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Abstract
Recent publications by Benet and coworkers, Korzekwa and Nagar, and Rowland et al. signal disagreement regarding the 
use of Kirchhoff’s laws in combining pharmacokinetic parameters, especially clearances and rate constants. Here, it is 
pointed out that Kirchhoff’s laws as applied to pharmacokinetics simply assert that concentrations are well defined and that 
molar or mass balances hold. The real issue is how to combine parameters for clearance processes in sequence, which may 
be reversible, irreversible, or even active in either or both directions. It is also demonstrated that Kirchhoff’s laws cannot be 
used to resolve contradictory results observed in liver transport and clearance. Finally, a simple argument is provided relating 
nonlinear clearance to apparently anomalous bioavailability observations.
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Introduction

Pharmacokinetic (PK) modeling relies heavily on mass and 
species balances. Such balances are described by ordinary 
differential equations (ODEs) or partial differential equa-
tions (PDEs), depending on the level of detail that is of 
interest. For example, compartmental models consist of 
sets of ODEs describing the rates of accumulation of drug 
in individual compartments due to exchange flows between 
compartments, or due to elimination of drug. Under steady 
state conditions, where the rates of the accumulation do not 
change with time, the ODEs become algebraic equations.

Accumulation, flow, and irreversible elimination are 
not peculiar to pharmacokinetics. In fact, numerous physi-
cal processes involving storage, transfer, and loss, such as 
the conduction of electricity in circuits, fluid flow through 
porous media, sound waves, conductive heat transfer, and 
chemical flow and conversion in reactors, are modeled using 
differential equations. These differential equations are built 
from relationships between forces and flows, and conserva-
tion principles. The question may be asked: to what extent 

can we apply what is learned from one class of processes to 
another, in particular pharmacokinetics?

Before the widespread use of digital computers to solve 
the differential equations of pharmacokinetics, analog elec-
trical circuits and oscilloscopes were used to visualize phar-
macokinetics. In such circuits, charge represents amount of 
drug, voltage represents concentration, current represents 
drug flow or elimination (excretion or metabolism), and 
capacitance and conductance represent apparent volume and 
clearance, respectively. The ratio of conductance to capaci-
tance is a rate constant. (These analogies were recognized 
as early as 1964 by Riggs (1). The third traditional electrical 
circuit element, the inductor, has no analog in pharmacoki-
netics.) When hepatic clearance concepts were introduced, 
some researchers borrowed from chemical reactor models 
of varying complexity (2), including models that required a 
partial differential equation description in time and space. 
At steady state, the PDEs reduce to spatial ODEs.

Recently, Benet and coworkers published two papers con-
tending that many concepts and results of pharmacokinetics 
can be clarified using Kirchhoff’s laws, derived initially for 
electrical systems (3,4). In a paper published between the 
Benet contributions, Korzekwa and Nagar argued that Kirch-
hoff’s laws cannot account for certain processes (5). Further 
criticisms of the use of Kirchhoff’s laws in PK modeling, 
specifically of hepatic processes, are presented in a recent 
paper by Rowland et al. (6). The present commentary is a 
contribution to the discussion.
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Kirchhoff’s Laws and Pharmacokinetics

Kirchhoff’s voltage law (KVL) states that the sum of volt-
age drops around a loop in an electrical circuit is zero 
(7–9). A corollary is that the voltage difference between 
two points, or “nodes” of a circuit is independent of the 
“path” between the two nodes. A second corollary is that 
voltage is well defined at any node. Since concentration 
in pharmacokinetic systems is analogous to voltage, the 
KVL analog in pharmacokinetics is that concentration is 
well defined at any “node,” e.g., point or compartment 
with known apparent volume.

Kirchhoff’s current law (KCL) states that the sum of all 
currents flowing into a node is zero. Depending on the sense 
of current direction, it can equivalently be stated that the 
sum of all currents flowing into the node must equal the sum 
of currents flowing out of that node (7–9). The notion of a 
current flowing through a wire or a resistor is well under-
stood, but what is the “current” flowing through a capacitor? 
It is the rate of accumulation of charge across the capacitor 
plates, which equals the “displacement current” that “flows” 
through the medium separating the plates (7).

By analogy, the mass balance equation for the one com-
partment body model,

where C is plasma concentration, t is time, Vd is apparent 
volume of distribution, CLE is elimination clearance, and 
Rin(t) is the rate of drug administration into plasma, is sim-
ply “KCL” applied to the drug “currents” Rin(t), CLEC, and 
VddC∕dt . Figure 1a depicts the one compartment model.

If Rin(t) is constant, then eventually dC∕dt vanishes, 
and at steady state, we have Css = Rin∕CLE , or rearrang-
ing, CLE = Rin∕Css . If on the other hand we start with 
C(0) = 0, administer a finite dose, assume that elimination 
clearance is constant, and let ∫ ∞

0
Rin(t)dt = F ⋅ Dose , where 

F is fraction absorbed, then integration of Eq.  1 yields 

(1)Vd

dC

dt
= −CLEC + Rin(t)

CLE = F ⋅ Dose∕∫ ∞

0
C(t)dt = F ⋅ Dose∕AUC . This well-

known relation is independent of dosing pattern. In particular, 
it does not depend on any “clearance” processes associated 
with absorption into the systemic circulation, as suggested 
by Benet and Sodhi (4).

A final observation with regard to KCL (mass balance) 
is that it need not apply only to nodes but it may also apply 
to regions (8,9). For a pharmacokinetic example, the rate 
of change of amount of drug in an organ is equal to the 
rate of arterial flow of drug into the organ minus the rate of 
venous flow of drug out, minus the rate of elimination of 
drug from the organ, even though concentrations may vary 
geographically within the organ. (Lymph flow is assumed 
negligible.) We will return to this point later.

The Parallel Rule

Consider a single node, or compartment in a pharmacoki-
netic system as illustrated in Fig. 1b. Let the volume of 
that node be denoted by V, and assume two independent 
parallel clearance processes, CL1 and CL2 emanating from 
the node. Then, according to KCL, the total clearance for 
drug leaving the node is

Now define the rate constants for the individual processes,  
k1 = CL1∕V  and k2 = CL2∕V  . Then the rate constant for 
the combined processes in parallel is

Equations 2 and 3 are equivalent to Eqs. 6 and 8 of Benet 
and Sodhi (4). A familiar example is when total body 
elimination is due to renal (R) and hepatic (H) processes 
operating in parallel from the common plasma compart-
ment. Then, CLE = CLR + CLH and kE = kR + kH.

(2)CLtot = CL1 + CL2

(3)ktot = CLtot∕V = (CL1 + CL2)∕V = k1 + k2

Fig. 1   a Schematic of one 
compartment body model. b A 
compartment (or node) with two 
parallel elimination clearances, 
CL1 and CL2. These two clear-
ances can be added to produce 
CL

tot
= CL

1
+ CL

2
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Rules for Processes in Sequence

In circuit theory, parallel processes are complemented by in 
series processes, so it is tempting to assume that such com-
plementarity also exists in pharmacokinetics, and Benet 
and Sodhi have argued as such. However, Korzekwa and 
Nagar have demonstrated that such translation is not always 
possible (5). Here, we further pursue the latter authors’ 
argument.

We begin by paraphrasing Eqs. 7 and 9 of Benet and Sodhi 
for two “in series” processes: 1∕CLtot = 1∕CL1 + 1∕CL2  
and 1∕ktot = 1∕k1 + 1∕k2 (4). These two equations will gen-
erally not hold at the same time, unless the volume terms 
associated with the two processes are identical. It seems 
however that there should be models for which either one 
is true. Figure 2a and b illustrate such models. Both models 
have two compartments in sequence, with the first compart-
ment (“1”) having input rate Rin(t), and the second compart-
ment (“2”) having elimination clearance CLE. The two com-
partments have respective volumes V1 and V2. The model in 
Fig. 2a, which shall be called the “series model,” includes 
a completely reversible bidirectional “exchange” clearance 
term, CL1↔2 . The model in Fig. 2b will be called the “relay” 
model; in this model, transfer from 1 to 2 is unidirectional 
and its associated clearance is denoted by CL1→2.

The mass balance equations for the concentrations in 1 
and 2 for the series model of Fig. 2a are

When Rin is constant, the system settles to a stationary state 
with time derivatives vanishing, leading to the steady state 
solutions

The rate of input into 1 is Rin; the net rate of transfer between 
1 and 2 is

and the rate of elimination from 2 is

(4a)V1

dC1

dt
= Rin(t) − CL1↔2C1 + CL1↔2C2

(4b)V2

dC2

dt
= CL1↔2C1 − CL1↔2C2 − CLEC2

(5a)C1,ss =

(

1

CL1↔2

+
1

CLE

)

Rin

(5b)C2,ss = Rin∕CLE

(6a)

CL1↔2(C1,ss − C2,ss) = CL1↔2

(

1

CL1↔2

+
1

CLE
−

1

CLE

)

Rin = Rin

(6b)CLEC2,ss = CLE(Rin∕CLE) = Rin

Fig. 2   Models of in sequence pharmacokinetics processes, with 
differing clearance properties between compartments 1 and 2. a 
“Series” model with completely reversible clearance between 1 and 

2. b “Relay” model with unidirectional clearance from 1 to 2. c Gen-
eral model with non-negative but not necessarily equal clearances 
between 1 and 2 (5)
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i.e., flows of drug in, through, and out the system are equal 
at steady state, as they must be since there are no parallel 
elimination pathways in this model. Taking compartment 1 
as the reference, the “total” clearance from 1 is

or equivalently,

which is compatible with Benet and Sodhi’s Eq. 7, and with 
it the series rule derived from Kirchhoff’s laws (3).

For a nonsteady input, it is straightforward to show by 
integrating Eqs. 4a and 4b over all time and assuming zero 
initial drug in the two compartments, that

and

Now CLE is a “direct” clearance since it represents direct 
elimination from 2, whereas CLtot,series represents transport 
of drug from 1 to the elimination site through an inter-
mediate compartment, i.e., 2. The term CLtot,series is what 
this author has previously called a “generalized clearance” 
(10). This distinction will be reintroduced in the later dis-
cussion of oral absorption.

We now calculate the mean residence times in 1, 2, and 
the whole system, tot. There are several ways to do this (11); 
here, we divide amounts by flows at steady state. Thus

and

Notice that MRT2 as presented here is the mean time a 
drug molecule spends in 2, whereas MRTtot is the mean 

(7a)

CLtot,series =
Rin

C1,ss

=

(

1

CL1↔2

+
1

CLE

)−1

=
CL1↔2CLE

CL1↔2 + CLE

(7b)
1

CLtot,series
=

1

CL1↔2

+
1

CLE

(8a)
∫ ∞

0
Rin(t)dt

∫ ∞

0
C1(t)dt

=

(

1

CL1↔2

+
1

CLE

)−1

= CLtot,series

(8b)
∫ ∞

0
Rin(t)dt

∫ ∞

0
C2(t)dt

= CLE

(9a)MRT1 = V1C1,ss∕Rin = V1

(

1

CL1↔2

+
1

CLE

)

(9b)MRT2 = V2C2,ss∕Rin =
V2

CLE

(9c)

MRT
tot,series

= MRT
1
+MRT

2
= V

1

(

1

CL
1↔2

+
1

CL
E

)

+
V
2

CL
E

=
V
1

CL
1↔2

+
V
1
+ V

2

CL
E

time that a molecule will spend in the whole system 
before it is eliminated from 2. Defining the rate constants 
k1 = CL1↔2∕V1 , k2 = CLE∕(V1 + V2) and  ktot = 1∕MRTtot 
yields1∕ktot = 1∕k1 + 1∕k2 , which superficially resembles 
Benet and Sodhi’s Eq. 9. Unfortunately, k2 is not a “proper” 
rate constant, which would be derived as the clearance ema-
nating from a single compartment divided by the volume of 
that compartment.

Analogous calculations for the relay model of Fig. 2b can 
be carried out. Here, the mass balance equations are

At steady state, with constant Rin,

and decidedly, Rin ≠ (1∕CL1→2 + 1∕CLE)
−1C1,ss , as would be 

predicted by the series rule. In fact, clearance with respect to 1 is

On the other hand,

the last of which is congruent to 1∕ktot = 1∕k1 + 1∕k2 , with 
proper rate constants k1 = CL1→2∕V1 and k2 = CLE∕V2.

The series and relay models are special cases of the more 
general model of Korzekwa and Nagar (5), in which nonnega-
tive but possibly different clearance terms, CL1→2 and CL2→1 
(see Fig. 2c), are associated with mass transfer between com-
partments 1 and 2. The two clearances might differ, for exam-
ple, when active transporters are involved in drug influx and/or 
efflux. Analyzing as above, the following results are obtained:

(10a)V1

dC1

dt
= Rin(t) − CL1→2C1

(10b)V2

dC2

dt
= CL1→2C1 − CLEC2

(11a)C1,ss = Rin∕CL1→2

(11b)C2,ss = Rin∕CLE

(12)CLtot,relay = Rin∕C1,ss = CL1→2

(13a)MRT1 =
V1

CL1→2

(13b)MRT2 =
V2

CLE

(13c)MRTtot,relay =
V1

CL1→2

+
V2

CLE

(14a)C1,ss = Rin

(

CL2→1 + CLE

CL1→2CLE

)

(14b)C2,ss = Rin∕CLE
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Equation 14c can also be obtained by adapting Cleland’s 
partitioning analysis (5,12). These expressions reduce to 
the series results when CL1→2 = CL2→1 = CL1↔2 , and the 
relay results when CL2→1 = 0.

The in sequence models described above are cast in terms 
of “whole” concentrations, and corresponding “whole” clear-
ance and volume terms. With some effort, the models can be 
recast in terms of unbound concentrations, clearances, and 
volumes. Doing so is conceptually most important for the 
series model, since reversibility of transport should refer to 
unbound drug. (We thank a reviewer for pointing this out.)

Applications

Models of Elimination from the Liver

Because it is an important organ of elimination by metab-
olism and biliary excretion, clearance from the liver has 
been the subject of extensive experimental and theoreti-
cal investigations over the past several decades. Theoreti-
cal approaches have been based primarily on chemical 
reactor models, including the well stirred model (WSM), 
the parallel tube model (PTM), and the dispersion model 
(DM), where WSM and PTM are limiting cases of DM 
(13–19).

Experiments have been conducted with isolated per-
fused rat livers (18–20). In one set of experiments, a bolus 
of an inert tracer is introduced into the arterial stream, and 
tracer concentration is monitored as a function of time in 
the venous output. Analyses of the experimental residence 
time distributions of the inert tracers in the liver, which 
depend on hepatic blood flow, QH, conclude that DM best 
describes the data (19). In a second set of experiments, a 
constant concentration of drug, Cin , is delivered into the 
arterial stream, and the steady state venous concentration 
of drug, Cout , is measured (18,20). The extraction ratio, 
ER = (Cin − Cout )∕Cin is then determined, followed by the 
hepatic clearance, CLH = ER ⋅ QH . As reviewed by Sodhi 
et al. (20), virtually all evidence gathered for the second 
set of experiments favors WSM. Thus, the two types of 
experiments present conflicting conclusions.

Quantitatively, WSM predicts, for drugs not suffering 
permeability limitations, that

(14c)CLtot = Rin∕C1,ss =
CL1→2CLE

CL2→1 + CLE

(14d)MRTtot = V1

(

CL2→1 + CLE

CL1→2CLE

)

+
V2

CLE

where fu is fraction unbound of the drug (21). In their recent 
papers (3,4), Benet et al. observed that this relation can be 
inverted to the form

which bears a striking resemblance to the series formula 
(Eq. 7a). The interpretation was that there are two processes 
in series that determine drug elimination, namely, hepatic 
blood flow and intrinsic clearance (metabolism and biliary 
excretion) acting on unbound drug. It was postulated, to 
paraphrase, that if one accepts the series analogy, then there 
is no need or possibility to discriminate among WSM, PTM, 
and DM using clearance data.

Unfortunately, this reasoning ignores the fact that not all 
drug is extracted as it passes through the liver. Instead, drug 
molecules partition between two parallel pathways, namely, 
the intrinsic clearance pathway and venous exit from the 
liver. The correct use of the Kirchhoff analogy is as follows. 
Drug enters the liver as an arterial “current,” iin = QHCin . 
It then divides, at steady state, into an elimination current, 
ielim = fuCLintCave , where Cave is the volume averaged drug 
concentration in the liver micro-vessels, and a venous exit 
current iout = QHCout . By KCL, iin = ielim + iout , or

The extraction ratio is

and

Inverting,

Equations 19 and 20 revert to Eqs. 15 and 16 only when 
Cave = Cout , i.e., under WSM. It is therefore not possible 
to use arguments based on Kirchhoff’s laws to resolve 
the contradiction between the interpretation of the tracer 
experiments in terms of DM and the apparent success of 
WSM over other models in accounting for hepatic clear-
ance of drugs. Related arguments are presented by Row-
land et al. (6).

(15)CLH =
fuCLint QH

fuCLint + QH

(16)
1

CLH
=

1

QH

+
1

fuCLint

(17)QHCin = fuCLint Cave + QHCout

(18)ER =
ielim

iin
=

fuCLint Cave

QHCin

=
fuCLint Cave

fuCLintCave + QHCout

(19)CLH = ER ⋅ QH =
fuCLint Cave QH

fuCLint Cave + QH Cout

(20)
1

CLH
=

1

QH

+
1

fuCLint

(

Cout

Cave

)
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For PTM, Cave = (Cin − Cout )∕ln(Cin∕Cout ) , and using 
ER = (Cin − Cout )∕Cin , it is found that

Using Eqs. 16 and 20, and CLH = ER ⋅ QH , the follow-
ing formulas are derived for estimating intrinsic clearance 
given WSM and PTM:

Constancy of estimated CLint following experimental 
variations of QH and/or fu and consequent changes in 
ER would provide evidence for the correctness of either 
model. Plots of the bracketed dimensionless functions of 
ER are presented in Fig. 3. For DM, a class of functions 
lying between those plotted is expected. It is recognized 
that Eq. 22 is equivalent to Eqs. 15 and 16, while Eq. 23 
is a rearrangement of ER = 1 − exp(fuCLint∕QH) from the 
literature (16,17).

The above analyses can be extended to include the 
effects of slow drug permeation through hepatocyte 
membranes, and the contributions of luminal influx and 
efflux transporters. Here, these effects are summarized 
by net influx and efflux clearances,  CLinf lux and CLeff lux , 

(21)
1

CLH
=

1

QH

+
1

fuCLint

[

−(1 − ER) ln(1 − ER)

ER

]

(22)WSM ∶ CLint =
QH

fu

[

ER

1 − ER

]

(23)PTM ∶ CLint =
QH

fu
[− ln(1 − ER)]

recognizing that in the absence of transporters, these two 
clearances will be equal. To account for these contribu-
tions, we replace CLint in the preceding equations with

(NB this clearance acts on the unbound drug, as does CLint 
in the usual context.) Eq. 24 is congruent with Eq. 14c and 
with most of the literature, with the exception of the papers 
by Benet et al. (3,4), which postulate (in our notation), that

i.e. the difference CLinf lux − CL�ef f lux is lumped into a single 
net clearance coefficient acting on unbound drug. (A prime 
is placed on efflux clearance here to emphasize that it differs 
from CLeff lux as modeled in Eq. 24.) Comparing Eqs. 24 and 
25, we find that

The bracketed term can be positive, negative, or infinite, 
depending on the values of CLinf lux , CLeff lux , and CLint, all 
of which are positive. It is therefore evident that Eq. 25 as a 
generalized expression is problematic.

We close this discussion by reiterating that the present 
use of KCL is nothing other than a rephrasing of the Fick 
principle (1), i.e., molar balance of drug considering all of 

(24)CLnet =
CLinf luxCLint

CLeff lux + CLint

(25)CLnet =
(CLinf lux − CL�ef f lux)CLint

(CLinf lux − CL�ef f lux) + CLint

(26)CL�ef f lux = CLinf lux

[

(CLeff lux − CLinf lux)∕CLint

1 + (CLeff lux − CLinf lux)∕CLint

]

Fig. 3   Bracketed dimension-
less functions of ER in Eqs. 22 
and 23
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its possible fates after entering the liver. We also recognize 
that there is strong evidence against uniformity of enzy-
matic processes and biliary excretion throughout the liver 
(16), so one may expect the presented models to be valid 
only in an average sense. Finally, other complications such 
as saturable, Michaelis–Menten enzyme, and transporter 
kinetics have not been addressed here. However, none of 
these caveats detract from the basic identification of KCL 
as a statement of molar balance.

Oral Absorption

We first consider the simplest model of oral absorption, 
with first order drug absorption into the systemic circu-
lation, where drug obeys first-order disposition, with no 
loss due to first pass absorption (F = 1). In this model, it is 
assumed that transport from the gut to the systemic circu-
lation is unidirectional. The model therefore corresponds 
to the relay model scheme in Fig. 2b, with 1 being the gut 
and 2 the system circulation, with corresponding volumes of 
distribution V1 = Vgut and V2 = Vsys . The absorption (a) and 
elimination (e) clearances are CL1→2 = CLa and CLE = CLe , 
and the corresponding rate constants are ka = CLa∕Vgut and 
ke = CLe∕Vsys . The well known time course for systemic 
drug concentration, Csys(t) following a “bolus” dose to the 
gut, Rin(t) = Doseoral ⋅ �(t) , where �(t) is the Dirac delta 
function, is (22)

This expression (the Bateman function) follows from inte-
grating Eqs. 10. By the usual Doseoral∕AUCsys calculation, 
we arrive at CL

e
= k

e
Vsys , as expected.

For later purposes, we also calculate Doseoral∕AUCgut,relay . Inte-
grating Eq. 10a alone, we have Cgut,relay(t) = (Doseoral∕Vgut )e

−kat 
and Doseoral∕AUCgut,relay = CLa . This quantity, besides being 
the clearance of drug from the gut into to systemic circulation, 
is the generalized clearance from gut to final elimination from 
the circulation (10). (In this respect, CLa = CL1→2 is also the 
generalized clearance from gut to circulation in the presently 
discussed model, where absorption is unidirectional).

For completeness, recall the result for mean residence 
time in the whole body (23)

The inverse rate constants are the mean times spent by 
drug in the gut and in the systemic circulation. Equation 28 
is a direct analog of Eq. 13c, in which was MRTtot calculated 
by the steady state method.

(27)Csys,relay(t) =
Doseoral ⋅ ka

Vsys

(

e−ket − e−kat

k
a
− k

e

)

, t > 0

(28)MRTtot,relay =
∫ ∞

0
tCsys,relay(t)dt

∫ ∞

0
Csys,relay(t)dt

=
1

ka
+

1

ke

Now consider the series model (Fig. 2a), with reversible 
drug transport between gut lumen and systemic circulation. 
We can use the same recent definitions, except to note that 
CLa = CL1↔2 and that we need to define a new “efflux” rate 
constant, keff = CLa∕Vsys . The equations for systemic and 
gut lumen concentrations feature nontrivial exponential 
decay eigenvalues and coefficients, so we shall not report 
them here. Of more interest are clearances and mean resi-
dence times, which are calculated using analogs of Eqs. 7–9:

Typical estimates for Vgut are of order 100–250 mL (24), 
whereas Vsys is at least 2 L and can be orders of magnitude 
larger (25). The last term in Eq. 29e is therefore considerably 
smaller than the second term and can be practically ignored.

The present analysis shows that the expression 
(1∕CLa + 1∕CLe)

−1 , which Benet and Sodhi claim to be the 
valid value of clearance in oral (or otherwise extravascu-
lar) delivery, is actually the generalized clearance from gut 
lumen to elimination, given the series model. In contrast to 
the relay model, there is no generalized clearance from gut 
to systemic circulation, since in the series model, there is 
also reverse transport from circulation to gut lumen. Finally, 
note that the present analysis would apply to other extravas-
cular routes.

Extravascular Absorption and Bioavailability

Benet and Sodhi (4) note that there are examples of drugs 
whose dose corrected extravascular bioavailabilities exceed 
100%. In particular, they cite a study by Grahnén et al. (26), 
in which the mean apparent oral bioavailability of cimeti-
dine in human subjects, as determined by dose corrected 
AUC ratios, was 110.6%, whereas taking ratios of fractions 
recovered unchanged in the urine yielded a mean apparent 
bioavailability of 59.5%. While confidence intervals of these 
estimates were not reported, assume for now that they are 
narrow. Then, the pharmacokinetic system cannot be lin-
ear. If it was, then for any concentration-time relationship 
of drug in plasma, C(t), following a dose, Dose, the fraction 
excreted unchanged in the urine would be

(29a)CLsys,series = Doseoral∕AUCsys,series

(29b)
CLgut,series = Doseoral∕AUCgut,series = (1∕CLa + 1∕CLe)

−1

(29c)MRTsys,series = Vsys∕CLe = 1∕ke

(29d)
MRTgut.series = Vgut (1∕CLa + 1∕CLe) = 1∕ka + Vgut∕CLe

(29e)MRTtot.series =
Vgut

CLa
+

Vgut + Vsys

CLe
=

1

ka
+

1

ke
+

Vgut

CLe
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where CLR is pulled out of the integral because the system 
is linear. Denoting “extravascular” and “intravascular” by 
“ev” and “iv,”

since the CLR terms in the numerator and denominator 
cancel. Thus, assuming perfect measurement, the two tech-
niques for assessing bioavailability should yield the same 
result; since they do not, the system is nonlinear. The left 
and right ratios in Eq. 31, multiplied by 100%, are denoted 
by Grahnén et al. as Ffe and FAUC​ (26).

Suppose now that renal elimination of unchanged drug 
contains a saturable secretory component, see for exam-
ple Weiner and Roth (27). Then, CLR will be concentration 
dependent, in a decreasing manner, and it is not possible to 
pull it outside the integral in Eqs. 30, and 31 will not hold. 
When drug is at high concentrations, the fraction that is elimi-
nated in the urine will decrease, and the contribution to the 
drug’s AUC will increase, so one should expect FAUC > Ffe . 
Further, if FAUC​ measured at low doses is reasonably close to 
100%, then it would not be surprising for FAUC​ to exceed 100% 
at higher doses where renal elimination is partially saturable.

In the Grahnén study, the i.v. bolus dose of cimetidine was 
100 mg, while the oral doses were 100, 400, and 800 mg. 
The i.v. disposition showed a rapid distribution and a slower 
elimination phase, with no apparent saturability of elimina-
tion. During the elimination phase, plasma concentration was 
below 1 μg/ml. For oral dosing at 100 mg, the values of Ffe 
and FAUC​ were below 100 and approximately equal, suggest-
ing linear pharmacokinetics. For the higher oral doses, how-
ever, FAUC​ was larger than Ffe in all but one case. Also, plots 
of plasma concentration in response to a 400-mg oral dose 
showed long exposures to drug near 2 μg/ml. Even higher 
and longer exposures would be expected given an 800 mg oral 
dose. Thus, saturable renal elimination is a potential expla-
nation for the difference between Ffe and FAUC​, and for FAUC​ 
exceeding 100%, even though Grahnén et al. claim dose inde-
pendent pharmacokinetics. As a final note, a weak but visible 
negative correlation was observed between Ffe and FAUC​ for 
the higher oral doses (Fig. 3 of Grahnén et al.). This would be 
consistent with our explanation.

Discussion and Conclusion

This commentary has attempted to resolve certain disputes 
regarding the use of Kirchhoff’s laws in pharmacokinetics. 
Actually, Kirchhoff’s laws are not the real issue, since their 

(30)fe =
1

Dose ∫
∞

0

CLRC(t)dt =
CLRAUC

Dose

(31)
feev

feiv
=

(AUC∕Dose)ev

(AUC∕Dose)iv

physiological meanings are that concentrations are well defined 
(KVL) and that mass or molar balances hold (KCL). There is 
no dichotomy between Kirchhoff’s laws and differential equa-
tions, once it is realized that time derivatives of amounts can be 
considered “currents.” In the electrical circuit and more general 
engineering literatures, Kirchhoff’s laws are used to set up dif-
ferential equations describing system behavior (8,9,28), and the 
same can hold true for pharmacokinetics. We note in passing 
that Kirchhoff’s laws apply also to nonlinear systems and even 
to systems whose properties change with time.

The real issue is how to treat in sequence processes. 
While Benet and coworkers treat them as series processes, 
Korzekwa and Nagar provide examples where the series rule 
does not hold, and we augment their case by presenting the 
limiting case of relay processes. All of these processes fit 
within the framework of Kirchhoff’s laws.

We conclude this commentary by providing non-pharma-
cokinetic analogies, which highlight the difference between 
series and relay processes. When two resistors are placed in 
series, the current flow is reduced compared to what it would 
be if either of the two resistors was exposed to the same voltage. 
The presence of the second resistor thus impinges on the current 
flow through the first resistor, and vice versa. Quantitatively, the 
resistances add. On the other hand, swimmers in a relay race will 
complete their legs with times that are not dependent on those of 
their teammates. Their times will add, however.

Author Contribution  This work was conceived, written, and edited by 
Ronald A. Siegel.

Funding  This work was supported by the College of Pharmacy, Uni-
versity of Minnesota.

Declarations 

Conflict of Interest  The author declares no competing interests.

References

	 1.	 Riggs DS. The mathematical approach to physiological problems. 
Cambridge, MA: M.I.T. Press; 1963.

	 2.	 Levenspiel O. Chemical reaction engineering. 2nd ed. New York: 
Wiley; 1972.

	 3.	 Pachter JA, Dill KA, Sodhi JK, Benet LZ. Review of the application 
of Kirchhoff’s laws of series and parallel flows to pharmacology: 
defining organ clearance. Pharmacol Ther. 2022;239: 108278.

	 4.	 Benet LZ, Sodhi JK. The uses and advantages of Kirchhoff's laws 
vs. differential equations in pharmacology, pharmacokinetics, and 
(even) chemistry. AAPS J. 2023;25:38.

	 5.	 Korzekwa K, Nagar S. Process and system clearances in pharma-
cokinetic models: our basic clearance concepts are correct. Drug 
Metab Disp. 2023;51:532–42.

	 6.	 Rowland M, Weiss M, Pang KS. Kirchhoff’s laws and hepatic 
clearance, well-stirred model: is there are common ground? Drug 
Metab Disp. 2023;51:1451–4.



The AAPS Journal (2024) 26:8	

1 3

Page 9 of 9  8

	 7.	 Sears FW, Zemansky MW. University physics. Reading, MA: 
Addison-Wesley; 1970.

	 8.	 Bose AG, Stevens KN. Introductory network theory. New York: 
Harper & Row; 1965.

	 9.	 Siebert WM. Circuits, signals, and systems. Cambridge, MA: MIT 
Press; 1986.

	10.	 Siegel RA. Pharmacokinetic transfer functions and generalized 
clearances. J Pharmacokinet Biopharm. 1986;14:511–21.

	11.	 Lassen NA, Perl W. Tracer kinetic methods in medical physiology. 
New York: Raven Press; 1979.

	12.	 Cleland WW. Partition analysis and the concept of net rate con-
stants as tools in enzyme kinetics. Biochemistry. 1975;14:3220–4.

	13.	 Benet LZ, Liu S, Wolfe AR. The universally unrecognized 
assumption in predicting drug clearance and organ extraction 
ratio. Clin Pharmacol Ther. 2017;103:521–5.

	14.	 Jusko WJ, Li X. Assessment of the Kochak-Benet equation for 
hepatic clearance for the parallel-tube model: relevance of classic 
clearnace concepts in PK and PBPK. AAPS J. 2022;24:5.

	15.	 Kochak GM. Critical analysis of hepatic clearance based on an 
advection mass transfer model and mass balance. J Pharm Sci. 
2020;109:2059–69.

	16.	 Pang KS, Han YR, Noh K, Lee PI, Rowland M. Hepatic clearance 
concepts and misconceptions: why the well-stirred model is still 
used even though it is not physiologic reality? Biochem Pharma-
col. 2019;109:2059–69.

	17.	 Pang KS, Rowland M. Hepatic clearance of drugs. I. Theoreti-
cal considerations of a “well-stirred” model and a “parallel tube” 
model. Influence of hepatic blood flow, plasma and blood cell 
binding, and the hepatocellular enzymatic activity on hepatic drug 
clearance. J Pharmacokinet Biopharm. 1977;5:625–53.

	18.	 Pang KS, Rowland M. Hepatic clearance of drugs. II. Experi-
mental evidence for acceptance of the “well-stirred” model 
over the “parallel tube” model using lidocaine in the per-
fused rat liver in situ preparation. J Pharmacokinet Biopharm. 
1977;5:655–80.

	19.	 Roberts MS, Rowland M. A dispersion model of hepatic elimi-
nation: 1. Formulation of the model and bolus considerations. J 
Pharmacokinet Biopharm. 1986;14:227–60.

	20.	 Sodhi JK, Wang H-J, Benet LZ. Are there any experimental perfu-
sion data that preferentially support the dispersion and parallel-
tube models of the well-stirred model of organ elimination? Drug 
Metab Disp. 2020;48:537–43.

	21.	 Wilkinson GR, Shand DG. A physiological approach to hepatic 
drug clearance. Clin Pharmacol Ther. 1975;18:377–90.

	22.	 Gibaldi M, Perrier D. Pharmacokinetics. Second ed. Swarbrick J, 
editor. New York: Marcel Dekker, Inc.; 1982.

	23.	 Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharma-
cokinetics. J Pharmacokinet Biopharm. 1979;6:547–58.

	24.	 Mudie DM, Murray K, Hoad CL, Pritchard SE, Garnett MC, Ami-
don GL, et al. Quantification of gastrointestinal liquid volumes 
and distribution following a 240 mL dose of water in the fasted 
state. Mol Pharmaceutics. 2014;11:3039–47.

	25.	 Rowland M, Tozer TN. Clinical pharmacokinetics and pharmaco-
dynamics. 4th ed. Philadelphia: Kluwer/Lippincott Williams; 2011.

	26.	 Grahnén A, von Bahr C, Lindström B, Rosén A. Bioavailabil-
ity and pharmacokinetics of cimetidine. Eur J Clin Pharmacol. 
1979;16:335–40.

	27.	 Weiner IM, Roth L. Renal excretion of cimetidine. J Pharmacol 
Exp Ther. 1981;216:516–20.

	28.	 Milhorn HTJ. The application of control theory to physiological 
systems. Philadephia: W.R. Saunders Company; 1966.

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Notes on the Use of Kirchhoff’s Laws in Pharmacokinetics
	Abstract
	Introduction
	Kirchhoff’s Laws and Pharmacokinetics
	The Parallel Rule
	Rules for Processes in Sequence
	Applications
	Models of Elimination from the Liver
	Oral Absorption
	Extravascular Absorption and Bioavailability

	Discussion and Conclusion
	References


