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ABSTRACT: Four different parameter estimation criteria, the geometric mean functional relationship
(GMFR), the maximum likelihood (ML), the perpendicular least-squares (PLS) and the non-linear
weighted least squares (WLS), were used to fit a model to the observed data when both regression
variables were subject to error. Performances of these criteria were evaluated by fitting the co-operative
drug–protein binding Hill model on simulated data containing errors in both variables. Six types of data
were simulated with known variances. Comparison of the criteria was done by evaluating the bias, the
relative standard deviation (S.D.) and the root-mean-squared error (RMSE), between estimated and true
parameter values. Results show that (1) for data with correlated errors, all criteria perform poorly; in
particular, the GMFR and ML criteria. For data with uncorrelated errors, all criteria perform equally well
with regard to the RMSE. (2) Use of GMFR and ML lead to lower values for S.D. but higher biases
compared with WLS and PLS. (3) WLS performs less well when equal dispersion is applied to the two
observed variables. Copyright © 2000 John Wiley & Sons, Ltd.
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Introduction

In various fields of pharmaceutical sciences it is
not uncommon to deal with problems associated
with non-linear regression analysis where both
observed variables are subject to experimental
error. In such situations, the regression model is
known as the errors-in-variables model [1]. Typ-
ical examples are the Scatchard and Hill equa-
tions in binding studies [2,3] and the phar-
macokinetic–pharmacodynamic relationships,
e.g. Emax model, which is based on pharmaco-
dynamic readings and plasma drug con-
centration measurements [4,5]. In these studies,
data are analysed by regression analysis using
the standard least-squares criterion, assuming

that one variable is not subject to error and may
be considered as the independent variable. How-
ever, when both variables are subject to experi-
mental error, parameter estimates derived from
approaches utilizing this criterion cannot be con-
sidered valid.

In statistics literature, when both observed
variables are subject to error, the geometric
mean functional regression criterion (GMFR) [6]
has been widely applied in fitting straight lines,
e.g. in fishery studies and for the estimation of
growth rates [7,8]. More recently, GMFR has
been applied to the analysis of drug–protein
binding data, according to the Scatchard model
for one class of binding sites [9]. The errors in
both variables in protein binding studies usually
originate from the routine, but naive use of the
difference between the total and the measured
bound concentration to compute the unbound
concentration. Undoubtedly, the limitations of
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this approach have been realised in literature
and other methods that use total concentration
as the independent variable have been reported
[10,11].

Consideration has also been given to the er-
rors in both variables in fitting straight lines
using the perpendicular least-squares (PLS)
criterion [12,13]. However, there have been spo-
radic applications of non-linear regression analy-
sis with errors in both variables [1,6,14,15]. This
study was undertaken in order to evaluate the
performances of three different criteria, the
GMFR, the PLS and the maximum likelihood
(ML) criterion, to the analysis of data that are
currently analysed with the least-squares crite-
rion in spite of the fact that both variables are
subject to error. To this end, the weighted forms
of the three criteria were applied to co-operative
drug–protein binding data using simulated data
generated from the Hill model, to which error
was added to both variables. For comparative
purposes, the weighted least-squares (WLS)
criterion was also applied.

Estimation Criteria and the Binding
Model

The GMFR criterion has been recently discussed
[6,9,16]. The estimates derived from the GMFR
approach minimize a cost function, based on the
sum of the triangular areas formed by connect-
ing the experimental data points to the regres-
sion line, with lines parallel to the co-ordinate
axes. Although the areas summed and mininized
when GMFR is applied in non-linear regression
are not exact triangles [6], triangular areas were
considered to be formed in order to simplify the
iterative process.

The PLS criterion has been also discussed re-
cently [15]. In this criterion, the sum of squared
perpendicular distances, which represent the
shortest distance between the data points and
the predicted curve describing the relationship
between the two variables, is used as an objec-
tive function for minimization in non-linear
regression.

The ML criterion is derived from the classical
ML principle [17,18] when several variables are
observed. From a geometrical point of view, ML

minimizes the area of ellipses tangential to the
predicted curve and centred at the observed
data. The ML criterion is described in Appendix
A.

For the WLS criterion, the sum of squared
vertical distances is used as the objective func-
tion for parameter optimization [1,17].

The co-operative drug–protein interaction
based on the site-oriented binding model [19,20]
is described by the following equation:

r=
n ·K ·Fh

1+K ·Fh (1)

where r is the ratio of the molar concentration of
the bound drug divided by the total protein
molar concentration, and F is the molar concen-
tration of the free drug. In most of the protein
binding studies focusing on the estimation of
binding parameters, the experimenter endeav-
ours to set the total protein concentration and
the total drug concentrations at certain targeted
values. This model is termed the controlled
errors-in-variables model [1]. Then, r and F are
observed m times with a measurement error.
The unknown parameters of the Hill model are
n, the number of binding sites per protein
molecule; K, the binding association constant;
and h, the Hill exponent. These parameters are
to be estimated from the m observed {Fj

� rj
�},

j=1, m pairs, using the previously presented
criteria.

Typical values for parameters n, K and h are 1,
5·106 M−1, and 2, respectively. They lead to the
observed pairs Fj

� and rj
� ranging from 2·10−6

to 4·10−3 M, and from 0 to 1 or 2, respectively.
Due to the problems associated with estimation
of parameters of very different magnitudes, the
observed variable F was rescaled by F=a ·F( .
According to this scaling, the regression will be
between F( j� and rj

� pairs without distortion of
the statistical characteristics of the measurement
error. The resulting Hill model is of the same
structure as Equation (1) but it embodies a new
parameter to be estimated, K( =ah ·K.

Simulation Study Design

To compare the four criteria and assess their
performances in the parameter estimation

Copyright © 2000 John Wiley & Sons, Ltd. Biopharm. Drug Dispos. 21: 7–14 (2000)
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problem, a simulation study was undertaken. To
this end, theoretical parameter values were set to
the Hill equation, n0=1, K0=5·106 M−1, and
h0=2. Using these values and after specifying
the range of F values (2·10−6 to 4·10−3 M),
m=20 values for {Fj rj} j= l, m pairs were com-
puted. Fj values were logarithmically equally
spaced (i.e. log Fj were linearly equally spaced)
in the specified range. The scaling factor was set
to a=10−3 and consequently, K( 0=5 M−1.

These errorless data were disturbed by het-
eroscedastic two-dimensional measurement er-
rors having various statistical characteristics:
uniform (U) or Gaussian (G) zero-mean random
errors associated with equal (E) or not equal (H)
dispersion on the two components; furthermore,
for the G case, we designed correlated (C) or
uncorrelated (R) components. Combination of all
these cases led to six types of measurement
errors, UE, UH, GER, GHR, GEC and GHC. The
coefficients of variation for the heteroscedastic
measurement error on F and r were w/q and w,
respectively. The coefficient w was set to 10%
and the E and H cases were obtained with q=1
and q=4 (16-fold higher dispersion on the ob-
served variable r than on F), respectively. The
correlation coefficient was set to c= −0.8 as a
compromise between the rather unusual strong
correlation case and the uncorrelated case. It is
known that the bound drug is calculated as the
difference between total drug and free drug con-
centrations. Consequently, a negative value for
the correlation coefficient was used, as a positive
error in the measured free drug concentration
will result in a negative error for the bound
drug. Appendix B gives full details of the error
generating processes.

Comparison of U and G models will allow
analysis of sensitivity with respect to the error
model distribution. Comparison of E and H will
reveal the influence of the relative magnitude of
dispersion in variables while comparison of R
and C cases in G models will clarify the impor-
tance of correlation between variables in the
drug–protein binding experiments.

A total of N=500 sets of data were generated
for each type of error added. Finally, the Hill
model was fitted to all sets of data using succes-
sively the four criteria GMFR, PLS, ML and
WLS. Optimization programmes used the

Nelder–Mead simplex algorithm. Simulations
and optimizations were done under the MAT-
LAB 5.2 programming environment [21]. The
number of call functions and the run time were
also recorded in order to evaluate technical
performances.

After parameter values, xi
(k) i=1, N (x may be

one of n, K( and h), were estimated using GMFR,
ML, PLS and WLS criteria (k=1, 2, 3 and 4,
respectively), the difference between the theoret-
ical x0 and the estimated values xi

(k) were calcu-
lated as a measure of the validity of the
approaches. The results of this simulation study
were evaluated statistically. The root-mean-
square relative error (RMSE) was calculated ex-
pressing the spread of the estimated values
around the theoretical ones. Then, RMSE was
split into its two components, namely the rela-
tive standard deviation (S.D.), which evaluates
the spread of xi

(k) around their average value x�
(k),

and the relative bias (bias), which provides the
difference between x0 and x�

(k). Furthermore, the
ratios [S.D./RMSE] and [bias/RMSE] were com-
puted in order to express the contribution of
S.D. and bias to the total variability. The sum of
these ratios equals 1 as they are complementary
indexes. All these measures are presented in
Appendix C and they are expressed as percent-
ages (%).

Results

Figure 1 illustrates the fit of the Hill model to a
dataset corresponding to the GER case utilizing
the four criteria. WLS and PLS criteria led to
estimates that predicted very similar model be-
haviours. Table 1 contains the estimated model
parameters. Whereas h is correctly estimated by
the four criteria, K( is underestimated by ML and
overestimated by WLS and PLS. One can also
observe that estimations of n obtained by ML
and GMFR are closer to the theoretical value.

For the various types of the measurement error
and for each model parameter, Figures 2–4 show
the associated RMSE, [S.D./RMSE] and [bias/
RMSE] values, respectively.

1. According to Figure 2, the values of RMSE
are strongly dependent on whether or not the

Copyright © 2000 John Wiley & Sons, Ltd. Biopharm. Drug Dispos. 21: 7–14 (2000)
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Figure 1. The fit of the Hill model to a dataset generated
under the GER noise conditions using the GMFR, PLS, ML
and WLS criteria (thin lines). The theoretical curve (thick
line) and the observed data (	) are also presented. For the
sake of clarity, the four data points with Fj

�B10−5 M are
not shown

Figure 2. Bar charts for RMSE computed for the model
parameters

Table 1. Example of model parameters estimated by the
four fitting criteria

n K( h

2.0265.1830.951GMFR
4.120 1.9530.957ML

0.915 7.050PLS 2.07
0.918 6.318 2.051WLS

The dataset was generated under the GER noise conditions (see text
for full details) with n=1, K( =5 M−1 and h=2.

observed variables are correlated. When cor-
relation exists, high values for RMSE were
observed and all criteria performed unsatis-
factorily. Due to the extremely high RMSE
values for K( , the ML and GMFR criteria are
not recommended. Thus, subsequent com-
ments concern only the uncorrelated types of
the measurement error.

2. All criteria perform equally on RMSE for the
U and G error distribution models; the RMSE
scores were similar (Figure 2). The highest
RMSE was found for K( while the smallest for
h. As expected the WLS criterion showed the
poorest performance when the random error
was equally dispersed on the two observed
variables (Figure 2).

3. The GMFR and ML criteria performed better
than WLS and PLS for both parameters K(
and h with regards to the ratio [S.D./RMSE]
(Figure 3). However, GMFR is the best crite-
rion for n (Figure 3).

4. On the contrary, GMFR and ML lead to more
biased estimates than WLS and PLS (Figure
4). In addition, the criteria of GMFR and ML
seem to be particularly influenced by the
relative magnitude of the random error dis-
persion between the observed variables when
estimating K( and h.

All fits were carried out using the Nelder–
Mead simplex algorithm for the non-linear re-
gression procedure. The final parameter
estimates did not depend on their initial guesses.
Starting with [2 1 1] as arbitrary guess

Copyright © 2000 John Wiley & Sons, Ltd. Biopharm. Drug Dispos. 21: 7–14 (2000)
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Figure 3. Bar charts for [S.D./RMSE] computed for the model
parameters

Figure 4. Bar charts for [bias/RMSE] computed for the model
parameters

Discussion

Special procedures are used in the literature for
fitting purposes in those situations where both
variables are subject to error [1,9]. It is well
known that in such errors-in-variables models,
bias and lack of precision may lead to incorrect
parameter estimations when the optimization
criterion is not well adapted to the statistical
context. Nevertheless, bias as a component of
RMSE is less of a problem. Known bias can be
easily removed [22], while unknown bias, as in

values, the algorithm converges quickly to the
theoretical values [1 5 2] after 180–250 crite-
rion function calls. Nevertheless, the computing
time is 80-fold longer for the PLS criterion when
compared with the other criteria. This is due to
the fact that the PLS criterion involves a numer-
ical bisection method to find the shortest dis-
tance between the fitted curve and the data
points [15].

Copyright © 2000 John Wiley & Sons, Ltd. Biopharm. Drug Dispos. 21: 7–14 (2000)
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the case of real data, can be reduced by using a
resampling procedure [23].

The present study shows that the perfor-
mances of the four fitting criteria are strongly
dependent on the type of measurement error. It
was found that the modelling of data led to
unacceptable parameter estimates when correla-
tion existed between the errors on both vari-
ables. In such situations, it is advisable to use
more sophisticated criteria, e.g. the method of
scoring or others [1].

For data with uncorrelated errors, neither the
PLS nor the GMFR criterion provided clearly
better estimates for the model parameters when
compared with the estimates derived from ML
and WLS. When the errors associated with the
two variables differ considerably, the GMFR
criterion performs equally well with the other
criteria.

A particular behaviour was noted for the esti-
mates of n when compared with the K( and h
estimates; n was the less sensitive parameter in
respect of the estimation criterion and the type
of simulated measurement error. Indeed, n occu-
pies a linear position in the model and it merits
a special consideration in the estimation proce-
dure [18,24].

In practice, when real data are analysed, the
scaling factor a should be selected close to the
maximum value of F. After parameter estimation
with this value, it may be further refined by
locally tuning a in order to keep the same order
of magnitude for all scaled parameters.

A major problem with the errors-in-variables
models is that in addition to the main parame-
ters of interest, there are also incidental parame-
ters relating to the distribution of the random
regressors (e.g. the mean values of the regres-
sors). This creates complications, such as incon-
sistent ML estimates or variance–covariance
matrices that are not given by the inverse of the
expected information matrix, or other relevant
measures. One way of overcoming these prob-
lems is to sufficiently replicate the experiment.
With replication, the expected information ma-
trix can be evaluated and the confidence inter-
vals computed [1]. Since the design of protein
binding experiment follows what we call a con-
trolled errors-in-variables model, the targeted F
values appear as the control variables of confi-

dence intervals. On the other hand, D-optimal
designs are intended to reduce the size of con-
fidence intervals by selecting the appropriate
control variables. Using D-optimal design tech-
niques, one may calculate an optimal distribu-
tion of F values in the experimental range (other
than the logarithmically or linear spaced values)
leading to more precise parameter estimates.
Therefore, in order to further improve precision
of parameter estimates, replication of experi-
ments and the use of D-optimal designs are
recommended [25].

Conclusions

Despite the apparent simplicity of the Hill model
for co-operative binding processes, the analysis
of simulated data with added noise revealed
several surprises, which are due to the error
components in both observed variables, r and F.
To avoid unreliable parameter estimates, one
must first rescale the model by a simple linear
transformation on observed F data. Further, re-
consider the estimation procedure by eliminat-
ing the linear parameter n in the non-linear
regression [18,24].

Extreme caution should be exercised when the
observed variables are highly correlated. If cor-
relation exists, the ML and GMFR criteria are not
recommended. For uncorrelated data, GMFR or
ML may be used. The fitting criteria studied do
not seem to be sensitive to the error distribution
model. Finally, the WLS criterion is sensitive to
the relative magnitude of error dispersion on the
observed variables.

Appendix A

The Maximum Likelihood Criterion

The statistical model is the following:

Fj
�=Fj+eFj

rj
�=r(Fj, x6 )+erj

=rj+erj
(A1)

with j=1, m and where x6 is the vector of model
parameters. Errors eFj

and erj
are considered as

components of the two-dimensional random
measurement vector e6 j i.e. e6 j

T= [eFj
erj

]T, and

Copyright © 2000 John Wiley & Sons, Ltd. Biopharm. Drug Dispos. 21: 7–14 (2000)
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they are dependent on the values of model
parameters x6 , i.e. e6 j(x6 )

For the observed sample j, it is usually as-
sumed that e6 j(x6 ) can be adequately described by
a zero-mean Gaussian distribution with covari-
ance matrix Vj. For a heteroscedastic model of
error variance, Vj may be factored as

Vj=Yj ·W ·Yj, with Yj=
�Fj 0

0 rj

n
and W a symmetric definite-positive matrix. If
the e6 j(x6 ) sequence is independent, the ML esti-
mation principle specifies the structure of the W
matrix

W(x6 )= 1
m

· %
m

j=1
Yj

−1 ·e6 j(x6 ) ·e6 j
T(x6 ) ·Yj

−1

and leads to the minimization with respect to x6
of the following criterion function:

J= − %
m

j=1
ln�Yj �−

m
2

·ln�W(x6 )�

In the above expressions, the superscripts −1
and T denote matrix inversion and transposition,
respectively, and � · � denotes the matrix determi-
nant [17,18].

Appendix B

Simulation of Measurement Errors

For the simulation of various types of measure-
ment errors, e6 j was assumed to be distributed
according to a uniform (U) or Gaussian (G)
probability density function with zero-mean and
covariance matrix Vj.

(1) For a U distribution with uncorrelated
components

Vj=
1
12

�aj
2 0

0 bj
2

n
where aj and bj are the range widths of the eFj

and erj
errors, respectively. For the heteroscedas-

tic model of error variance, we have

aj
2

12
=

w2

q2 ·Fj
2 and

bj
2

12
=w2 ·r j

2

or

aj=
w
q

·Fj ·
12 and bj=wj ·rj ·
12 (B1)

Thus, giving the theoretical {Fj rj} j=1, m
pairs, we computed first aj and bj from (B1) and
then we generated uniform distributed random
errors eFj

and erj
from the ranges [−aj/2 +aj/

2] and [−bj/2 +bj/2], respectively [21]. Ob-
served pairs were obtained from (A1).

(2) For a G distribution

Vj=
�vFj

2 vFrj

vFrj
vrj

2

n
where vFj

2 and vrj

2 are the variances, and vFrj
the

covariance of eFj
and erj

. For the heteroscedastic
model of error variance, we have

vFj

2 =
w2

q2 ·Fj
2,

vrj

2 =w2 ·r j
2 and vFrj

=c ·vFj
·vrj

(B2)

where c is the correlation coefficient. Thus, giv-
ing the theoretical {Fj rj} j=1, m pairs, we
computed first vFj

2 , vrj

2 and vFrj
from Equation

(B2) and then we generated zero-mean Gaussian
random errors eFj

and erj
with covariance matrix

Vj [21].

Appendix C

Statistical Indexes

Statistical assessment of the results was per-
formed by evaluation of the k criterion and the
parameter x

1. the RMSE

[RMSE(k)]2=
1
N

· %
N

i=1

�xi
(k)−x0

x0

n2

2. the relative S.D.

[S.D.(k)]2=
1
N

· %
N

i=1

�xi
(k)−x�

(k)

x0

n2

3. the relative bias

bias(k)=
x�

(k)−x0

x0

These indexes are related by

[RMSE(k)]2= [S.D.(k)]2+ [bias(k)]2

Copyright © 2000 John Wiley & Sons, Ltd. Biopharm. Drug Dispos. 21: 7–14 (2000)
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