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Introduction

The proper use of a medicinal agent is based on its

pharmacokinetic (PK) and pharmacodynamic (PD) char-

acteristics. However, PK and PD parameters are subject

to considerable intra- and inter-subject variability. Careful

analyses during the last decade revealed that PDs is

definitely more variable than PKs [1]. It is generally

believed that the determinants of PD variability are

unknown since the factors affecting concentration-

response relationships are numerous [2]. This idea relies

on the classical, stochastic view of randomness. However,

over the last two decades the science of nonlinear dynam-

ics has shown that complex-random looking behaviour

can be generated by deterministic systems [3]. Although

only classical randomness is clearly involved in most PD

studies, e.g. chemotherapy, a considerable part of the

variability in some PD studies, e.g. cardiovascular, CNS,

hormonal, may originate from a nonlinear system with

even a few degrees of freedom [4]. This argument relies

on the principles of nonlinear dynamics [5] as applied to

complex biological systems [6–8]. In addition, the ligand–

receptor interaction exhibits nonlinear dynamic behaviour

when feedback mechanisms are involved [9, 10].

One of the physiological processes where nonlinear

dynamics is believed to play an important role is the

secretion of hormones. The erratic behaviour of hormone

secretion originates from the complex dynamics involved.

Numerous applications of nonlinear dynamics to the

secretion of hormones have been published [11–17]. In

this context, various methods for the analysis of the chaotic

nature of the pulsatile secretion of hormones have been

reported [18–20].

In the following sections we present a brief summary of

the basic properties of a dynamical system and an example

of a nonlinear dynamical model which describes erratic

plasma cortisol concentrations, as well as the effect of

corticosteroids upon them. The latter gives an opportunity

to discuss the concept of variability in PK and PD studies

from a dynamical systems’ perspective.

The essential properties of a dynamical system

A dynamical system is a deterministic mathematical system

that can be represented by a set of differential equations

of the form:

dx=dt~f ðx; tÞ:

The number of variables needed to describe the state of

the system, which is the number of initial conditions

needed to determine its time evolution (trajectory) in a

unique way, is the dimension of the system. The set of

these variables form a mathematical space called phase

space [8]. However, there are dynamical systems that have

infinite dimension. Such systems are usually described by

differential equations with partial derivatives or time-delay

differential equations and can be considered as a set of

infinite in number ordinary differential equations [5]. The

phase space is a valuable tool in dynamical systems analysis

since it is easier to analyse the properties of the dynamical

system by determining the topological properties of the

trajectories rather than analysing the time series of the

values of the variables directly. The dynamical study of

systems of unknown dimension, like real-world data, or

systems of infinite dimension, like systems described by

partial differential equations, is usually based on the

construction of a pseudo-phase space [5, 8] using as

coordinates the values of a variable at different time points.

The solutions of most dynamical systems, in the long

run, are confined to a limited part of the phase space

which is called the attractor [5], i.e. the set of points in

the phase space to which the trajectories are attracted.

Every trajectory that starts outside the attractor tends to

move towards it as time passes. An attractor is usually an

object of lower dimension than the entire phase space

(a point, a circle, a torus, etc.). For example, a multi-

dimensional phase space may have a point attractor
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(dimension 0), which means that all trajectories tend to

concentrate in a specific point in the phase space. Even

the solutions of systems with infinite dimension may lie

on attractors of low dimension which emerge by the use

of a pseudo-phase space.

Some dynamical systems with three or more differential

equations which include nonlinear terms, may exhibit

chaotic behaviour [3], defined as trajectories that

follow complicated non-periodic patterns that resemble

randomness. This behaviour only occurs for a specific

range of the parameter values of the system. Hence,

these systems exhibit qualitatively different behaviour

for a change (sometimes even slight) in the parameter

values.

The main characteristic of chaotic dynamics is the

sensitivity of the evolution of the system from initial

conditions. This means that a slight change in the initial

conditions produces a completely different trajectory.

The deviation of two initially neighbouring trajectories

increases exponentially with time, i.e. proportional to

exp(lt). l is called the Lyapunov exponent [7] and is a

measure of chaos. Thus, if a system has at least one

positive Lyapunov exponent, it is considered chaotic.

This characteristic implies nonpredictability of the time

evolution of the system in the long run, due to our

inability to know the initial conditions with infinite

accuracy.

Like other dynamical systems, chaotic systems have

attractors too. Again, these attractors may be of lower

dimensionality than the entire phase space. However,

this dimension is not always an integer. It may be a

fractal dimension [5] which defines an attractor with

infinite detail but confined in a finite space. This kind

of attractor is called a strange attractor and the integer

dimension of the entire phase space in which the

attractor lives is called the embedding dimension [5] of

the attractor.

Cortisol secretion

The hypothalamic-pituitary-adrenal axis (HPA) is one

of the most studied hormonal systems. Most attempts to

model blood cortisol concentrations in PK/PD studies

are purely phenomenological and focus on describing

the circadian rhythm using periodic mathematical

functions. This ignores the pulsatility of cortisol secretion

[21], thus producing smooth periodic curves [22–24].

However, the available experimental data are not at all

smooth and there is strong evidence that plasma cortisol

secretion is characterized by pulsatility and irregularity

apart from diurnal variation [21, 25–28]. In a recent

study [29] the irregular features of cortisol blood

concentrations were ascribed to classical randomness and

described through the use of stochastic differential

equations.

The primary stimulus for cortisol secretion from

the anterior pituitary is adrenocorticotropic hormone

(ACTH), the secretion of which is mainly stimulated

by hypothalamic corticotropin-releasing hormone (CRH).

Cortisol causes feedback inhibition of ACTH both by

acting directly on the pituitary and by decreasing CRH

secretion. However, the real picture of the feedback

mechanism is much more complex if one takes into

account the diurnal rhythm of cortisol secretion and,

in addition, the interactions of the hypothalamic-pituitary-

adrenal axis with the CNS and stress systems [27, 30, 31],

(Figure 1).

A dynamical system for cortisol kinetics

Although the detailed features of the interactions involved

in cortisol secretion are still unknown, some observations

indicate that the irregular behaviour of cortisol concen-

trations originates from the underlying dynamics of

the HPA axis system. Indeed, Ilias et al. [32] using time

series analysis, have shown that the reconstructed phase

space [5] of cortisol concentrations in healthy subjects

has an attractor of fractal dimension D0=2.65t0.03. This

value indicates that at least three variables control cortisol

secretion [3]. A nonlinear model of cortisol secretion

with three variables, which takes into account the

simultaneous changes of ACTH and CRH has been

proposed [33].

These observations prompted us to model cortisol

plasma concentrations relying on the well established

erratic secretion rate [21] and the circadian rhythm,

while other factors controlling cortisol secretion are

also considered but not expressed explicitly (Figure 1).

In the model presented here the features of circadian

rhythm and its complex nonlinear behaviour are inte-

grated to give realistic cortisol concentration profiles.

Cortisol concentration is described by a nonlinear

time-delay differential equation [34, 35] with two terms,

namely, a secretion rate term which adheres to the

negative feedback mechanism [36, 37] and drives the

pulsatile secretion, and a first order output term:

dC

dt
~k1

anCd

anzCn
d

{k2C ð1Þ

where C is the cortisol concentration, Cd is the value of

C at time txT, n is an exponent, k1 and k2 are the

input and output rate constants, respectively. Since

the main interest of this work is related to the secretion

of cortisol, its complex disposition characteristics are

modelled with a simple first-order rate constant, k2. The

circadian rhythm of cortisol secretion is implemented

A. Dokoumetzidis et al.

22 f 2002 Blackwell Science Ltd Br J Clin Pharmacol, 54, 21–29



phenomenologically by considering the parameter of

the model a as a simple cosine function of the 24 h

period:

a~A . cos ðt{f Þ 2p

1440

� �
zB ð2Þ

where A and B are constants with concentration units, f

is a constant with time units and t is time in min. Similar

approaches relying on simple periodic functions were used

by Rohatagi et al. [22] to describe the secretion rate of

cortisol.

Our dynamical system consists of equations 1 and 2.

The physical meaning of the time delay in equation 1 is

that the cortisol concentration, C, affects other physio-

logical parameters of the systems depicted in Figure 1

(not present in equation 1), which in turn affect, via the

feedback mechanism, cortisol concentration and, thus,

cortisol controls its own secretion [23]. This cycle is

postulated to last for time T, and that is how the

concentration Cd at time txT arises. The simulated profile

generated by equations 1–2 is shown in Figure 2, and

exhibits the circadian rhythm, as well as the pulsatile

nature of the cortisol secretion system. Since equation 1

has an infinite number of degrees of freedom [38], we

constructed a pseudo-phase space [5, 8] for the system

of equations 1 and 2 using the model variables C(t),

C(txT/2), C(txT ), (Figure 3). The use of three

dimensions is in accordance with the embedding

dimension that Ilias et al. [32] have found. The attractor

of our system shown in Figure 3 is quite complicated

geometrically, i.e. it is a strange attractor.
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Figure 1 A schematic representation of the hypothalamic-pituitary-adrenal axis (HPA), together with other organs and systems that

interplay in the secretion of cortisol. Solid arrows indicate stimulation, production or reaction and dashed arrows inhibition, while

double arrows indicate more complicated bi-directional interaction. At the bottom of the graph the various components of cortisol

disposition are indicated. Free cortisol, which participates in the feedback mechanism, is also in equilibrium with the cortisol species

bound to corticosteroid bound globulin and tissue cortisol. In experimental studies, the measured blood cortisol levels are the sum of

free and bound cortisol. Key: ANS (autonomic nervous system), CNS (central nervous system).
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As we have already mentioned, one of the most

important features of nonlinear dynamics is their sensitivity

to initial conditions. A measure to verify the chaotic

nature of a dynamical system is the Lyapunov exponent

[5], which quantifies the sensitive dependence from

initial conditions. In the present model we found [39]

the largest Lyapunov exponent to have a positive value

of around 0.00011 minx1, or equivalently 0.0064 hx1,

which is a clear indication for chaotic behaviour.

A dynamical consideration of the

burst-type rate of cortisol secretion

If chaotic dynamics are present, the experimental errors

associated with the pulsatility of cortisol secretion do not

originate exclusively from classical randomness. Thus, the

measures of central tendency used to describe or treat

experimental data are questionable, since averaging is

inappropriate and masks important information in chaotic

systems [40]. This observation applies to the reported

values of the daily cortisol production rate [26, 41] and the

rationale of averaging the profiles of several subjects. In

the same vein, all models mimicking only the circadian

rhythm of cortisol secretion using periodic functions of

time [22–24], ignore the fundamental feature of cortisol

secretion dynamics, i.e. the burst-type rate of secretion,

which is driven by feedback mechanisms.

The pulsatility of cortisol secretion is best depicted in

the secretion rate. Owing to the erratic character of

cortisol secretion, the instantaneous secretion rate should

be reported, if possible, instead of the average rate in

an extended period [26]. The cortisol secretion rate

profile, simulated by equations 1–2 is shown in Figure 4,

and shows characteristic resemblance with equivalent

plots generated from deconvoluted experimental data,

even with a very dense sampling design (see for example

Figure 1b, c in [21]).

The pulsatile nature of cortisol secretion in conjunction

with the sampling interval are crucial for the visual

appearance of experimental data. This is shown in Figure 5

where a usual blood sampling interval of 30 min is used

for both the experimental data from three individuals

(Figure 5a, b and c) and the simulated data (Figure 5d).

Data generated from the model described by equations

1–2 look visually similar to the experimental data

(Figure 4). Needless to say the variation in the sampling

design has no impact on the shape of the profile as far

as classical models are concerned.

Variability and long time prediction of

cortisol levels: a dynamical perspective

The model under study here offers an opportunity to

refer to some implications of the presence of nonlinear

dynamics. Apart from the jagged cortisol concentration

profile, elements such as the sensitive dependence from

the initial conditions (expressed by the positive Lyapunov

exponent), as well as the parameters of the system, play

an important role and may explain the inter- and intra-

subject variability observed in the secretion of cortisol.

These implications, together with other features absent

from classical models, are demonstrated in Figure 6. Thus,

a change in the initial conditions or the parameter values

of equations 1 and 2 may be depicted in a relatively

large change of the final profile (Figure 6a and b). Also,

the profiles corresponding to two successive days

(Figure 6c), or two different sampling designs (Figure 6d)

may differ markedly, even though precisely the same set

of parameter values is used. Overall, our analysis based

on nonlinear dynamics offers an alternative explanation

for the fluctuation of cortisol concentrations. However,

the most important implication of the presence of

nonlinear dynamics in cortisol secretion processes is the

limitation for long-term prediction which makes practical

application of the classical models questionable.

Cortisol suppression by corticosteroids

The model presented here allows the consideration of

external corticosteroid administration as a perturbation of

the cortisol secretion system. Corticosteroids cause a tem-

porary diminution of plasma cortisol concentrations [22].
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Figure 2 A 24 h simulated profile generated by the model of

equations 1 and 2. Model parameters take the values

k1=0.0666 minx1, k2=0.0333 minx1, C(0)=1.7 mg 100 mlx1,

n=10, A=0.7 mg 100 mlx1, B=1 mg 100 mlx1, f=250 min

and T=70 min. Time starts from 08.00 h. The value assigned to

T corresponds to about one cortisol secretion burst per hour in

accordance with experimental observations [21]. The simulations

were performed by a numerical solution of equations 1 and 2,

using the Fortran subroutine RETARD [38].
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Assuming that the drug follows one-compartment model

disposition with first-order input and output, the effect-

site [42] concentration is described by equation 3 [43]:

CE~
F .D
V

. ka
. kE0

ka{ke

. e{kE0
. t{e{ke

. t

ke{kE0

{
e{kE0

. t{e{ka
. t

ka{kE0

� �

ð3Þ

where F is the bioavailable fraction of dose D, V is

the volume of distribution of the pharmacokinetic

compartment, ka, ke are the input and elimination
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Figure 3 A pseudo-phase space for the model of equations 1 and 2 using the variables C(t), C(txT/2) and C(txT ) expressed in

mg 100 mlx1. The real phase space is of infinite dimension, however, trajectories may be considered to lie in a low dimensional space

(attractor). The model parameters take the same values as in Figure 2 and time runs for 10 days.
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Figure 4 The simulated cortisol secretion rate profile is shown;

it exhibits characteristic resemblance with equivalent plots derived

from experimental data (see for example Figure 1b, c in [21]).

The model parameters take the same values as in Figure 2, and

time starts from 08.00 h.
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first order rate constants, respectively, and kE0 is the

elimination rate constant from the effect compartment.

The effect-site concentration of the corticosteroids can

be considered to affect one or more parameters of

the model described by equation 1. This must be imple-

mented such that the presence of CE suppresses the

cortisol secretion in accordance with the experimental

data. The parameter a of the model, which describes the

circadian rhythm was considered to include the effect of

corticosteroid administration following a receptor based

diminution:

a’~a 1{
CE

CE50zCE

� �
ð4Þ

where CE50 is a coefficient that expresses the concentra-

tion of the drug when ak=a/2. In this simple way realistic

cortisol blood concentrations, following exogenous

corticosteroid drug administration, can be obtained as

exemplified by the case of fluticasone propionate

(Figure 7) [23]. The simulated profiles correspond to

two ‘individuals’ where only the initial value of C differs

producing, however, significantly different profiles. In

parallel, the sensitive dependence of the detailed

final profile from the exact values of the concentration

CE should be emphasized, since CE directly affects one

of the parameters of the chaotic oscillator (equation 4).

Finally, the large inter- and intra-subject variability
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Figure 5 Plots a, b and c show 24 h endogenous cortisol profiles obtained from three young, male individuals [28]. Plot d shows data

generated by equations 1 and 2 where model parameters take the same values as in Figure 2, utilizing a 30 min sampling interval. Time

starts from 08.00 h. The simulated data (d) look visually similar with the experimental data (a, b, c).
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observed in studies investigating the effect of fluticasone

propionate on cortisol concentrations [44] can be

explained by the erratic behaviour of the system of

equations 1–4.

Conclusions

Experimental evidence indicates that fluctuations in

cortisol secretion are not produced by random processes.

In the present commentary, the chaotic nature of these

fluctuations is described by a simple deterministic model

based on the physiological mechanisms involved. This

approach allows a straightforward derivation of a

pharmacodynamic model describing the effect of cortico-

steroids on cortisol blood concentrations. The important

result of this study is the opportunity that it offers to discuss

the implications of the presence of nonlinear dynamics in

processes such as the secretion of cortisol. Based on the

aforementioned discussion, it is evident that the concepts

of deterministic nonlinear dynamics should be adopted in

pharmacodynamic modelling when supported by experi-

mental and physiologic data. This is valid not only for the
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Figure 6 The chaotic nature of the model has several important implications. In all plots the dashed line is generated from equations 1

and 2 using the parameter values quoted in the legend of Figure 2 while the sampling interval is fixed to 30 min. The solid lines

correspond to the same set of parameter values applying a change only in one of them. This change, however, is enough to produce

significant visual change in the profile: (a) k2 is set to 0.03 minx1; (b) C(0) is set to 1.6 mg 100 mlx1; (c) the second’s day profile is

compared with the first’s day profile; (d) sampling is performed every 80 min instead of 30 min. The dashed and solid lines of

plots c and d have identical values for the model parameters. Time starts from 08.00 h.
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sake of more detailed study, but mainly because nonlinear

dynamics suggest a whole new rationale fundamentally

different from the classic approach. Moreover, the clinical

pharmacologist should be aware of the limitations of

chaotic models for long-term prediction, which is contrary

to the routine use of classical models.
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