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INTRODUCTION 

In a one-compartment open model with first-order absorption and 
elimination the plasma drug concentration (C,,) is defined generally by 
equation (l), 

in which t is time, k,  and k are absorption and elimination rate constants, 
respectively, F is the fraction of dose D absorbed, and V,  is the apparent 
volume of distribution of the drug. Techniques used to obtain values for the 
parameters which make up equation (1), include manual methods and 
computer-based non-linear regression calculations using least-squares and 
maximum likelihood criteria. The manual methods, known as the method of 
residuals6 and the Wagner-Nelson method,’ are used mainly to provide initial 
estimates for the parameters of the model. These are then further utilized as 
the starting points for the iterative algorithms of the non-linear estimation. 
This procedure is entirely satisfactory if suitable computer programs and 
services are available. 

The inherent drawback of all graphical techniques is that they do not 
provide a unique set of parameter estimates; they are subject to the bias of 
the investigator. This bias can be removed by using an appropriate algorithm 
on a computer. The accuracy of the estimates and the rate of convergence 
depend on the goodness of fit of the model to the observed data and the 
nature of those data, e.g. the number of minima and the contour. In some 
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cases, however, programs for non-linear regression analysis may fail to yield 
convergence when the graphical estimates are poor.' Moreover, improve- 
ment of the estimates becomes impossible when either computer facilities or 
the special pharmacokinetic modelling program needed is unavailable. 

It would therefore be of value to establish an alternate method which, 
without computer assistance, gives more accurate estimates of the parameters 
than those obtained by the graphical techniques. 

THEORETICAL SECTION 

Recently, it was found' that a method based on equation (2), 
h , + k  

- - ' I  FD 
(Ch?)  = - k;,t . e 

Vd 
' 

is superior to the conventional method of residuals when applied to the 
analysis of the linear one-compartment model in cases where the rate 
constants have comparable values. 

This equation can be written in a linearized form: 

k, + k 

2 
In [(Cbl)/t] = In (FDkJVd)  - - f ( 3 )  

which shows that a plot of In [(ch2)/ t ]  versus time gives a straight line with an 
intercept equal to In (FDk,/Vd) and a slope of - ( k ,  + k)/2. 

By dividing equation (1) by equation ( 2 )  and rearranging the following 
equation is obtained: 

k ,  - k k ,  - k 
- I  - - I  

( c h )  e - e  I- - 
(Ch2) (k,-k) i 

or, more simply: 
(chi) ewr - e-W' 
-= 
(chi) 2Wr (4) 

where W = (k ,  - k)/2. This step eliminates FDIV, from the equations and 
yields equation (4) which is monoparametric. In fact, for a given time, f, 
( c b , ) / ( c b , )  is solely determined by W ,  i.e. half the difference between the rate 
constants. Accordingly, equation (4) can be employed to give the 
corresponding ( c h 2 )  values for all experimental (cbl, t) data points, provided 
that W is known or postulated. 

The steps for estimating the parameters of the model, using equations ( I ) ,  
( 3 ) ,  and (4), are as follows: 
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1. Apply a graphical method to determine initial estimates for the model’s 
parameters. Calculate the sum of the squared deviationsdS, by the following 
equation where ( c b l ) i  is the observed concentration, (cbl)i is the calculated 
drug concentration, and n is the total number of data points: 

Calculate the value of W from the graphical estimates of k,  and k .  
2. From a concentration-time plot of the experimental data along with the 
generated data based on the parameter estimates obtained in step 1, evaluate 
visually the goodness of fit as well as the overestimation or underestimation of 
W. Compute (cb,) values for all [ (cb , ) ,  t] data points from equation (4) using 
values of W in the neighbourhood of the initial estimate. 
3. Using equations (3) and (4), calculate [(Cb,), t] values and determine sets 
of estimates for the parameters of the model, i.e. FDIV,, k,  and k .  
4. Compute the ( c b , )  values from equation (1) for each set of the model 
parameter estimates obtained in step 3 .  Calculate the sum of the squared 
deviations, SS, between the observed concentrations and the concentrations 
predicted by the model for each set of parameter estimates. Select the set of 
parameter estimates which yield the lowest value of SS. 

The model described assumes that drug absorption commences at t = 0 but it 
is sometimes desirable to incorporate a lag time (to) to allow for delay in the 
onset of the process. The model now becomes, 

(5 ) 

Applying the method,’ used to derive equation (2) from equation (l), to 
equation ( 5 ) ,  gives: 

L + k 

2 
- ~ ( r  - I O )  FD 

- V‘I 
(Cb,) = __ k;i(f - f 0 )  ’ e 

which can be written in a linearized form 

The concentration ratio equation can be obtained in an analogous manner, 
i.e. 

eW(r-r~~) -e- W(r-mj 
I- - (cb 

(Cb2) 2 W(t- 4))  (7) 
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Equations (6) and (7) should be utilized whenever lag-time corrections are 
necessary. Early data points of the absorption phase can provide an estimate 
for to. 

RESULTS AND DISCUSSION 

An Example. Simulated data were utilized to illustrate the application of the 
method. One set of data with 5 per cent random noise was generated using 
equation (1) with FDIVd = 10, k, = 0.495 and k = 0.330 (Table 1). 

Application of the graphical method of residuals, using the three last points 
of the terminal phase to estimate k ,  yielded the values for FDIV,, k,, k ,  W, 
and SS listed in Table 2. The data generated from equation (l), using these 
estimates along with the simulated data of Table 1, are presented in Figure 1. 
From Figure 1, it is clear that the magnitude of the difference between rate 
constants, i.e. W = ( k ,  - k) /2 ,  is overestimated by the method of residuals. 
This means that a lower value of W, than the estimate 0.1845 (Table 2, 
encircled), would fit the data more closely. 

To test this argument and obtain a set of parameter estimates capable of 
giving a better fit, six values close to the graphically-determined value were 
assigned to W (Table 2). The data were analysed as described in the 
Theoretical Section and the results obtained are also listed in Table 2. As 
anticipated, the higher value for W, 0-230, gave worse estimates than the 
method of residuals, demonstrated by the high value of SS (Table 2). A 
general view of the influence of varying Won the goodness of fit is shown in 
Figure 2 by the plot of SS versus W .  As can be seen, the lower value of SS 
obtained corresponds to the value of 0.080 for W which also gives the lower 
per cent errors for the parameter estimates (Table 2). 

Table 1. Simulated concentration data using equation (1) 

Time 
~ ~~~~ 

Concentration with Concentration with 
rounding error 5% noise 

0.25 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
8.0 

10.0 
12.0 

1.12 
2.01 
3.28 
4.36 
4.35 
3.87 
3.24 
2.60 
1.57 
0.89 
0.49 

1.13 
2.02 
3.25 
4.29 
4.35 
4.12 
3.14 
2.44 
1.56 
0.90 
0.50 
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Figure 1. Experimental data (A),  and data generated from equation 1 (A) using the parameter 
estimates obtained by the method of residuals 

The example considered indicates that the key step for the improvement of 
the parameter estimates relies on the appropriate choice of the initial 
estimates for W .  Undoubtedly, a concentration-time plot of the experimental 
data along with the generated data based on the graphical estimates, would be 
of great value. This sort of graph is critical in deciding whether higher or 
lower values than the graphically estimated W should be utilized. When 
conclusive information from the plot cannot be drawn, it is advisable to 
allocate both higher and lower values to W and treat the data as shown in 
Figure 2. Thus, a parabola will be delineated and the choice of the 
appropriate value(s) for W will be facilitated. In the example, the low 
theoretical value of W used, i.e. 0.0825, produced a long, gently sloping 
valley at the left-hand side of the SS versus W plot. In cases, however, where 
a high value for W was assumed, the curves of the SS versus W plot were 
parabolas with sharp minima. 
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The method described here appears to be the best approach to improving 
upon the graphically-determined estimates of the parameters of equation (1) 
when computer facilities are unavailable. Although essentially new, the 
method can be handled computationally by repeated calculations of a simple 
and universally available linear least-squares routine supplemented by a few 
additional calculations, as illustrated in the example. The method does not 
provide ‘the best fit’, as computer programs do; however, remarkable 
improvement of the estimates can be achieved. The determination of the 
importance of this method of parameter estimation in pharmacokinetics will 
require further experimentation, which it is hoped, this report will facilitate. 
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