 

n . Suppose that these in-

ividuals undergo processes as those described in Section 2 : if all

he individuals living in E take part to both the creation and the

imitation processes, clearly the Verhulst Eq. (3) will rule the evo-

ution of C . Instead, suppose that, in order to be “active” pruducing

ew individuals (when an infected unit meets a susceptible one),

r limiting each other (because when two infected units meet, no
ew one appears), those units have to be segregated in a sub-

nvironment of E , namely some E act ⊂ E , so that dim E act = μ ≤ ν .

t is straightforward to show that the active portion of population

s 

 act = O ( C p ) , p = 

μ

ν
≤ 1 . 

t is then obvious to write the generalization of (3) to which such

 species would undergo: 

˙ 
 = rC p − r 

K 

p 
C 2 p , (10) 

hat is precisely the same as (4) , or (2) , with α = p. 

Now, what if α 	 = p in (4) ? If one has α > p as in [1] , it is sensi-

le to put α = p + δ, with δ > 0, and then to re-write (4) as: 

˙ 
 = r C p − r C δ

K 

p+ δ C 2 p . (11)

he only true difference between this case and the ODE (10) is that

he coefficient of C 2 p depends on C itself. This can be interpreted

n two equivalent ways: on the one hand, one may say that the

ffectiveness of the limiting process depends on the population itself

s 

eff ( C ) = 

r 

K 

p+ δ C δ, (12) 

o that the larger the population is, the more destructive the self-

imitation turns out to be among the individuals in E act ; on the

ther hand, one might as well state that there is a C-localeffective

arrying capacity K eff( C ) decreasing with C 

 eff ( C ) = 

K 

p+ δ

C δ
, (13) 

o that, as the population increases, its dynamics “sees” a smaller

nd smaller carrying capacity (even if the asymptotic value is still

 = K: the only difference with respect to the cases (1) and (10) is

hat in (4) , and hence in (11) , the rush towards the limit C = K gets

lower and slower, with respect to the logistic ODE tempo, while

he total population C is increasing). 

Another possibile interpretation of the self-competition term in

4) could be that, next to the infected people able to infect the

thers, i.e. C act = O ( C p ) , there is a class of infected people with

hom those C act come in contact uneffectively, that is some C lim 

=
 ( C α) limiting the contagion, as − r 

K α C p C α . In this vision, one should

efine some geometric locus E lim 

, with Hausdorff dimension αν , to

hich the uneffective contacts are restricted (it is very likely that

 act ∩ E lim 

	 = ∅ holds). 

Now, the crucial point is to understand why the COVID-19 conta-

ion growth, together with that of other epidemics well studied in

he past, should behave in this way, in terms of the segregation of

he various classes of individuals: a point of view on this is given

n the following Section 4 . 

. Conclusions and possible applications 

About the interpretation of the powers appearing in (2) , for

ure one may state that the portion of the infected people C act ,

ruely active in spreading the contagion further, is a very particu-

ar function of the whole number of infected ones, as: 

 act ∝ C p . 

imilarly, the self-competition term limiting the growth of C ac-

ording to (2) is a power law of the total of infected persons, i.e. 

˙ 
 lim 

∝ C p+ α. 

he possible interpretation of p and α suggested here is that those

on-integer powers should represent the geometric locus where

contagion reactions” take place . 



4 M. Materassi / Chaos, Solitons & Fractals: X 4 (2019) 10 0 032 

Fig. 1. A curve solving the ODE (1) , i.e. Eq. (2) with p = α = 1 , and with r = 0 . 8 day 
−1 

. The initial value of infected individuals is C ( 0 ) = 100 , with a carrying capacity of 

K = 15 × 10 4 . 
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In the herd behaviour of TWT, real powers of population vari-

ables represent a measure of the physical places where preda-

tors and prey meet, or where competition takes place, but here

such powers must be attributed a more subtle meaning. While an-

imals in the savannah move in a 2-dimensional space (see (7) ), so

that one could state dim E = 2 , and dim E act = 1 , things are dif-

ferent for humans infecting each other. The locus E “where in-

fected humans live” must be understood as a subset of the place

where people live, work and move, i.e., of the network of inhab-

ited centers and the links connecting them. Let us put dim E = ν
(this is far from being easily defined). Moreover, a sub-locus of

this E , i.e. where contagion events really take place, is indicated

as E act : attributing a value dim E act = μ ≤ ν to the “dimension” of

E act means understanding which part of the total infected people is

really in contact with susceptible ones, being able to “produce new

infectious people”. Once this E act is identified, its “size” should be

expressed as a function of the “size” of the whole E , so to be able

to write the expression C act ( C ): provided things work as in the herd

behaviour of TWT, i.e. provided E act is a non-space-filling subset of

E , hence with a Hausdorff dimension smaller than dim E , one may

state 

 act ∝ C 
dim E act 

dim E = C 
μ
ν = C p . (14)

The explanation for the case of α = p is just given by the forego-

ing assumption (14) . In order to understand the case p < α = p + δ
one may either think that the “active” contagious people C act will

interact with “slightly more” individuals than themselves alone, so

that the limiting locus will be E lim 

⊃ E act / dim E lim 

= αν: this gives

rise to the competition term − r 
K α C p · C α in the ODE; or think that

the coefficient of C 2 p term is a “regular” competition term with a

coefficient depending on C explicitly, as ˙ C lim 

= − rC α−p 

K α C 2 p , be this

a competition strength growing as O ( C α−p ) , or a carrying capacity

decreasing as O ( C p−α) . 

The great question is, then, how to compute dim E , dim E act 

and dim E lim 

, provided it makes sense at all to represent the be-

haviour of infected humans and of the contagion via fractal ge-

ometrical loci. In this vision, the locus E should depend on the

human behaviour and society: in particular, it must retrace the

locus where people are concentrated, i.e. the web of the inhab-
ted centers and communications H. As a fantasy, we could say

im H = ρ ≤ 2 , since we can at most occupy the 2-dimensional

urface of a Country: so E ⊆ H will mean ν ≤ρ ≤ 2. An indication

bout dim H, in agreement with the arguments here, may be found

n [23] , for example. When one goes from dim E = ν to the value of

im E act , things become more complicated, because now we have

o consider not only the distribution and behaviour of humans, but

lso the “contagion dynamics”, a contribution given by the nature

f the virus. For COVID-19, the contagion seems to take place via

ather close contact, so that particles of the breath of an infected

erson are received by the susceptible individual: one may imag-

ne to select E act considering the sub-locus of E of the close con-

acts of the single individual, i.e. possibly the “network of personal

elationships” and “of casual encounters”. Possibly, this will give

im E act = μ ≤ ν, and hence p . Similar considerations will lead to

guring out what α could be. 

As it is understandable from the aforementioned arguments,

predicting” the numbers ν , μ, p and α from what we may study

bout the distribution and communications of humans, their rela-

ionship networks, and from what we know about the behaviour

f COVID-19, will be a very tough interdisciplinary task. What one

an say by intuition is that, as the locus E act is more sparse, the

ehaviour of the outbreak C ( t ) will be slower and slower. For in-

tance, considering K = 15 × 10 4 and r = 0 . 8 people 
1 −p · day 

−1 
, the

urve C ( t ) solving the ODE with p = α = 1 is the one illustrated

n Fig. 1 : looking at that plot, one sees that the maximum value

f infected people is reached in practice between the 20 th and

he 30 th day. If one puts, instead, p = 0 . 7 and α = 1 , the result

s that of Fig. 2 : in this case, we see that the value C � K is

eached not before t = 140 days , i.e. the growth is much slower as p

ecreases. 

The slowness of C ( t ) towards K , increasing with decreasing p ,

eaches that, with smaller p , the outbreak of contagion gives much

ore time to the public healthcare administration to take anti-

ontagion measures. The faster the reach of K is, the more crowded

he hospitals will be, the more difficult will be to assist ill people,

nd the larger the number of dead can be, and this can be miti-

ated acting precisely on p . Clearly, also acting on α may modify

he shape of the curve C ( t ). 
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Fig. 2. A curve solving the ODE (2) with p = 0 . 8 , α = 1 and r = 0 . 8 people 
0 . 2 · day 

−1 
. The initial value of infected individuals is C ( 0 ) = 100 , with a carrying capacity of 

K = 15 × 10 4 . 
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Provided Eq. (2) describes an epidemic outbreak with time, act-

ng on the exponents in (2) may regulate the time given to a na-

ional healthcare administration to confront it. As argued before,

he exponents p and α depend on the physical distribution of peo-

le, on their behaviour and on their relationship network: under

his point of view, one has to hope that the lockdown meaures

aken by many Governments are acting in the direction of dimin-

shing p , and increasing δ in (12) , so to render less effective the

spreading” term rC p and more and more important the “liming”

erm −�eff ( C ) C 
2 p . 
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