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Abstract—Materials are distributed throughout the body of rials are transported through space-filling fractal net-

mammals by fractal networks of branching tubes. Based on the Works Of branchlng tubes The major Contrlbutlon Of the

scaling laws of the fractal structure, the vascular tree is reduced 32 ; ; ; .
to an equivalent one-dimensional, tube model. A dispersion— Westet ‘.""- model I.S the mterpreta.tlortl of the orlglln of
convection partial differential equation with constant coeffi- allometric laws in biology and the finding that the inter-

cients describes the heterogeneous concentration profile of annal structure of living things operates as if they were
intravascular tracer in the vascular tree. A simple model for the four-dimensionaf?

mammalian circulatory system is built in entirely physiological Although these advances of scieffc& provide an

terms consisting of a ring shaped, one-dimensional tube which : . . . .
corresponds to the arterial, venular, and pulmonary trees, suc-anaIySIS of the scaling relations for mammalian circula

cessively. The model incorporates the blood flow heterogeneity 0Ty Systems, mode_ls that describe the transport of ma-
of the mammalian circulatory system. Model predictions are terials along the entire fractal network of the mammalian

fit_ted to published concentration-time data of indocyanine green species are needed, too. Pharmacokinetics and toxicoki-
|njectedt|n hum?ns and _ctirc:_gs. (;,ILose agreerpe(zjnt W?]S f‘?L:”d_W'lth netics which are the fields of science that this kind of
parameter values witnin e expecte pnysiological : : : :
range. ©2003 Biomedical Engineering Society. modeling is of the greatest importance are dommatgd by
[DOI: 10.1114/1.1555627 the concept of homogenous compartméntBhysiologi-
cally based pharmacokinetic models have been also de-
Keywords—Fractal tree, Indocyanine green, Tracer kinetics, Veéloped that define thezdprS'tlon patterns in terms of
Dispersion, Tube. physiological principle$:?®! The development of mod-
els that study the heterogeneity of the flow and the ma-
INTRODUCTION terials distribution inside vascular networks and indi-
vidual organs has also been fruitful in the past
The branching pattern of the vascular system and the years®192328|n this work, we develop a simple model
blood flow through it has continued to be of interest to for the heterogeneous transport of materials in the circu-
anatomists, physiologists, and theoretician8The stud-  |atory system of mammals, based on a single tube
ies focusing on the geometric properties such as lengths,dispersion—convection system which is equivalent to the
diameters, generations, orders of branches in the pulmo-fractal network of the branching tubes.
nary, venular, and arterial tree of mammals uncovered
the principles on which these properties are based. Vas-
cular trees seem to display roughly the same dichoto- TRANSPOFS—AQQBL[:??;RESEION IN THE
mous branching pattern at different levels of scale, a
property found in fractal structuré$’*%35The hydro- Geometrical Considerations
dynamics of blood flow in individual parts of the di- . _ _
chotomous branching network, has been the Subject of We consider a fractal arterial tree that consistsNof
various studies since the flow changes from pulse-wave branching levels where each level consists of parallel
flow in major vessels to Poiseuille-type flow in small Vessels, Fig. (). Each V?353| is connected tovessels
vesseld1416:2027.3Recently, Weset al,* relying on an of the consequent branching lev8IThe vessels are non-
elegant combination of the dynamics of energy transport €lastic tubes, inside which incompressible fluid flows.
and the mathematics of fractal geometry developed a Nonlinearities at the junctions of the vessels are ignored.

hydrodynamic model that describes how essential mate-\We make the assumption that the vessel lengths in each
level k follow a distribution around the mean vallig.

Address correspondence to Panos Macheras, School of Pharmacy,-l_he total flow across a section of the entire tree is con-

University of Athens, Panepistimiopolis, 157 71 Athens, Greece. Elec- Stant (conservation of magsThis allows us to replace
tronic mail: macheras@pharm.uoa.gr the tree with a single one-dimensional tube, an idea that
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A B C path from the top of the tree to the beginning of the level
k, is the value ofx coordinate,

k-1 _ k-1 ‘ nlB_ p(1-K13
x=L=2> Ylo=2, n_”Slo:Tlo- 1)
i=0 i=0 n

Solving the last expression fde yields

31Inly—3 In(x—xnY3+1,n*3)

il B k(x)=1+ nn 2

D \\\\\\‘\‘ Substituting Eq.(2) in the expression oA, we have
2] 13
: lon
S S N 111111 I : i A ___Tdo
A=A — T 18 T TonT3 (€

FIGURE 1. (A) Schematic representation of a dichotomous
branching network. (B) Cross sections at each level. (C) Tree
is replaced by a single tube with continuously increasing The last expression gives the amkéx) of the noncylin-
radius. The area of the cross section of the tube is equal to drical tube, Fig. 1C), as a function of the coordinate
the total area of the cross sections of each level of the tree. . .
(D) Volume preserving transformation of the varying radius Further, a volume preserving transformation allows the
tube (C) to a fixed radius tube. replacement of the varying radius tube with a tube of

fixed radiusrg, the radius of the aortfFig. 1(D)]. This
is accomplished by replacingwith a new coordinate’
with the condition that the constant total flow of the

has been applied before for the transport of gas in the fluid, J=dV/dt, across a section is kept invariant under

pulmonary airway2* Since the tree is not area preserv- th,e t,ran.sformzation. Accord,irwgly, the corresponding area
ing, the total cross section area of subsequent IevelsA (X') is g for eve'ryx  thus, Jdt=d>/=A(x)dx
increases, i.e., the tube is not cylindriddigs. ¥A)— =A'(x")dx’. Integrating, we have [5 A'(x")dx’
1(C)]. However, an appropriate geometrical transforma- =JoA(X)dx. Using Eq.(3) for A(x) and calculating the
tion can be used to replace the noncylindrical tube with integral, we finally get the exact formula of the transfor-
a simple cylinder[Fig. 1D)]. Thus, the fluid velocity — mation,
remains constant throughout the tube in consequence of
this transformation. . 1on'B lont

The derivation of the geometrical transformation is X' = In(x—xn1’3+lon1’3)'
based on the scaling properties of the fractal tree. The
noncylindrical tube is described in terms of a continuous
spatial coordinatex, which replaces theN branching
levels of the fractal tree from the aorta to the capillaries.
Let level O be the top vessel of the tree. The area of the

4

Also, solving Eq.(4) for x, the inverse transformation
can be obtained,

. . . / ’ /
cross section at the beginning of the tubeAig=7r3, " lon*® 1—ex x'(1—n'?) ©
wherer is the radius of the top vesséhe aorta for the nP-1 P )

arterial tre¢. The total cross section at levielof the tree

. _ 2 . . . .

is Ag=riNg, WE?fefk is the radius of the vessel at |nspection of Eq.(4) reveals that the new coordinate

level k andNy=n* is the number of vessef.in reality  system is a kind of “logarithmic scale.” A consequence
the radii at each level, are distributed around the mean  of the transformation is that if we go back to the discrete

valuer,. The variance of the radii distribution produces levels, the length of each level in the new coordinate
the heterogeneity of the velocities. The radii scale ac- system is the same for a, namely,

cording to the “cubic law” branching8=n"% where

B=ry;1/r. These relations give,=r,8" leading to |

Ay=mr2n*3, In the same rationale with the radfiwe 1L =x"(k+1)—x' (k)= n_~n|0' 6)
have for the mean value of the vessel lengths; /I 3n

=y=n"12 and so the length of the vessel at lekels

l,=1o7. The mean value of the total length,, of a wherefi=1—n"3 which is independent ok.
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It should be noted that according to Westal,*? the o/l is almost constant for ak.'® Hence,o |(x) can
larger vesselgaorta and major arteriphave area pre- be expressed using Eg®) and (3):
serving branching. This portion of the tree can be inte-

grated in our model easily by adding an initial cylindri- x—xn3+ynt3
cal segment in the tube modgtig. 1(D)]. This segment 0|(X)=U|o5k(x)=0|on_k(x)/3=# Oi0
does not require any transformation, since both the ra- on
dius of the cylindrical segment and the velocity of the 2
fluid in it are constant. Since this cylindrical segment =m a\o- (10
does not alter the dynamics of the model considerably, it
was left out for simplicity. So,
Solute Kinetics wr(z) )2
o . . : Di(x)=az| 77=5| oiolo- 11
The disposition of a solute in the fluid as it flows ' HAx)) 7100
through the system is governed by convection and dis- _
persion. The convection takes place with velocity The second ternd, (x) of Eq. (8), as already mentioned
originates from the variance of the velocities as a result
wré x—xn¥3+] jn13 of the variance of the radii:
U(X):A(x) Uo= [ 13 Uo- %
0 D, (%) =az0u(X)1(X). (12)

The dispersion consists of three components. The mo-The velocity as a function of the radius is
lecular diffusion which is considered negligible. The
geometrical dispersion which originates from the vari- r2
ance of the path lengths as the blood flows through 0 (13

U(X)=o—~5—~Up.
progressively smaller vessels, and the geometrical disper- NOO)ra(x)

sion which originates from the variance of the velocities.
The latter is due to the variance of the vessel radii. Thus,
the dispersion coefficienD(x), is of the form

So the variance ofi(x) as a function of the variance
r(x) can be derived from error propagation theory

u(x
D(x)=D1(x)+Dr(x), ®) au<x>=2%o,<x), (14)
because the two components are independent from each ) ’
other. The first ternD,(x) is proportional to the velocity, ~ SINC& U(X)= mro/A(X) Up and r(x)= mrg/A(X) ro, we
u(x),® and the variance of the path lengths(x), of the ~ have

same branching level, thus,

Uo
o,(X)=2—0,(X). (15
Dy(x)=ay.0y(X)u(x). 9) ! ro '

Although it is reasonable to assume a nonsymmetrical !N the same manner as with the variance of the lengths,
distribution of the vessel length such as lognormal, in it is reasonable to assume that the variance of the radii of

H _ 2
most morphometric studies the measure of the spreadn® same level is of the forno,(x) =[aro/A(X)] oro.
This is justified by the morphometric data of the pulmo-

around the mean value is reported as a standard devia- 3 R
tion value® The functional form ofor(x) as blood goes ~ "ay vasculaturé® however, the values of the radii vari-
down the branching levels is given by a power law, ance seem to be rather sma_ll compared to the respective
similar to the one of the lengths and the radii, namely, Values of the lengths. This is probably due to the fact
o= 01%.2 It should be noted that, is a proportion- that the'StrahIer' classmcatlpn system that is commonly
ality constant and does not stand for the variance at level US€d is in fact diameter defined, so one expects that the
0, as this level has only one vessel and thus the varianceV@rance of this parameter to be smill.
is zero. The exponential law far, is in accordance with Also, it holds that

morphometric data of pulmonary vasculafiiréor the )

level 1 and on, but since this model engages continuous I(x)= o
geometry the relation is used for all levels. The morpho- A(x) %
metric data of the branching pattern and vascular geom-

etry, also suggest thab=y=n"3 this is so since  Thus, Eq.(12) can be written

(16)
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2\2
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D((x)=2a, 17

)

The final form of the dispersion coefficient is obtained
by substituting Eqs(11) and (17) in Eq. (8):

I

The equation which describes the concentratibof
a solute inside the tube, is a dispersion—convection par-
tial differential equation(PDE),
)—U(x)

o

Since u(x) depends orx one would feel that a term
— [du(x)/dx] C(x,t) should also be present in E(L9),
in order for the mass to be preserved. However, since the
cross section of the tube is not constant, the mass is
actually preserved.

Applying the transformatiorx’ =x'(x), Eq. (19) be-
comes

2

A(X)

070l

2
) Ug- (18

D(X): a]_O'|O+2

o

dC(X,1)

9 JC(x,t)
at

Ix

IX

dC(X,1)

IX
(19

aC(x’,t)_D ax'\29?C(x’,t) dD(x) ax’

g PO T Tz LT T ax
5 2y’ ax"\ aC(x’ 1) -
(X)WﬂLU(X)W - (20)

After some algebrdsee the Appendijx the equation de-
scribing the concentration of the solu@(x’,t), ends up

to be a simple convection—dispersion equation with con-
stant coefficients

IC(x',t) Y ayo0lg)  F2C(X',1)
. a1010 o Uo a2
n a,o ol JC(x' t
_(G a10'|0+2 210 0)"’1][.]0%.
(21)
Finally, we can write
JC(x' t PC(x' t aC(x' t
( ): 0 (/2)_ 0 (, ), (22)
ot X X

where
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n
—a+1
lo

Dog=a-u, and Ug= Ug,

where

2,070l o

ro

a=a10'|0+2 (23)

Tracer Washout Curve from a Tree-Like Network

We derived a simple equatidiEq. (22)] to describe
the concentratiorC of a solute in a tree-like structure
that corresponds to the arterial tree of a mammal. Con-
sidering also the corresponding venular tree situated next
to the arterial tree and appropriate inflow and outflow
boundary conditions we are able to derive an expression
for the spatiotemporal distribution of a tracer inside a
tree-like transport network. In order to present an ana-
lytical explicit solution we make the assumption that the
arterial and venular trees are symmetrical, that is, have
the same volume. The boundary conditions that we use
are:

Inflow at x=0:

0

aC L
(—Doa—X-I-UOC) vQ(O)&(t), (29

X

whereQ(0) is the doseV is the volume of the system,
and 4(t) is the Dirac delta function.
Outflow atx=L:

dC
IX

X

(25
L

where L=V/A and A is the cross-section area of the
inflow (and outflow since the trees are symmetpic@ihe
above boundary conditions indicate that at the inflow and
outflow points convection dominates over dispersion. In
chemical engineering literature this feature is considered
a good choice when the dispersion comes from molecu-
lar diffusion. In the case of geometrical dispersion in
porous media other boundary conditions that extend the
dispersion up to the edges, are considered prefefable.
However, the inflow and outflow ways consist of single
vessels, justifying that convection dominates over disper-
sion. The outflow concentratio€(L,t) of the above
system, with initial conditionC(x,0)=0, is?*
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C(L,t) _ @eUOL/DO

2L U % pulmonary egilrrrsonary
—D + ft capillaries
T Ot 0

pulmonary
arteries

UoL Ul U3

s~ (L+Ug)?/apgt _ 0= 4, ©0=  ~0
€ 2D, 4 Dy | Dy!

(26)

Equation (26) can be fitted straightforward to tracer
washout curves from organs that have a tree-like network arteries
structure.

capillaries
MODEL FOR THE CIRCULATORY SYSTEM

Based on the results of the previous paragraphs we man

will construct an elementary pharmacokinetic model con- giGuRE 2. schematic representation of the ring shaped tube
sidering the entire circulatory system. Thus, apart from which models the circulatory system of a mammal. The
the arterial and venular trees, a second set of arterial angplood flows clockwise. The tube of total length L, is divided
venular trees, corresponding to the pulmonary vascula- Iig, SAment coresponding o the arerl venar pumo.
ture, must be considered as well. These trees follow the right site marked as heart (x’=0) corresponds to the left
same principles based on Edd) and(22), i.e., tubes of  ventricle-left atrium, while the left site marked as heart (x’
radiusr, are considered with appropriate length to ac- =x,) corresponds to the right ventricle—right atrium. Also,
commodate the correct blood volume in each tree. Thus, 3¢3¢d down tubes are drawn corresponding to the circula-

' tory systems of dog and rat; this provides a conceptual rep-
an overall tube of appropriate length, is considered resentation of the circulatory systems of the species for po-
and is divided into four sequential parts, characterized astential future applications.
arterial, venular, pulmonary arterial and pulmonary venu-
lar, respectively. The length,, accommodates the total
blood volume,V,=7r3L. We assigh the first portion
of the tube length fromx’ =0 to x’=x;, to the arterial
tree, the next portion from’ =x; to x" =xg to the venu-
lar, and the rest frorrx’:x,g to x’=L to the two sym-
metrical trees of the lungs. We consider that the venular

tree is a structure similar to the arterial tree, only of onq the pulmonary arterial segments. Further, the neces-
greater, but fixed, capacity. In reality, the venular tree has g5y initial condition for the intravenous administration
a variable capacity and acts as a blood reservoir which ¢ 5, exogenous substan&(x’,0), which is the spatial

deliverlso blood to the tissues additional to the cardiac prqfile of C at the time of administration, is determined
output.™ This property of the venular tree is ignored in  y the initial dose and the type of administration. This

this model. In the final model the value of the dispersion profile may have the shape of a “thin” Gaussian func-

coefficient takes three separate values introducing dis-jon if an intravenous bolus administration is considered,
continuities. We use two separate values for the disper- namely.

sion coefficient,D, for arterial segment an®,, for the

pulmonary segment. For the venular segment we con-

sider that the dispersion coefficient has the value ) b,

Da(x' p—x¢)/x,, which means that it is proportional to C(x 'O)ZCeXD( — 12X = Xipy) ) (27)

the length of the segment. This is because we may also

assume that the ratio,o/rq is constant for the arterial

and venular trees and thus in E@3), Do ojpclgL. wherec andb are the shape parameters of the Gaussian.
Also, the two ends of the tube are connected, to allow Actually, due to the special transformation, skewed ini-
recirculation of the fluid. This is implemented by intro- tial condition would be more accurate than the symmetri-

located at two separate points. The left ventricle-left
atrium is situated ak’ =0 between the arterial and the
pulmonary venular segments, while the right ventricle—
right atrium is situated at(’=x£, between the venular

ducing a boundary condition, namel(0t)=C(L,t), cal Gaussian, however, the fact that the Gaussian is con-
which makes the tube ring shapeéfig. 2). The flux sidered “thin” makes it unimportant. Also, other types of
preservation  boundary  condition, D,dC/dx’ |, intravenous administration, e.g., constant infusion, can be

=D, dClox" |, must be also satisfied. The “heart” is also considered. The center or the peak-,’nj,
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of the initial spatial profile for an intravenous bolus ad- the order of magnitude of the capillary length. We further
ministration must be set at a high level of the tree struc- introduce for convenience a new normalized coordinate
ture, i.e., close to the heaftarger veins or arteries, two  x* =x’/L, such that the total length of the tube is unity.
possible places Similarly, when lung administration is  Thus, the final model can be summarized mathematically
considered, the peak of the initial condition should be set as follows:

in the capillary area of the lungsc(=x,+(L—x})/2),

Fig. 2. The total quantityQ(t) inside the tube at any IC(x* 1) d o IC(X1) . IC(X* 1)
timet is BT N D*(x )—ax* _Uo—ax*
L — O (x* )k, C(x*,1), (30
Q(t)zwrgf C(x',t)dx’, (28)
0 where
wherer is the radius of the tube, i.e., the radius of the D*(x*)=D* for 0<x*=x%,

aorta. From this relation, far=0, an expression involv-
ing the blood volume\/b=7rr(2)L, the initial doseQ(0),
and the parameters of the initial conditianandb, can
be derived assuming that is large,

DI (xp—Xg)Ixg  for xg <x*=xg,

D; for x; <x*=<1,

Q(0)=cVy\m/b. (29)

and
Due to the geometrical character of the model, a sam-
pling site,xgamp, should be either specified, in simulation
studies, or calculated when fitting is performed. Thus,
a concentration versus time profil€(xgmet), can be
obtained.

O(x*)=1 for x}—0.0l=x*<x}+0.01,

and 0 otherwise,
where

D} =D,/L? U}=U,/L.
VALIDATION OF THE MODEL

In order to verify the validity of our approach, the Boundary and initial conditions are

model is fitted to experimental human and dog data

taken from literaturé® The estimated values of the pa- C(0t)=C(1t), D* <

rameters are compared to physiological data. ’ T axt
The experimental concentration-time data for man

correspond to a frequent sampling interval during the and

first 60 s after intravenous injection with 10 mg of in-

docyanine greer(ICG), an intravascular tracéf. Both C(x*,0)=Q(0)V,, Vbl m ex —b(x* —x3)2].

injection and sampling have been performed at relatively (31

large vessels of the arm. Since ICG has significant he-

patic uptake, even for such a short time, the contribution Equation(30) was fitted to the ICG human dati.Pa-

of uptake to the final profile is appreciable and is inte- rameters that are kept fixed in the model are: the length

grated in the model. A segment in the capillary region of of the uptake sit¢0.02, the doseQ(0)=10 mg, and the

the tube &’=x/) is assigned as the uptake site and a shape paramete=10° and the sampling point<;‘amp

first-order uptake term-k,C(x’',t) is also considered in ~ =0.02. The injection point is considered relatively to the

Eq. (22). The position of the uptake site is imprecise in beginning of the pulmonary segment, nametﬁ,j:x;

physiological terms as it assumes blood flow through it —0.02, which roughly implements the experimental de-

to be equal to the heart output. Nevertheless, it is the sign, namely, i.v. bolus administration at the cephalic

most reasonable choice in order to keep the model vein!® The parameten is considered to be equal to 3,

simple. In fact, similar considerations have been made by because although the branching of the vascular tree is

Audi etal® In future developments of the model, the actually dichotomou$,its geometry is such that the num-

positioning of organs that play important role in the ber of vessels grows with each generation as if the tree

disposition of substances can be implemented by addingwas trichotomous® So,n=3 has to be used in order to

parallel tubes at physiologically based sites to the have the correct scaling law$All other parameters of

present, simple, ring shaped model. The length of the the model including the coefficien®} , D;, 5, the

uptake segment is arbitrarily set to 0.02 which is in segment pointg , x5 , the blood volumeV,, and the

JC
*
P ox*

1

0
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FIGURE 3. Concentration-time plot of the experimental hu-
man data of ICG (Ref. 18) together with the fitted curve of the
model. The two peaks correspond to respective passes of
the center of the drug concentration distribution from the
sampling site, as a result of recirculation.

uptake rate constank,, are optimized by the fitting
algorithm. The algorithm used is a classical Levenberg—
Marquardt optimizer(LMDIF subroutine of the MIN-
PACK  Fortran  optimization  package;  http://
www.netlib.org/minpackl The PDE is solved
numerically using a Crank—Nicolson implicit finite-
difference schem& As it is shown in Fig. 3. the accor-
dance of the fitted curve with the data is satisfactory; the
results of the optimization are shown in Table 1. Al-
though the estimate foW, is reasonablé® the total

blood volume may be underestimated because ICG dis-

tributes to both fast and slow compartmeltshis has
the result of underestimating the total blood volume as

A. DokouMmETzIDIS and P. MACHERAS

60 1

Time (sec)

0 J ‘
¢ l‘ arteries veins “ lungs |.)
S % - T

FIGURE 4. Density plot of the temporal and spatial distribu-
tion of C(x*,t) for the human data of ICG in the normalized
coordinate system. The two ends of the abscissa are con-
nected. Light color stands for high concentration, dark
stands for low. The parameters of the model for this simula-
tion are listed in Table 1. The injection, sampling and the
uptake sites for the simulated curve of Fig. 3 are also indi-
cated.

slow routes being underestimated as well. It has been
shown that calculation of total blood volume based only
on the first two peaks of ICG administration, without
taking into account more complicated kinetics, underes-
timates blood volume up to 40%5.From the relation
Vb=7rr(2)L and setting the value of the cross-sectional
area of the aortagr3, to be 3 cm,'° a total tube length

of L=1471 cm is obtained. A density plot of the tempo-
ral and spatial distribution of the functio@(x*,t) is

calculated from the first seconds because the portion ofpresented in Fig. 4, where the site};, and xg,,, are

ICG following the slow route is not included in the
calculation. Also, the transit time as depicted by the time
distance of the two first peaks may not include these

TABLE 1. Estimates of the parameters derived from the fitting of Eq.

indicated. The values foxg andx; are considered rea-
sonable as well. The length of the pulmonary portion of
the tube may be overestimated compared to the main

(30) to experimental data

of ICG from man 2 and dog. ® Numbers in parentheses indicate the formal standard error as
computed from the square root of the diagonal elements of the covariance matrix. Dashes
indicate that the corresponding error could not be obtained with accuracy.

Parameter Man Dog

X5 0.28 ) 0.19 )

Xy 0.85 (0.0079) 0.68 (0.021)
D% (s7Y) 0.000845 (0.000031) 0.00109 (0.000018)
Df, (s™hH 0.000470 ) 0.000217 )

Us (s 0.0306 (0.00096) 0.0368 (0.0013)
k, (s7Y) 1.13 (0.19) 1.43 (0.26)

Vi (mL) 4414 (156.5) 2228 (98.8)

aReference 18.
PReference 15.
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FIGURE 5. Concentration-time plot of the experimental dog
data of ICG (Ref. 15) together with the fitted curve of the
model.

circulation portion due to the already mentioned issue of
the slow routes, as these exist only in the main circula-
tion portion of the tube and are absent from the pulmo-
nary portion. From Eqs(23) we get an estimate for the
velocity in the aorta

DXL

Up=UZXL— (32)

lo

Using the estimated values dd;, Uf, reported in
Table 1 andL=1471 cm and considerinig to be in the
order of magnitude of the length of the aorth
~50 cm, we can extraaly~34 cm/s, which is a realis-
tic value too® The value of D*=8.45x10 *s1,

which corresponds to a geometrical dispersion coefficient

D,=D}L?=1.8x10° cn?/s justifies the argument of
negligible molecular diffusion, where a typical value of
the diffusion coefficient is of the order 16 cm?/s.

These results demonstrate that the model describes the

data nicely(Fig. 3, while the estimates for the param-
eters are within the expected range.

In the same manner we analyzed dog datThe
experimental design is practically identical to the human
study® An intravenous injection 5 mg of ICG was fol-
lowed by frequent blood sampling in the first 45 s. The
results of the optimization are shown in Table 1. Figure
5 shows the plot of the experimental data together with

the fitted curve. The same comments about the values of

the fitted parameters apply as in the case of man. An
interesting point however concerns the valuapfbeing

rather small. Visual inspection of Fig. 5 reveals that the
pulmonary transit time is comparable with the transit
time of the main circulation, suggesting that dog has a
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higher ratio, pulmonary blood volume/main circulation
blood volume, compared to man. However, this is prob-
ably due to the slow route kinetics issue, already men-
tioned, which seems to be attenuated in the case of the
smaller mammals(dog. The presence of these slow
routes also amplifies the dispersion of the main circula-
tion portion compared to the pulmonary portion, a fact
depicted at the calculated valuesDf andDj in man

and dog.

The analysis of ICG data in two species reveals that
the model describes adequately the kinetics of ICG in
both species. However, our data indicate that interspecies
pharmacokinetic scalinyjrelated with the initial mixing
of the tracers, should be considered with caution. This is
so since the intravascular kinetics in various species do
not manifest simple allometric laws, dependent exclu-
sively on size. Instead, more detailed physiologically
based description of kinetics is required. Our work is
towards this quest. This notion is depicted in Fig. 2,
showing the model developed, drawn schematically for
various species.

CONCLUSIONS

We derived a one-dimensional linear dispersion—
convection equation with constant coefficients that de-
scribes the disposition of a substance inside a tree-like
fractal network of tubes that emulates the vascular tree.
Based on that result, a simple model for the mammalian
circulatory system is built in entirely physiological terms
consisting of a ring shaped, one-dimensional tube. The
model takes into account dispersion, convection and up-
take, describing the initial mixing of intravascular trac-
ers. This model opens new perspectives in studies deal-
ing with the disposition of intravascular tracers which are
used for various hemodynamic purposes, e.g., cardiac
output measurement§, volume of circulating blood
determinatioff and liver function quantificatiof: Most
importantly, the model can be expanded and used for the
study of xenobiotics that distribute beyond the intravas-
cular space. Consequently, applications can be envisaged
in interspecies pharmacokinetic scaling and physiologi-
cally based pharmacokinetic-toxicokinetic modeling,
since both fields require a realistic geometrical substrate
for hydrodynamic considerations.

APPENDIX

Derivation of Eq.(21):
If we substitute in Eq(20),
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