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Abstract—Materials are distributed throughout the body
mammals by fractal networks of branching tubes. Based on
scaling laws of the fractal structure, the vascular tree is redu
to an equivalent one-dimensional, tube model. A dispersio
convection partial differential equation with constant coe
cients describes the heterogeneous concentration profile o
intravascular tracer in the vascular tree. A simple model for
mammalian circulatory system is built in entirely physiologic
terms consisting of a ring shaped, one-dimensional tube wh
corresponds to the arterial, venular, and pulmonary trees,
cessively. The model incorporates the blood flow heterogen
of the mammalian circulatory system. Model predictions a
fitted to published concentration-time data of indocyanine gr
injected in humans and dogs. Close agreement was found
parameter values within the expected physiologi
range. © 2003 Biomedical Engineering Society.
@DOI: 10.1114/1.1555627#

Keywords—Fractal tree, Indocyanine green, Tracer kineti
Dispersion, Tube.

INTRODUCTION

The branching pattern of the vascular system and
blood flow through it has continued to be of interest
anatomists, physiologists, and theoreticians.2,5,8 The stud-
ies focusing on the geometric properties such as leng
diameters, generations, orders of branches in the pul
nary, venular, and arterial tree of mammals uncove
the principles on which these properties are based. V
cular trees seem to display roughly the same dicho
mous branching pattern at different levels of scale
property found in fractal structures.12,17,30,35The hydro-
dynamics of blood flow in individual parts of the d
chotomous branching network, has been the subjec
various studies since the flow changes from pulse-w
flow in major vessels to Poiseuille-type flow in sma
vessels.7,14,16,20,27,34Recently, Westet al.,32 relying on an
elegant combination of the dynamics of energy transp
and the mathematics of fractal geometry develope
hydrodynamic model that describes how essential m
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rials are transported through space-filling fractal n
works of branching tubes. The major contribution of t
West et al.32 model is the interpretation of the origin o
allometric laws in biology and the finding that the inte
nal structure of living things operates as if they we
four-dimensional.33

Although these advances of science32,33 provide an
analysis of the scaling relations for mammalian circu
tory systems, models that describe the transport of m
terials along the entire fractal network of the mammali
species are needed, too. Pharmacokinetics and toxic
netics which are the fields of science that this kind
modeling is of the greatest importance are dominated
the concept of homogenous compartments.29 Physiologi-
cally based pharmacokinetic models have been also
veloped that define the disposition patterns in terms
physiological principles.9,29,31 The development of mod
els that study the heterogeneity of the flow and the m
terials distribution inside vascular networks and ind
vidual organs has also been fruitful in the pa
years.3,19,23,28 In this work, we develop a simple mode
for the heterogeneous transport of materials in the cir
latory system of mammals, based on a single tu
dispersion–convection system which is equivalent to
fractal network of the branching tubes.

TRANSPORT AND DISPERSION IN THE
VASCULAR TREE

Geometrical Considerations

We consider a fractal arterial tree that consists ofN
branching levels where each level consists of para
vessels, Fig. 1~A!. Each vessel is connected ton vessels
of the consequent branching level.32 The vessels are non
elastic tubes, inside which incompressible fluid flow
Nonlinearities at the junctions of the vessels are ignor
We make the assumption that the vessel lengths in e
level k follow a distribution around the mean valuel k .
The total flow across a section of the entire tree is c
stant ~conservation of mass!. This allows us to replace
the tree with a single one-dimensional tube, an idea t

y,
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285Model for Transport and Dispersion in the Circulatory System
has been applied before for the transport of gas in
pulmonary airways.24 Since the tree is not area preser
ing, the total cross section area of subsequent le
increases, i.e., the tube is not cylindrical@Figs. 1~A!–
1~C!#. However, an appropriate geometrical transform
tion can be used to replace the noncylindrical tube w
a simple cylinder@Fig. 1~D!#. Thus, the fluid velocity
remains constant throughout the tube in consequenc
this transformation.

The derivation of the geometrical transformation
based on the scaling properties of the fractal tree. T
noncylindrical tube is described in terms of a continuo
spatial coordinate,x, which replaces theN branching
levels of the fractal tree from the aorta to the capillari
Let level 0 be the top vessel of the tree. The area of
cross section at the beginning of the tube isA05pr 0

2,
wherer 0 is the radius of the top vessel~the aorta for the
arterial tree!. The total cross section at levelk of the tree
is Ak5pr k

2Nk , where r k is the radius of the vessel a
level k andNk5nk is the number of vessels.32 In reality
the radii at each levelk, are distributed around the mea
value r k . The variance of the radii distribution produce
the heterogeneity of the velocities. The radii scale
cording to the ‘‘cubic law’’ branching,b5n21/3, where
b5r k11 /r k . These relations giver k5r 0bk leading to
Ak5pr 0

2nk/3. In the same rationale with the radii,32 we
have for the mean value of the vessel lengthsl k11 / l k

5g5n21/3 and so the length of the vessel at levelk is
l k5 l 0gk . The mean value of the total length,l k , of a

FIGURE 1. „A… Schematic representation of a dichotomous
branching network. „B… Cross sections at each level. „C… Tree
is replaced by a single tube with continuously increasing
radius. The area of the cross section of the tube is equal to
the total area of the cross sections of each level of the tree.
„D… Volume preserving transformation of the varying radius
tube „C… to a fixed radius tube.
f

path from the top of the tree to the beginning of the lev
k, is the value ofx coordinate,

x[Lk5 (
i 50

k21

g i l 05 (
i 50

k21

n2 i /3l 05
n1/32n(12k)/3

n1/321
l 0 . ~1!

Solving the last expression fork yields

k~x!511
3 ln l 023 ln~x2xn1/31 l 0n1/3!

ln n
. ~2!

Substituting Eq.~2! in the expression ofAk , we have

A~x![Ak5
pr 0

2l 0n1/3

x2xn1/31 l 0n1/3. ~3!

The last expression gives the areaA(x) of the noncylin-
drical tube, Fig. 1~C!, as a function of the coordinatex.
Further, a volume preserving transformation allows t
replacement of the varying radius tube with a tube
fixed radiusr 0 , the radius of the aorta@Fig. 1~D!#. This
is accomplished by replacingx with a new coordinatex8
with the condition that the constant total flow of th
fluid, J5dV/dt, across a section is kept invariant und
the transformation. Accordingly, the corresponding a
A8(x8) is pr 0

2 for every x8; thus, Jdt5dV5A(x)dx

5A8(x8)dx8. Integrating, we have *0
x8A8(x8)dx8

5*0
xA(x)dx. Using Eq.~3! for A(x) and calculating the

integral, we finally get the exact formula of the transfo
mation,

x85
l 0n1/3

n1/321
lnS l 0n1/3

x2xn1/31 l 0n1/3D . ~4!

Also, solving Eq.~4! for x, the inverse transformation
can be obtained,

x5
l 0n1/3

n1/321 S 12exp
x8~12n1/3!

l 0n1/3 D . ~5!

Inspection of Eq.~4! reveals that the new coordinat
system is a kind of ‘‘logarithmic scale.’’ A consequenc
of the transformation is that if we go back to the discre
levels, the length of each level in the new coordina
system is the same for allk, namely,

l k85x8~k11!2x8~k!5
ln n

3ñ
l 0 , ~6!

where ñ512n21/3, which is independent ofk.



te-
i-

ra-
he
nt
, it

s
dis-

mo
e
ri-
gh
per
s.
us,

eac

ica
in

ead
via

w,
ly,

ve
nc

ous
o-

om

ult

ths,
ii of

o-
i-
ctive
ct

nly
the

286 A. DOKOUMETZIDIS and P. MACHERAS
It should be noted that according to Westet al.,32 the
larger vessels~aorta and major arteries! have area pre-
serving branching. This portion of the tree can be in
grated in our model easily by adding an initial cylindr
cal segment in the tube model@Fig. 1~D!#. This segment
does not require any transformation, since both the
dius of the cylindrical segment and the velocity of t
fluid in it are constant. Since this cylindrical segme
does not alter the dynamics of the model considerably
was left out for simplicity.

Solute Kinetics

The disposition of a solute in the fluid as it flow
through the system is governed by convection and
persion. The convection takes place with velocity

u~x!5
pr 0

2

A~x!
u05

x2xn1/31 l 0n1/3

l 0n1/3 u0 . ~7!

The dispersion consists of three components. The
lecular diffusion which is considered negligible. Th
geometrical dispersion which originates from the va
ance of the path lengths as the blood flows throu
progressively smaller vessels, and the geometrical dis
sion which originates from the variance of the velocitie
The latter is due to the variance of the vessel radii. Th
the dispersion coefficient,D(x), is of the form

D~x!5Dl~x!1Dr~x!, ~8!

because the two components are independent from
other. The first termDl(x) is proportional to the velocity,
u(x),6 and the variance of the path lengths,s l(x), of the
same branching level, thus,

Dl~x!5a1 .s l~x!u~x!. ~9!

Although it is reasonable to assume a nonsymmetr
distribution of the vessel length such as lognormal,
most morphometric studies the measure of the spr
around the mean value is reported as a standard de
tion value.3 The functional form ofs l(x) as blood goes
down the branching levels is given by a power la
similar to the one of the lengths and the radii, name
sk5s l0dk.13 It should be noted thats l0 is a proportion-
ality constant and does not stand for the variance at le
0, as this level has only one vessel and thus the varia
is zero. The exponential law forsk is in accordance with
morphometric data of pulmonary vasculature13 for the
level 1 and on, but since this model engages continu
geometry the relation is used for all levels. The morph
metric data of the branching pattern and vascular ge
etry, also suggest thatd5g5n21/3; this is so since
-

-

h

l

-

l
e

-

sk / l k is almost constant for allk.13 Hence,s l(x) can
be expressed using Eqs.~2! and ~3!:

s l~x!5s l0dk(x)5s l0n2k(x)/35
x2xn1/31 l 0n1/3

l 0n1/3
s l0

5
pr 0

2

A~x!
s l0. ~10!

So,

Dl~x!5a1S pr 0
2

A~x!
D 2

s l0u0 . ~11!

The second termDr(x) of Eq. ~8!, as already mentioned
originates from the variance of the velocities as a res
of the variance of the radii:

Dr~x!5a2su~x!l ~x!. ~12!

The velocity as a function of the radius is

u~x!5
r 0

2

N~x!r 2~x!
u0 . ~13!

So the variance ofu(x) as a function of the variance
r (x) can be derived from error propagation theory

su~x!52
u~x!

r ~x!
s r~x!, ~14!

since u(x)5 pr 0
2/A(x) u0 and r (x)5 pr 0

2/A(x) r 0 , we
have

su~x!52
u0

r 0
s r~x!. ~15!

In the same manner as with the variance of the leng
it is reasonable to assume that the variance of the rad
the same level is of the forms r(x)5@pr 0

2/A(x)# s r0 .
This is justified by the morphometric data of the pulm
nary vasculature;13 however, the values of the radii var
ance seem to be rather small compared to the respe
values of the lengths. This is probably due to the fa
that the Strahler classification system that is commo
used is in fact diameter defined, so one expects that
variance of this parameter to be small.13

Also, it holds that

l ~x!5
pr 0

2

A~x!
l 0 . ~16!

Thus, Eq.~12! can be written
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287Model for Transport and Dispersion in the Circulatory System
Dr~x!52a2S pr 0
2

A~x!
D 2 s r0l 0u0

r 0
. ~17!

The final form of the dispersion coefficient is obtain
by substituting Eqs.~11! and ~17! in Eq. ~8!:

D~x!5S a1s l012
a2s r0l 0

r 0
D S pr 0

2

A~x!
D 2

u0 . ~18!

The equation which describes the concentrationC of
a solute inside the tube, is a dispersion–convection
tial differential equation~PDE!,

]C~x,t !

]t
5

]

]x S D~x!
]C~x,t !

]x D2u~x!
]C~x,t !

]x
.

~19!

Since u(x) depends onx one would feel that a term
2 @]u(x)/]x# C(x,t) should also be present in Eq.~19!,
in order for the mass to be preserved. However, since
cross section of the tube is not constant, the mas
actually preserved.

Applying the transformationx85x8(x), Eq. ~19! be-
comes

]C~x8,t !

]t
5D~x!S ]x8

]x D 2 ]2C~x8,t !

]x82 2S 2
]D~x!

]x

]x8

]x

2D~x!
]2x8

]x2 1u~x!
]x8

]x D ]C~x8,t !

]x8
. ~20!

After some algebra~see the Appendix!, the equation de-
scribing the concentration of the solute,C(x8,t), ends up
to be a simple convection–dispersion equation with c
stant coefficients

]C~x8,t !

]t
5S a1s l012

a2s r0l 0

r 0
Du0

]2C~x8,t !

]x82

2H ñ

l 0
S a1s l012

a2s r0l 0

r 0
D11J u0

]C~x8,t !

]x8
.

~21!

Finally, we can write

]C~x8,t !

]t
5D0

]2C~x8,t !

]x82 2U0

]C~x8,t !

]x8
, ~22!

where
-

D05a•u0 and U05S ñ

l 0
a11Du0 ,

where

a5a1s l012
a2s r0l 0

r 0
. ~23!

Tracer Washout Curve from a Tree-Like Network

We derived a simple equation@Eq. ~22!# to describe
the concentrationC of a solute in a tree-like structur
that corresponds to the arterial tree of a mammal. C
sidering also the corresponding venular tree situated n
to the arterial tree and appropriate inflow and outflo
boundary conditions we are able to derive an express
for the spatiotemporal distribution of a tracer inside
tree-like transport network. In order to present an a
lytical explicit solution we make the assumption that t
arterial and venular trees are symmetrical, that is, h
the same volume. The boundary conditions that we
are:

Inflow at x50:

S 2D0

]C

]x
1U0CD U

x50

5
L

V
Q~0!d~ t !, ~24!

whereQ(0) is the dose,V is the volume of the system
and d(t) is the Dirac delta function.

Outflow at x5L:

]C

]x U
x5L

50, ~25!

where L5V/A and A is the cross-section area of th
inflow ~and outflow since the trees are symmetrical!. The
above boundary conditions indicate that at the inflow a
outflow points convection dominates over dispersion.
chemical engineering literature this feature is conside
a good choice when the dispersion comes from mole
lar diffusion. In the case of geometrical dispersion
porous media other boundary conditions that extend
dispersion up to the edges, are considered preferab26

However, the inflow and outflow ways consist of sing
vessels, justifying that convection dominates over disp
sion. The outflow concentrationC(L,t) of the above
system, with initial conditionC(x,0)50, is21
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288 A. DOKOUMETZIDIS and P. MACHERAS
C~L,t !5
Q~0!

V
eU0L/D0F 2L

ApD0t
S 11

U0
2

2D0
t D

3e2 (L1U0t)2/4D0t2
U0L

2D0
S 41

U0L

D0
1

U0
2

D0
t D

3erfcS L1U0t

2AD0t
D G . ~26!

Equation ~26! can be fitted straightforward to trace
washout curves from organs that have a tree-like netw
structure.

MODEL FOR THE CIRCULATORY SYSTEM

Based on the results of the previous paragraphs
will construct an elementary pharmacokinetic model co
sidering the entire circulatory system. Thus, apart fr
the arterial and venular trees, a second set of arterial
venular trees, corresponding to the pulmonary vasc
ture, must be considered as well. These trees follow
same principles based on Eqs.~4! and ~22!, i.e., tubes of
radius r 0 are considered with appropriate length to a
commodate the correct blood volume in each tree. Th
an overall tube of appropriate length,L, is considered
and is divided into four sequential parts, characterized
arterial, venular, pulmonary arterial and pulmonary ven
lar, respectively. The length,L, accommodates the tota
blood volume,Vb5pr 0

2L. We assign10 the first portion
of the tube length fromx850 to x85xc8 , to the arterial
tree, the next portion fromx85xc8 to x85xp8 to the venu-
lar, and the rest fromx85xp8 to x85L to the two sym-
metrical trees of the lungs. We consider that the venu
tree is a structure similar to the arterial tree, only
greater, but fixed, capacity. In reality, the venular tree
a variable capacity and acts as a blood reservoir wh
delivers blood to the tissues additional to the card
output.10 This property of the venular tree is ignored
this model. In the final model the value of the dispersi
coefficient takes three separate values introducing
continuities. We use two separate values for the disp
sion coefficient,Da for arterial segment andDp for the
pulmonary segment. For the venular segment we c
sider that the dispersion coefficient has the va
Da(x8p2xc8)/xc8 , which means that it is proportional t
the length of the segment. This is because we may
assume that the ratios r0 /r 0 is constant for the arteria
and venular trees and thus in Eq.~23!, D0}s l0} l 0}L.
Also, the two ends of the tube are connected, to all
recirculation of the fluid. This is implemented by intro
ducing a boundary condition, namelyC(0,t)5C(L,t),
which makes the tube ring shaped~Fig. 2!. The flux
preservation boundary condition, Da ]C/]x8 u0
5Dp ]C/]x8 uL , must be also satisfied. The ‘‘heart’’ i
d

,

-

located at two separate points. The left ventricle-l
atrium is situated atx850 between the arterial and th
pulmonary venular segments, while the right ventricl
right atrium is situated atx85xp8 between the venula
and the pulmonary arterial segments. Further, the ne
sary initial condition for the intravenous administratio
of an exogenous substance,C(x8,0), which is the spatial
profile of C at the time of administration, is determine
by the initial dose and the type of administration. Th
profile may have the shape of a ‘‘thin’’ Gaussian fun
tion, if an intravenous bolus administration is consider
namely,

C~x8,0!5c expS 2
b

L2 ~x82xinj8 !2D , ~27!

wherec andb are the shape parameters of the Gauss
Actually, due to the special transformation, skewed i
tial condition would be more accurate than the symme
cal Gaussian, however, the fact that the Gaussian is c
sidered ‘‘thin’’ makes it unimportant. Also, other types o
intravenous administration, e.g., constant infusion, can
also considered. The center or the peak,xinj8 ,

FIGURE 2. Schematic representation of the ring shaped tube
which models the circulatory system of a mammal. The
blood flows clockwise. The tube of total length L , is divided
into segments corresponding to the arterial, venular, pulmo-
nary arterial, and pulmonary venular trees, respectively. The
right site marked as heart „x 8Ä0… corresponds to the left
ventricle–left atrium, while the left site marked as heart „x 8
Äx p8 … corresponds to the right ventricle–right atrium. Also,
scaled down tubes are drawn corresponding to the circula-
tory systems of dog and rat; this provides a conceptual rep-
resentation of the circulatory systems of the species for po-
tential future applications.
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289Model for Transport and Dispersion in the Circulatory System
of the initial spatial profile for an intravenous bolus a
ministration must be set at a high level of the tree str
ture, i.e., close to the heart~larger veins or arteries, two
possible places!. Similarly, when lung administration is
considered, the peak of the initial condition should be
in the capillary area of the lungs (x85xp81(L2xp8)/2),
Fig. 2. The total quantityQ(t) inside the tube at any
time t is

Q~ t !5pr 0
2E

0

L

C~x8,t !dx8, ~28!

wherer 0 is the radius of the tube, i.e., the radius of t
aorta. From this relation, fort50, an expression involv-
ing the blood volumeVb5pr 0

2L, the initial dose,Q(0),
and the parameters of the initial condition,c and b, can
be derived assuming thatL is large,

Q~0!5cVbAp/b. ~29!

Due to the geometrical character of the model, a sa
pling site,xsamp8 , should be either specified, in simulatio
studies, or calculated when fitting is performed. Th
a concentration versus time profile,C(xsamp,8 t), can be
obtained.

VALIDATION OF THE MODEL

In order to verify the validity of our approach, th
model is fitted to experimental human and dog d
taken from literature.18 The estimated values of the pa
rameters are compared to physiological data.

The experimental concentration-time data for m
correspond to a frequent sampling interval during
first 60 s after intravenous injection with 10 mg of in
docyanine green~ICG!, an intravascular tracer.18 Both
injection and sampling have been performed at relativ
large vessels of the arm. Since ICG has significant
patic uptake, even for such a short time, the contribut
of uptake to the final profile is appreciable and is in
grated in the model. A segment in the capillary region
the tube (x85xc8) is assigned as the uptake site and
first-order uptake term2kuC(x8,t) is also considered in
Eq. ~22!. The position of the uptake site is imprecise
physiological terms as it assumes blood flow through
to be equal to the heart output. Nevertheless, it is
most reasonable choice in order to keep the mo
simple. In fact, similar considerations have been made
Audi et al.1 In future developments of the model, th
positioning of organs that play important role in th
disposition of substances can be implemented by add
parallel tubes at physiologically based sites to
present, simple, ring shaped model. The length of
uptake segment is arbitrarily set to 0.02L, which is in
the order of magnitude of the capillary length. We furth
introduce for convenience a new normalized coordin
x* 5x8/L, such that the total length of the tube is unit
Thus, the final model can be summarized mathematic
as follows:

]C~x* ,t !

]t
5

]

]x* S D* ~x* !
]C~x* ,t !

]x* D2U0*
]C~x* ,t !

]x*

2Q~x* !kuC~x* ,t !, ~30!

where

D* ~x* !5Da* for 0,x* <xc* ,

Da* ~xp* 2xc* !/xc* for xc* ,x* <xp* ,

Dp* for xp* ,x* <1,

and

Q~x* !51 for xc* 20.01<x* <xc* 10.01,

and 0 otherwise,
where

Da* 5Da /L2, U0* 5U0 /L.

Boundary and initial conditions are

C~0,t !5C~1,t !, Da*
]C

]x* U
0

5Dp*
]C

]x* U
1

and

C~x* ,0!5Q~0!Vb
21Ab/p exp@2b~x* 2xinj* !2#.

~31!

Equation ~30! was fitted to the ICG human data.18 Pa-
rameters that are kept fixed in the model are: the len
of the uptake site~0.02!, the doseQ(0)510 mg, and the
shape parameterb5105 and the sampling pointxsamp*
50.02. The injection point is considered relatively to t
beginning of the pulmonary segment, namely,xinj* 5xp*
20.02, which roughly implements the experimental d
sign, namely, i.v. bolus administration at the cepha
vein.18 The parametern is considered to be equal to 3
because although the branching of the vascular tre
actually dichotomous,2 its geometry is such that the num
ber of vessels grows with each generation as if the t
was trichotomous.13 So, n53 has to be used in order t
have the correct scaling laws.32 All other parameters of
the model including the coefficientsDa* , Dp* , U0* , the
segment pointsxc* , xp* , the blood volumeVb , and the
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290 A. DOKOUMETZIDIS and P. MACHERAS
uptake rate constantku , are optimized by the fitting
algorithm. The algorithm used is a classical Levenber
Marquardt optimizer~LMDIF subroutine of the MIN-
PACK Fortran optimization package; http:
www.netlib.org/minpack/!. The PDE is solved
numerically using a Crank–Nicolson implicit finite
difference scheme.25 As it is shown in Fig. 3. the accor
dance of the fitted curve with the data is satisfactory;
results of the optimization are shown in Table 1. A
though the estimate forVb is reasonable,18 the total
blood volume may be underestimated because ICG
tributes to both fast and slow compartments.18 This has
the result of underestimating the total blood volume
calculated from the first seconds because the portion
ICG following the slow route is not included in th
calculation. Also, the transit time as depicted by the ti
distance of the two first peaks may not include the

FIGURE 3. Concentration-time plot of the experimental hu-
man data of ICG „Ref. 18… together with the fitted curve of the
model. The two peaks correspond to respective passes of
the center of the drug concentration distribution from the
sampling site, as a result of recirculation.
-

f

slow routes being underestimated as well. It has b
shown that calculation of total blood volume based on
on the first two peaks of ICG administration, witho
taking into account more complicated kinetics, under
timates blood volume up to 40%.22 From the relation
Vb5pr 0

2L and setting the value of the cross-section
area of the aorta,pr 0

2, to be 3 cm2,10 a total tube length
of L51471 cm is obtained. A density plot of the temp
ral and spatial distribution of the functionC(x* ,t) is
presented in Fig. 4, where the sitesxinj* and xsamp* are
indicated. The values forxc* and xp* are considered rea
sonable as well. The length of the pulmonary portion
the tube may be overestimated compared to the m

FIGURE 4. Density plot of the temporal and spatial distribu-
tion of C„x * ,t … for the human data of ICG in the normalized
coordinate system. The two ends of the abscissa are con-
nected. Light color stands for high concentration, dark
stands for low. The parameters of the model for this simula-
tion are listed in Table 1. The injection, sampling and the
uptake sites for the simulated curve of Fig. 3 are also indi-
cated.
TABLE 1. Estimates of the parameters derived from the fitting of Eq. „30… to experimental data
of ICG from man a and dog. b Numbers in parentheses indicate the formal standard error as
computed from the square root of the diagonal elements of the covariance matrix. Dashes

indicate that the corresponding error could not be obtained with accuracy.

Parameter Man Dog

xc* 0.28 (-) 0.19 (-)
xp* 0.85 (0.0079) 0.68 (0.021)
Da* (s21) 0.000845 (0.000031) 0.00109 (0.000018)
Dp* (s21) 0.000470 (-) 0.000217 (-)
U0* (s21) 0.0306 (0.00096) 0.0368 (0.0013)
ku (s21) 1.13 (0.19) 1.43 (0.26)
Vb (mL) 4414 (156.5) 2228 (98.8)

aReference 18.
bReference 15.
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291Model for Transport and Dispersion in the Circulatory System
circulation portion due to the already mentioned issue
the slow routes, as these exist only in the main circu
tion portion of the tube and are absent from the pulm
nary portion. From Eqs.~23! we get an estimate for th
velocity in the aorta

u05U0* L2
Da* L2ñ

l 0
. ~32!

Using the estimated values ofDa* , U0* , reported in
Table 1 andL51471 cm and consideringl 0 to be in the
order of magnitude of the length of the aorta,l 0

'50 cm, we can extractu0'34 cm/s, which is a realis
tic value too.10 The value of Da* 58.4531024 s21,
which corresponds to a geometrical dispersion coeffic
Da5Da* L251.83103 cm2/s justifies the argument o
negligible molecular diffusion, where a typical value
the diffusion coefficient is of the order 1025 cm2/s.
These results demonstrate that the model describes
data nicely~Fig. 3!, while the estimates for the param
eters are within the expected range.

In the same manner we analyzed dog data.15 The
experimental design is practically identical to the hum
study.18 An intravenous injection 5 mg of ICG was fo
lowed by frequent blood sampling in the first 45 s. T
results of the optimization are shown in Table 1. Figu
5 shows the plot of the experimental data together w
the fitted curve. The same comments about the value
the fitted parameters apply as in the case of man.
interesting point however concerns the value ofxp* being
rather small. Visual inspection of Fig. 5 reveals that t
pulmonary transit time is comparable with the tran
time of the main circulation, suggesting that dog has

FIGURE 5. Concentration-time plot of the experimental dog
data of ICG „Ref. 15… together with the fitted curve of the
model.
e

f

higher ratio, pulmonary blood volume/main circulatio
blood volume, compared to man. However, this is pro
ably due to the slow route kinetics issue, already m
tioned, which seems to be attenuated in the case of
smaller mammals~dog!. The presence of these slo
routes also amplifies the dispersion of the main circu
tion portion compared to the pulmonary portion, a fa
depicted at the calculated values ofDa* and Dp* in man
and dog.

The analysis of ICG data in two species reveals t
the model describes adequately the kinetics of ICG
both species. However, our data indicate that interspe
pharmacokinetic scaling,4 related with the initial mixing
of the tracers, should be considered with caution. This
so since the intravascular kinetics in various species
not manifest simple allometric laws, dependent exc
sively on size. Instead, more detailed physiologica
based description of kinetics is required. Our work
towards this quest. This notion is depicted in Fig.
showing the model developed, drawn schematically
various species.

CONCLUSIONS

We derived a one-dimensional linear dispersio
convection equation with constant coefficients that d
scribes the disposition of a substance inside a tree-
fractal network of tubes that emulates the vascular tr
Based on that result, a simple model for the mammal
circulatory system is built in entirely physiological term
consisting of a ring shaped, one-dimensional tube. T
model takes into account dispersion, convection and
take, describing the initial mixing of intravascular tra
ers. This model opens new perspectives in studies d
ing with the disposition of intravascular tracers which a
used for various hemodynamic purposes, e.g., card
output measurements,18 volume of circulating blood
determination18 and liver function quantification.11 Most
importantly, the model can be expanded and used for
study of xenobiotics that distribute beyond the intrava
cular space. Consequently, applications can be envisa
in interspecies pharmacokinetic scaling and physiolo
cally based pharmacokinetic-toxicokinetic modelin
since both fields require a realistic geometrical substr
for hydrodynamic considerations.

APPENDIX

Derivation of Eq.~21!:
If we substitute in Eq.~20!,
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]C~x8,t !

]t
5D~x!S ]x8

]x D 2 ]2C~x8,t !

]x82 2S 2
]D~x!

]x

]x8

]x

2D~x!
]2x8

]x2 1u~x!
]x8

]x D ]C~x8,t !

]x8
~20!

the following expressions, for the various terms

D~x!5S a1s l012
a2s r0l 0

r 0
D S pr 0

2

A~x!
D 2

u0 ,

]D~x!

]x
52

pr 0
2

A~x!

12n1/3

l 0n1/3 S a1s l012
a2s r0l 0

r 0
Du0

522
pr 0

2

A~x!

ñ

l 0
S a1s l012

a2s r0l 0

r 0
Du0 ,

u~x!5
pr 0

2

A~x!
u0 ,

]x8

]x
5

A~x!

pr 0
2 ,

]2x8

]x2 52
12n1/3

l 0n1/3 S A~x!

pr 0
2 D 2

5
ñ

l 0
S A~x!

pr 0
2 D 2

,

we end up with

]C~x8,t !

]t
5S a1s l012

a2s r0l 0

r 0
Du0S pr 0

2

A~x!
D 2S A~x!

pr 0
2 D 2

3
]2C~x8,t !

]x82 2H 2
pr 0

2

A~x!

ñ

l 0
S a1s l0

12
a2s r0l 0

r 0
Du0

A~x!

pr 0
2

2S a1s l012
a2s r0l 0

r 0
D S pr 0

2

A~x!
D 2

u0

ñ

l 0
S A~x!

pr 0
2 D 2

1
pr 0

2

A~x!
u0

A~x!

pr 0
2 J ]C~x8,t !

]x8
,

which finally simplifies to Eq.~21!,

]C~x8,t !

]t
5S a1s l012

a2s r0l 0

r 0
Du0

]2C~x8,t !

]x82

2H ñ

l 0
S a1s l012

a2s r0l 0

r 0
D11J u0

]C~x8,t !

]x8
.

~21!
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