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Abstract: The diffusion layer model of drug dissolution is used for the simulation of oral drug absorption as well as for the
analysis of experimental data. The governing role of saturation solubility in the rate of dissolution makes this parameter pre-
dominant for biopharmaceutical classification purposes. The hypothesis models and criteria associated with the use of solubil-
ity and dissolution for the biopharmaceutical classification of compounds and marketed drugs are reviewed in this article. The
complex hydrodynamics in the in vitro dissolution apparatuses as well as the motility in the gastrointestinal tract do not allow
the application of the diffusion layer model in these systems, as this has been built and verified in the rotating disk device. The
solubilizing capacity of gastrointestinal fluids media is higher than the aqueous saturation solubility usually reported and used
for biopharmaceutical purposes. Emphasis is given on the reaction-limited model of dissolution which provides a useful alter-
native not based on diffusion principles. Model independent dissolution parameters are more useful for regulators as our
knowledge for the dissolution mechanism(s) under in vivo conditions is limited.

Scientific research is based on data interpretation. This task
is usually accomplished with the classical hypothesis-model-
fitting exercise; the results of the model fitting to the data
lead to either the verification or the rejection of the hypothe-
sis associated with the model employed (fig. 1). This type of
studies has been extensively applied in biopharmaceuticals
with a special emphasis on the gastrointestinal absorption of
drugs [1–5]. These studies have demonstrated that the solu-
bility and dissolution rate, together with the intestinal
absorptive potential of a drug (permeability) are of major
importance for the bioavailability of a drug. In this context,
the tube model [3] which considers constant permeability
along the intestines, a plug flow fluid with the suspended
drug particles moving with the fluid, and dissolution in the
small particle limit has been used for the development of the
biopharmaceutical classification system [6]. According to the
biopharmaceutical classification system as well as the rele-
vant FDA guidance [7] on biowaiver of in vivo bioavailability
and bioequivalence, a substance is classified in one of four
drug classes on the basis of its aqueous solubility and intesti-
nal permeability.

However, several concerns have been raised for the perme-
ability classification of drugs, and a biopharmaceutical drug
disposition classification system based on the extent of drug
metabolism has been proposed [8,9]. Similarly, several

reports in the literature indicate either the conservatism of
solubility-dissolution criteria [10–12] or suggest other
approaches for solubility-dissolution classification [13–16].

In this work, we re-assess the fundamental assumptions
used for solubility and dissolution in respect of the biophar-
maceutical classification of drugs taking into account the rel-
evant experimental in vitro and in vivo observations.

The Basic Hypothesis: Drug Dissolution Follows the Diffusion
Layer Model

Background.
Dissolution research began more than a century ago [17].
The dissolution process of a solid drug is mainly described
by eq. (1), the so-called Noyes-Whitney equation [18] and its
modified form of Nernst and Br�nner [19,20]:

dC
dt
¼ kðCs � CÞ ð1Þ

where k is the dissolution rate constant, Cs is the saturation
solubility of drug and C is the concentration of the bulk
fluid at time t. Eq. (1) relies on the diffusion layer model
which assumes that a thin diffusion layer is formed around
the solid surface and through which the dissolved drug mole-
cules diffuse to the bulk aqueous medium. In reality, dissolu-
tion is a heterogeneous process which takes place in two
steps: (i) a reaction at the solid-liquid interface (interfacial
transport) and (ii) transfer of the dissolved species through
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the diffusion layer to the bulk aqueous phase. Thus, eq. (1) is
used to describe drug dissolution when the rate of diffusion
of the species is much slower than the reaction at the solid-
liquid interface. The extensive use of eq. (1) in biopharma-
ceutics is associated with its mathematical simplicity and the
governing role of saturation solubility in the rate of drug dis-
solution. However, recent articles [21,22] provide a detailed
description of the conditions and assumptions associated
with the use of eq. (1).

Hydrodynamic conditions.
According to Levich [23], eq. (1) represents a theoretically
sound expression only for diffusional flow in a static medium
and not in a medium in motion. For this reason, Levich [23]
developed the theory of convective diffusion of solute in liq-
uids and derived relationships for the thickness of the diffu-
sion layer and the agitation rate of the rotating disk
apparatus [24]. In parallel, a series of fluid dynamic models
[21] rely on diffusion principles and the assumption of the
unstirred fluid layer, too.

Most of the studies dealing with the diffusion layer model
are performed in the rotating disk device where the surface

area and the hydrodynamic conditions are perfectly con-
trolled. The results of these studies clearly demonstrate the
predominant role and effect of agitation conditions on the
rate of drug dissolution. However, these results cannot be
extrapolated to the official dissolution tests as recent studies
based on computational fluid dynamics revealed the com-
plexity of the fluid flow in these systems [25–27]. Needless to
say that dissolution results in various official dissolution tests
differ because of the differences in agitation rate. Moreover,
the variable and heterogeneous conditions and volume con-
tent of the gastrointestinal fluids [28,29] are extremely dis-
similar if compared with the flow of liquid in the rotating
disk device.

Saturation solubility – supersaturated dissolution data.
According to eq. (1), the saturation solubility is the driving
force of the dissolution rate. A variant of eq. (1) has also
been used in the seminal biopharmaceutical classification
system work [6] and therefore it is not surprising that the
biopharmaceutical classification system adopts the aqueous
solubility for classification purposes. This development
induced a plethora of solubility and dissolution studies for
Class II drugs which exhibit dissolution-limited absorption
using media most akin to the in vivo conditions. One of the
avenues followed in this field of research is the study of the
solubility and dissolution properties of poorly soluble drugs
in either food-mimicking media, for example milk [30,31] or
biorelevant media [31–33]. Alternatively, human aspirates
were used to study drug solubility and dissolution in the gas-
trointestinal tract [34–37]. Although most of the lipophilic
drugs were found to be more soluble in milk than in aqueous
media [30,31], the solubility of danazol and felodipine in
HCl under- or over-estimates their intragastric solubilities,
respectively [34,35]. Overall, the solubility data in human
gastric aspirates have high intra- and inter-subject variability
[34] while the solubilizing capacity of human intestinal fluids
in the fed state is strongly time-dependent [37]. This type of
variability is inherently associated with the dynamics of the
processes in the gastrointestinal tract, which cannot be mim-
icked under in vitro conditions, and is one of the reasons for
the failure of IVIVC [38].

Eq. (1) and its variants are also unsatisfactorily applied
when supersaturated dissolution data are encountered. These
dissolution curves exhibit an initial rapid increase to a con-
centration maximum followed by a progressive diminution
towards a steady-state value, usually corresponding to the
saturation solubility of the drug in the dissolution medium
used [39,40]. This type of dissolution curves are observed
when solid dispersion formulations and co-precipitates of
drugs with polymers are used. Also, non-monotonic dissolu-
tion curves are observed when the drug exhibits polymor-
phism. In this case, only one of its forms is the most
thermodynamically favourable at a given temperature, the
one having the lowest Gibbs energy. During the dissolution
process, there is a concentration increase to a maximum
value, then a solution-mediated transformation takes place
(i.e. from anhydrous to hydrate form) and finally the solution

Fig. 1. Development of new scientific theory is based on hypothesis
testing and validation through experiments. Mathematical modelling
based hypothesis testing fits very well within this context and helps
to validate, refine or even reject altogether the hypothesis. In situa-
tions of a well founded verification of the hypothesis, the model can
be used as a basis for the construction of a scientifically based guide-
line in the relevant field.
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is stabilized to a steady-state value, where the form with the
lowest Gibbs energy dominates [41]. However, several reports
in the literature provide conclusive evidence of supersatu-
rated dissolution profiles for compounds which do not exhi-
bit polymorphism, such as amorphous itraconazole particles
[42]. Supersaturated dissolution behaviour for inorganic
compounds for example metal oxides with no polymorphism
or phase transitions has been reported, too [43].

Recent studies dealing with kinetic solubility and supersat-
urated phenomena [44,45] place particular emphasis on the
relevance of supersaturated solubility with the biopharma-
ceutic classification of drugs. Moreover, supersaturated solu-
bilities are frequently found in studies measuring drug
concentrations in human aspirates while the subsequent pre-
cipitation of drug has been the subject of several studies
[46,47]. Again, the analysis of supersaturated-precipitation
dissolution data using the Nernst-Br�nner modified form of
eq. (1) failed unavoidably [47].

Overall, the dynamics of the in vivo supersaturated phe-
nomena as well as the in vivo hydrodynamics are insuperable
obstacles for mimicking drug solubility-dissolution under
in vitro conditions. These observations indicate that the
design of a unique dissolution test to be used reliably as a
prognostic tool of oral drug absorption will not appear in
the near future.

Reaction-Limited Model of Dissolution: An Overlooked
Alternative

Recently, the long history of the ‘interfacial barrier model’
or ‘reaction-limited model’ in dissolution was reviewed [22].
Its limited use in drug dissolution is due to the prevalence of
the rotating disk apparatus in the mechanistically driven dis-
solution studies. The mild and fully controlled agitation con-
ditions of the rotating disk experiments favour the
predominance of the slower step, namely, the diffusion of
dissolved drug molecules over the interfacial transport. Even
the reactive terms in diffusion-convective equations used in
rotating disk experiments are considered instantaneous and
ignored. However, as it was mentioned above, the hydrody-
namics and by logical extension the drug’s dissolution mech-
anism(s) in the rotating disk device are different from the
various official dissolution apparatuses as well as the gastro-
intestinal lumen.

Although Miyamoto [48] explained the classical Noyes-
Whitney relationship using Boltzman’s thermodynamic prin-
ciples as early as in 1933; a well founded mathematical model
for reaction-limited dissolution has not been proposed until
recently. During the last 10 years or so, three reaction-limited
approaches which do not rely on premises of diffusion princi-
ples were reported [22,49,50]. The most recent of these
approaches [22] is based on the bidirectional chemical reac-
tion of the undissolved drug species with the free solvent
molecules yielding the dissolved of drug complex with sol-
vent. The rate of dissolution is driven by the concentration
of undissolved species and the saturation solubility corre-
sponds to the concentration when the reaction equilibrium is

reached. In that work [22], the model equation developed
was applied successfully to dissolution data sets measured in
official apparatuses. Also, the governing role of the satura-
tion solubility in the dissolution process associated with the
diffusion layer model was not verified [22]. This observation
underlines the importance and the potential of application
of reaction-limited approaches in the simulation of oral drug
absorption where classical diffusion principles are not appli-
cable due to the heterogeneous composition and structure-
function of the gastrointestinal tract [28,29].

Biopharmaceutical Classification of Drugs Based on Solubility
and ⁄ or Dissolution

Since the mid 1980s, there has been emphasis on the
approaches correlating the drug’s biopharmaceutical proper-
ties with the fraction of dose absorbed. The first approach
for a biopharmaceutical drug classification was published in
1989; the estimate of the drug’s ‘absorption potential’ was
used for the classification of drugs in three categories [1].
Later on, Oh and coworkers [3] using the tube model
revealed that three fundamental parameters, namely dissolu-
tion, absorption and dose numbers, control the extent of oral
drug absorption. The latter approach has been the basis for
the formulation of Biopharmaceutics Classification System
[6]. Each substance is classified on the basis of its aqueous
solubility and intestinal permeability and four drug classes
were defined: high solubility ⁄ high permeability (Class I), low
solubility ⁄ high permeability (Class II), high solubility ⁄ low
permeability (Class III) and low solubility ⁄ low permeability
drugs (Class IV). According to the FDA relevant guidance
[7], a substance is classified as highly soluble when the high-
est dose strength is soluble in 250 ml or less of aqueous
media over the pH 1–7.5, while a drug product is defined as
rapidly dissolving when no less than 85% of the dose dis-
solves in 30 min. using USP Apparatus I at 100 rpm in a vol-
ume of 900 ml in 0.1 N HCl, as well as in pH 4.5 and 6.8
buffers.

As the dissolution process in the biopharmaceutical classi-
fication system article has been modelled with a modified
form of the Noyes-Whitney equation [18–20], the dominant
role of the aqueous solubility has been mirrored in the classi-
fication and the biopharmaceutical classification system
guideline [7]. However, our knowledge of the exact dissolu-
tion mechanisms under in vivo conditions is limited; thus,
dissolution-based instead of solubility-based classifications
have been proposed for new molecular entities [15,16] and
marketed drugs [15]. In this vein, model-independent dissolu-
tion criteria such as mean dissolution time [15] and intrinsic
dissolution rate [16] have been proposed for dissolution clas-
sification. Moreover, the dissolution criteria of the FDA
guideline [7] have been found extremely conservative [15]. As
the present criteria [7] for solubility and dissolution refer to
250 and 900 ml, respectively, the harmonization of the vol-
umes into a single volume of 500 ml has been proposed [15].

Overall, the use of the aqueous solubility for biopharma-
ceutical classification is questionable if one takes into
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account the plethora as well as the time dependence of
supersaturated in vivo data published in the literature in con-
junction with our uncertainty of the dissolution mecha-
nism(s) operating under in vivo conditions. As a dissolution
experiment provides information about the solubility of a
drug as well, dissolution-based classification should be
favoured in the future. Also, model independent criteria
should be preferred, for example percentage of dose dis-
solved at a given time point or the mean dissolution time
provided that the constraints of the physiological system are
taken into account, for example mean intestinal transit time.
What is implicit from all above is that we are far away from
a well founded interpretation based on in vitro and in vivo
data of gastrointestinal absorption using the classical hypoth-
esis-model loop of fig. 1. More research is required to
advance our knowledge in this field of research in order to
achieve a valid interpretation of data and build more mean-
ingful criteria in scientifically based guidelines. However, the
current strict solubility and dissolution criteria of the guide-
line [7] simply ensure that the regulation policy remains on
the safe side.
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