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Abstract
In chemistry, rate processes are defined in terms of rate constants, with units of  time−1, and are derived by differential equa-
tions from amounts. In contrast, when considering drug concentrations in biological systems, particularly in humans, rate 
processes must be defined in terms of clearance, with units of volume/time, since biological volumes, which are highly 
dependent on drug partition into biological tissues, cannot be easily determined. In pharmacology, pharmacokinetics, and 
in making drug dosing decisions, drug clearance and changes in drug clearance are paramount. Clearance is defined as the 
amount of drug eliminated or moved divided by the exposure driving that elimination or movement. Historically, all clear-
ance derivations in pharmacology and pharmacokinetics have been based on the use of differential equations in terms of 
rate constants and amounts, which are then converted into clearance equations when multiplied/divided by a hypothesized 
volume of distribution. Here, we show that except for iv bolus dosing, multiple volumes may be relevant. We have recently 
shown that clearance relationships, as well as rate constant relationships, may be derived independent of differential equa-
tions using Kirchhoff’s Laws from physics. Kirchhoff’s Laws may be simply translated to recognize that when two or more 
rate-defining processes operate in parallel, the total value of the overall reaction parameter is equal to the sum of those rate-
defining processes. In contrast, when two or more rate-defining processes operate in series, the inverse of the total reaction 
parameter is equal to the sum of the inverse of those rate-defining steps.
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Introduction

Ever since the field of clinical pharmacology began eval-
uating drug concentrations in humans to characterize the 
pharmacokinetics of drugs and make drug dosing decisions, 
the equations utilized have been developed based on dif-
ferential equations for first-order rate processes. Here, we 
present the proposition that although differential equation 
derivations are appropriate for chemical reactions in a fixed-
volume beaker, they may misrepresent or fail to adequately 
characterize human pharmacokinetic processes for which 
the individual rate processes can occur in biological regions 

with differing volumes of drug distribution. In pharmacoki-
netics, the observed rate of elimination is a function of both 
clearance and varying volumes of distribution for the dif-
ferent processes in the body, but in chemistry, the observed 
rate of elimination is only a function of rate constants since 
all reactions occur in a fixed-volume beaker. We also dem-
onstrate that Kirchhoff’s Laws may simplify the approach to 
defining chemical reactions and that Kirchhoff’s Laws for 
in-series processes are in fact consistent with routinely used 
mean residence time concepts in pharmacokinetics, but that 
the implications of these analyses have not been recognized.

As we previously detailed (1), rates of reaction are 
derived and defined in chemistry in terms of rate constants 
and driving force amounts following linear force-flow rela-
tions, as given in Eq. 1

where J is some sort of flux or current, f is the driving force 
or impetus causing that flux, and K is a coefficient of propor-
tionality that determines the magnitude of the flux response 

(1)J = K ⋅ f
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to the input force. We see this relationship for Fick’s Law 
of diffusion, Ohm’s Law for electric current, heat transfer 
relationships, and drag force on falling objects. Applied to 
chemical rates of reaction

where the rate constants, k, have units of  time−1 and 
amounts, A, have units of mass. Even if the chemistry reac-
tion is carried out in a solution, where concentrations are 
measured, we can easily convert this to an amount by mul-
tiplying the concentration by the volume of fluid in which 
the reaction is measured. The rate of the reaction can be 
defined using differential equations that include the rate con-
stants and the amounts driving the reaction. In contrast, for 
in vivo pharmacology and pharmacokinetics, the equivalent 
of Eqs. 1 and 2 is

where clearance, CL, has units of volume per time and con-
centration has units of mass per volume. Clearance is defined 
as the amount of drug eliminated or moved divided by the 
drug exposure driving that elimination or movement over all 
time (2). For an intravenous bolus dose of drug, clearance 
may be calculated using Eq. 4

where AUC0→∞ is the area under the systemic concentration 
time curve over all time following the bolus dose.

Clearance is the most important pharmacokinetic parame-
ter as it defines the dosing rate for drugs in patients to achieve 
efficacy and minimize toxicity. At any i th time point, the rate 
of elimination (Relim, i) equivalent of Eq. 4 is given by

where Ci is the measured concentration at the i th time 
point. Historically, clearance parameters are determined 
by deriving the relevant rate of elimination processes from 
drug amounts using differential equations, often solving the 
equations at steady state so that the rate of elimination in the 
differential equation may be set to zero. The resulting equa-
tions are then multiplied by a volume of distribution term 
to convert the rate constants into clearances. In other words, 
this approach is exemplified by first using Eq. 2 to relate the 
rate of elimination to drug amount (dose) but then is con-
verted to a clearance by multiplying the rate constant, and 
dividing the amount, by volume of drug distribution (Eq. 3). 
This approach is useful in pharmacokinetics and pharma-
cology, where concentrations of drug in systemic fluids are 

(2)
Rate of reaction = rate constant ⋅ amount driving the reaction

= k ⋅ A

(3)
Rate of reaction = clearance ⋅ concentration driving the reaction = CL ⋅ C

(4)CL =
Amount eliminated

Exposure driving that elimination
=

Doseiv bolus

AUC0→∞

(5)CL =
Relim,i

Ci

measured rather than amounts. Until now, this was the only 
methodology available to derive clearance relationships. 
However, in this manuscript, we show why this frequently 
leads to invalid equations due to assuming a single volume 
of distribution for the various pharmacokinetic processes.

The primary sites for drug elimination of small mole-
cules in the body are the liver and the kidney, although other 
elimination sites are possible, such as the lung for volatile 
compounds and macrophages for macromolecules, such as 
antibodies. In the kidney, there are several renal elimination 
processes that occur independent of each other, in parallel. 
In contrast, in the liver, there are several hepatic elimination 
processes that occur in series. We asked: can clearance rates 
for each elimination process be simply combined into total 
net clearance rates independent of any mechanistic model, 
allowing clearance in the kidney and liver to be determined 
without solving differential equations? We accomplished 
this using Kirchhoff’s Laws (1). If this is possible, we fur-
ther asked: can we also derive the chemical rates of reaction 
without solving differential equations?

Theory and Practice

Application of Kirchhoff’s Laws to Eliminate 
the Need for Solving Differential Equations

More than a century and a half ago, Gustav Kirchhoff 
presented publications concerning applications of Ohm’s 
Laws for electric currents. His work has been identified 
as Kirchhoff’s Laws and their application to electrical 
processes in parallel and in series designated as Kirch-
hoff’s Loop Rules that can be found in elementary Phys-
ics textbooks (3, 4). Here, we reference book material 
that can be downloaded for free on-line (openpress.usask.
ca/physics155/). Application of the first Law demon-
strates that when two electrical resistors are in parallel, 
the total conductance (the inverse of resistance) is equal 
to the sum of the individual conductances. Application 
of the second Law demonstrates that when two resis-
tors are in series, the inverse of the total conductance 
is equal to the sum of the inverse conductance for each 
resistor. Applications of Kirchhoff’s Laws are consistent 
with Eq. 1 as stated above. We reasoned that processes 
in pharmacology, pharmacokinetics, and chemistry also 
are consistent with Eq. 1 and that Kirchhoff’s Laws are 
applicable to deriving the kinetic relationships both for 
rate constants (Eq. 2) and clearances (Eq. 3) independ-
ent of differential Eqs. (1). Thus, there is now a way to 
derive clearance equations independent of the differential 
equation-based process, which has been followed since 
clearance was first recognized as the defining param-
eter in drug dosing a half-century ago. That is, it is now 
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no longer necessary to derive the kinetic relationship in 
terms of rate constants and amounts, set the differential 
equation equal to zero at steady state, and then multiply 
the rate constant by a volume of distribution term and 
divide the amount by volume of distribution, to define 
clearance. Furthermore, for chemistry reactions, it is not 
necessary to derive the kinetic relationships and define 
the rate constants for first-order processes using differ-
ential equations.

As we report (1), the application of Kirchhoff’s Laws to 
clearance can be summarized in Eq. 6 for parallel processes 
and Eq. 7 for processes in series.

Equations 6 and 7 allow derivation of total clearance in 
Eq. 3. However, Kirchhoff’s Laws may also be applied to 
rate constants (and the total rate constant in Eq. 2) and can 
be derived via Eqs. 8 and 9, independent of solving differ-
ential equations for first-order processes.

A rate-defining process is a parameter that describes an 
elimination or movement process for which it is possible 
under certain conditions that the total clearance or total 
rate constant may be equal to this value. For example, 
a rate-defining clearance process for hepatic elimination 
could be hepatic blood flow, i.e., the rate at which drug 
arrives to the liver is the maximum value that hepatic 
elimination can be. Thus, for a very high hepatic clear-
ance (CLH) drug, total CLH would equal hepatic blood 
flow. To exemplify a rate-defining rate constant process, 
for a series of chemical reactions occurring in a beaker, 
the elimination rate constant for the parent drug could 
be the minimum value rate-defining process for all sub-
sequent metabolic steps. In contrast, basolateral hepatic 
efflux transport cannot be a rate-defining process since it 
is not possible for clearance or rate of elimination to be 
solely equal to this parameter.

(6)
CLtotal = CLrate defining parallel process 1

+ CLrate defining parallel process 2 +…

(7)

1

CLtotal

=

1

CLrate defining in series process 1

+

1

CLrate defining in series process 2

+…

(8)
ktotal = krate defining parallel process 1

+ krate defining parallel process 2 +…

(9)

1

ktotal
=

1

krate defining in series process 1

+

1

krate defining in series process 2

+…

Application of Kirchhoff’s Laws to Determine Rate 
Constants for In‑Series Metabolic Steps

We now examine a hypothetical drug metabolism scenario 
where the drug ( D ) is metabolized to a first metabolite ( M1 ) 
and partially excreted unchanged in the urine, which is then 
further metabolized to a second in-series metabolite ( M2 ) 
and partially excreted in the urine, which is then further 
metabolized in series to a third metabolite ( M3).

The advantage of utilizing Kirchhoff’s Laws for describ-
ing the rate of M2 elimination is that the coefficient of pro-
portionality (the measured elimination rate constant for 
M2 ) is determined based on the measured outcome and the 
rate-determining driving force parameters (the individual 
rate constants). Thus, for the in-series metabolism scenario 
pictured above

Assuming that the values for overall elimination of the 
drug and the metabolites by metabolism plus urinary excre-
tion are kd = 0.07  h−1, km1 = 0.12  h−1, and km2 = 0.42  h−1, the 
measured M2 elimination rate constant according to Eq. 10 
will be 0.040  h−1. Therefore, if we wanted to predict the 
measured rate of the reaction (mass/time) for the elimina-
tion of M2 in Eq. 2, it would be 0.040 multiplied by the 
amount of drug D we added to the beaker that reaches M2 . 
Prior to this publication, how would we have estimated this 
parameter? We demonstrate in the Appendix the process we 
would follow. That is, derive the differential equation for the 
measured concentrations of M2 (CM2) as a function of time. 
We carried out the derivation using Laplace transforms. We 
then solved the equation for CM2 as a function of time. We 
then determined the mean residence time of M2 ; the inverse 
of which would be the measured rate of elimination of M2 . 
This value is 0.040  h−1, the same value reached here using 
Kirchhoff’s Laws. As far as we can tell, we are the first to 
recognize that Kirchhoff’s Laws can be used to simply define 
measured reaction rates for in-series processes without car-
rying out the derivation in the Appendix.

Application of Kirchhoff’s Laws to In‑Series 
Rate‑Defining Steps for In Vivo Hepatic Clearance

A major advance in our application of Kirchhoff’s Laws to 
hepatic clearance (1) was the recognition that for hepatic 
elimination, the in-series rate-defining clearance processes 

(10)
1

M2 measured elimination rate constant
=

1

kd
+

1

km1
+

1

km2
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could be (a) clearance entering, which is hepatic blood flow 
(QH) and (b) clearance leaving, which is hepatic clearance, 
i.e., the product of the fraction unbound to blood proteins 
(fuB) and the sum of the intrinsic ability of the liver to metab-
olize and to excrete unbound drug into the bile, independent 
of blood flow (CLint). As we point out in Pachter et al. (1), 
the CLint term is the sum of two parallel elimination pro-
cesses (CLint metabolism + CLint biliary excretion). Thus, in a general 
approach

where CLentering is hepatic blood flow and CLleaving is metabo-
lism of unbound drug

Solving Eq. 12 gives

For the past 50 years in the pharmacokinetic literature, 
Eq. 13 had previously been considered as the well-stirred 
model of hepatic elimination, based on the differential 
equation and steady-state derivation of Rowland, Benet, 
and Graham (5) for hepatic blood flow and intrinsic clear-
ance plus the addition of the protein binding term by 
Wilkinson and Shand (6). Here, Eq. 13 was derived mak-
ing no assumptions related to the mechanistic character-
istics of hepatic elimination. It is organ model independ-
ent. Based on this recognition, we now understand why 
all steady-state isolated perfused rat liver clearance data, 
the only experimental studies that directly test the vari-
ous hepatic disposition models, appear to preferentially fit 
what was previously believed to be the well-stirred model 
(7). It is because, in fact, Eq. 13 is a model-independent 
relationship and not the well-stirred model of hepatic dis-
position as the field has regarded it to be. Even in early 
2022, we (8) also continued to mistakenly consider Eq. 13 
to be the well-stirred model, since we had participated 
in the initial steps of its derivation (5). Therefore, there 
appears to be no value to predicting whole body clearance 
values utilizing different mechanistic models of hepatic 
organ elimination (e.g., parallel tube, dispersion, well-
stirred), as is presently employed in some physiologically 
based pharmacokinetic (PBPK) approaches. To clarify, 
this manuscript is not questioning nor debating the pros 
and cons of the various hepatic disposition models. The 
thesis of this manuscript is focused on the methodologies 
employed to analyze pharmacokinetic data and obtain cor-
rect measures of pharmacokinetic parameters, i.e., the dif-
ferential equation approach versus the approach presented 

(11)
1

CLH
=

1

CLentering
+

1

CLleaving

(12)
1

CLH
=

1

QH

+
1

fuB ⋅ CLint

(13)CLH = QH ⋅

fuB ⋅ CLint

QH + fuB⋅CLint

here based on Kirchhoff’s Laws. The derivation of Eq. 13, 
independent of differential equations, is an excellent exam-
ple of the advantage of the Kirchhoff’s Law approach.

Adding Rate Defining Basolateral Transport to Hepatic Clear-
ance: The Extended Clearance Equation In Pachter et al. (1), 
we noted that previously Eq. 13 had been commonly used 
in clearance predictions when hepatic metabolism was the 
only relevant process, although assuming it was the well-
stirred model; however, the incorrect hepatic clearance equa-
tion was being employed when the possibility of basolateral 
transporters could be the rate-defining process. This is an 
area of strong interest, since lipid-lowering statins (HMG 
CoA reductase inhibitors) and other large molecular weight 
acids are found to be substrates of organic anion transporting 
polypeptides (OATPs) and inhibition of these transporters 
can significantly affect the pharmacokinetics of such drugs. 
Thus, when basolateral transporters are clinically significant, 
there are two entering clearances in series in Eq. 11, and 
Eq. 12 equivalent becomes

where PSinflux is basolateral influx clearance and PSefflux is 
basolateral efflux clearance. Kirchhoff never considered 
simultaneous reversible steps in his derivations, and one may 
ask why the difference in basolateral transport is assumed in 
Eq. 14, rather than separating out the two processes? Recall 
in the above discussion following Eq. 9 that Kirchhoff’s Laws 
applied to pharmacology, pharmacokinetics, and chemistry 
hold for combining rate-defining processes. Thus, we cannot 
ignore PSefflux, as it will certainly affect hepatic clearance, but 
it cannot be a rate-defining process by itself, as it is a nega-
tive parameter, and drug has to enter the liver prior to being 
effluxed out. Therefore, the rate-defining basolateral hepatic 
transport process is the difference between influx and efflux 
clearances. Of course, if basolateral transporters are not clini-
cally relevant, then Eq. 14 reverts to Eq. 12. This is true since 
passive diffusion into and out of an organ is never a rate-
defining process. There are no experimental studies where a 
diffusion rate constant or clearance has been identified as a 
rate-defining process. However, more frequently when baso-
lateral transporters are relevant, it is assumed that the hepatic 
blood flow entering clearance is much larger than the other 
two processes, so under such conditions Eq. 14 would ignore 
the blood flow process, resulting in Eq. 15

which when solved for CLH yields

(14)

1

CLH
=

1

QH

+
1

fuB ⋅ (PSinf lux − PSeff lux)
+

1

fuB ⋅ CLint

(15)
1

CLH
=

1

fuB ⋅ (PSinf lux − PSeff lux)
+

1

fuB ⋅ CLint
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Equation 16 is the correct extended clearance concept equa-
tion, rather than the equation universally reported in the litera-
ture (e.g., references 9–14). When CLint is much larger than 
(PSinf lux − PSeff lux) , the difference in basolateral transporter 
clearances becomes rate defining and when CLint is much smaller 
than (PSinf lux − PSeff lux) , CLint becomes rate defining. In the 
presently employed equation found throughout the literature, 
there are two erroneous outcomes: (a) PSefflux must be zero for 
transporters to become the rate-defining process, and (b) it is 
impossible for CLint to become the rate-defining process inde-
pendent of basolateral transporter clearances, as we previously 
detailed (1).

It is important to recognize that PSinf lux and PSeff lux are 
the summation of both passive and active permeability 
clearances. If there is no active transport, or under the very 
unlikely condition that active transport in both directions is 
equal, or if PSeff lux is greater than PSinf lux , these cannot be 
rate-defining processes for clearance and thus they would not 
be included in Kirchhoff’s Law derivation. Thus, both in the 
liver and in the kidney ( CLsecretion − CLreabsorption) , the differ-
ence must be positive for these parameters to be rate defining. 
One should also recognize that in vitro attempts to predict 
changes in membrane permeability will always be measures 
of the differences in the permeability clearances, rather than 
the individual permeability clearances themselves.

Rate Defining vs. Rate Limiting In Pachter et al. (1), we 
described the use of Kirchhoff’s Laws in terms of “rate-lim-
iting processes,” where we now refine the nomenclature to 
“rate-defining processes.” We do this because rate-limiting 
processes may be viewed as the upper and lower limits of the 
overall relationship. Thus, for Eq. 12, we may view hepatic 
blood flow (QH) as the upper limit of hepatic clearance, which 
it is. Correspondingly, we may then view hepatic metabolism 
(fuB·CLint) as the lower limit of hepatic clearance, which it is 
not. It is well recognized that hepatic clearance is not greater 
than QH; however, it may not be well recognized that hepatic 
clearance will often be less than fuB·CLint. For example, if QH 
is 1500 ml/min and fuB·CLint is 750 ml/min, CLH calculated 
by Eq. 13 will be 500 ml/min as also recently detailed (15). 
Therefore, hepatic metabolism (fuB·CLint) should be considered 
a rate-defining process, rather than a rate-limiting process.

Kirchhoff’s Laws vs. Differential Equation 
Derivations of Clearance Following Oral Dosing

The marked advantage of Kirchhoff’s Laws is that the 
equations are directly derived in terms of the parameter 

(16)

CLH =
fuB ⋅ CLint ⋅ (PSinf lux − PSeff lux)

CLint + (PSinf lux − PSeff lux)
=

fuB ⋅ (PSinf lux − PSeff lux)

1 +
(PSinf lux−PSeff lux)

CLint

of relevance, here organ clearance. This is in contrast to 
the traditional way in which pharmacokinetic relationships 
have been historically derived using differential equations 
that consider amounts and rate constants, which are then 
converted to concentrations/clearances by dividing/multi-
plying by volume of distribution. This difference between 
the Kirchhoff’s Laws’ approach and the traditional differen-
tial equation approach can be exemplified by analyzing oral 
absorption. Consider first-order absorption (absorption rate 
constant ka) into a 1-compartment body model (disposition 
rate constant kd) where bioavailability is F and all drug is 
eliminated by renal processes unchanged so that clearance 
has no effects on first pass gut and liver elimination process. 
Solving the differential equation for the amount of drug in 
the systemic circulation (Asystemic circulation) as a function of 
time, t, gives

Converting Eq. 17 into a concentration (C) relationship 
by dividing by the systemic volume of distribution (V) yields

Integrating Eq. 18 over all time to determine the area 
under the curve (AUC ) and dividing the available oral dose 
by this area yield Eq. 19 that has been universally taught 
and believed to be the clearance after oral dosing.

Thus, based on the resulting equation from the dif-
ferential equation approach, our field teaches that after 
oral dosing the absorption process has no effect on the 
measured clearance (it is identical to the clearance deter-
mined following iv bolus dosing). This is believed to be 
true independent of the value of F and true independent 
of the clearance affecting hepatic (and gut) bioavailability.

Now, let us examine the Kirchhoff’s Laws derivation for 
oral absorption in terms of clearance measures. Rewriting 
Eq. 11

where CLleaving for our 1-compartment body model is 
CLiv bolus, which equals kd·V, and CLentering would be clear-
ance from the gut, a parameter that is never measured but 
could be envisioned as the product of the absorption rate 
constant (determined from the inverse of the mean absorp-
tion time) and the volume of distribution of drug in the 

(17)Asystemic circulation =
ka ⋅ F ⋅ Doseoral

ka − kd
⋅ (e−kd ⋅t − e−ka⋅t)

(18)Csystemic circulation =
ka ⋅ F ⋅ Doseoral
(

ka − kd
)

⋅ V
⋅ (e−kd ⋅t − e−ka⋅t)

(19)
CLafter oral dosing (differential equations) =

F ⋅ Doseoral

AUC0→∞

= kd ⋅ V = CLiv bolus

(20)
1

CL
af ter oral dosing (Kirchhoff

�
s Laws)

=
1

CLentering
+

1

CLiv bolus
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gut (which is frequently taken to be 250 ml for all drugs in 
bottom-up attempts to predict first pass gut metabolism or 
intestinal drug-drug interactions). But let us leave CLentering 
as CLgut so that Eq. 20 becomes

that when solved gives

There are important considerations for Eq. 22. First, it 
demonstrates that the clearance measured after oral dosing is 
not the iv bolus clearance unless CLgut >  > CLiv bolus, which 
is unlikely to be true in many cases. Yes, the absorption rate 
constant will most frequently be greater than the disposition 
rate constant, but we are comparing clearances, not rate con-
stants, and we suspect that the volume of distribution in the 
systemic circulation will be markedly greater than the volume 
of distribution of drug in the gut. Yet, it is well known that 
the absorption rate constant can be less than the elimination 
rate constant in the well-recognized flip-flop models. Also, in 
the derivation of Eq. 19 using differential equations, we are 
not required to make any assumption about bioavailability 
(F) since CLafter oral dosing is known if we also give an iv bolus 

(21)
1

CLaf ter oral dosing
=

1

CLgut
+

1

CLiv bolus

(22)

CLafter oral dosing =
F ⋅ Doseoral

AUC0→∞

=
CLgut ⋅ CLiv bolus

CLgut + CLiv bolus

=
CLiv bolus

1 +
CLiv bolus

CLgut

dose. The value of bioavailability does not affect the value of 
clearance. However, this is not true for the Kirchhoff’s Laws 
derivation, since even when we have given an iv bolus dose 
to determine CLiv bolus, we cannot determine CLgut unless we 
know F. Therefore, what is the difference between the differ-
ential equation derivation and the Kirchhoff’s Laws derivation? 
We carried out the differential equation derivation in terms 
of rate constants and then converted the systemic amount to 
systemic concentration by the systemic volume of distribution, 
not recognizing that the absorption rate constant from the gut 
is multiplied by the systemic volume of distribution rather than 
the gut volume of distribution. Note in Eq. 18 that the concen-
tration driving absorption is not the gut concentration but the 
same systemic concentration driving elimination.

The Field of Pharmacokinetics Has 
Been Using Approaches Consistent 
with Kirchhoff’s Laws for Rate Constants, 
but Never Recognized the Implications 
of These Calculations in Terms of Clearance

More than 40 years ago, Yamaoka et al. (16) recognized that 
the absorption-disposition model described in Eqs. 17 and 
18 could be described by mean residence time concepts so 
that the mean residence time for drug in the systemic circu-
lation could be given by

(23)
Mean residence time of drug in systemic circulation = Mean absorption time +Mean residence time after iv bolus dosing

=

1

ka
+

1

kd

What was not fully appreciated or calculated, however, was 
that the mean residence time of drug in the systemic circula-
tion was the inverse of the rate constant from Eq. 2 (i.e., mean 
residence time in the systemic circulation after oral dosing = 1/
rate constant of reaction after oral dosing) that relates the rate 
of reaction to the amount of drug driving the reaction so that

The rate constant of reaction after oral dosing in Eq. 24 
is the rate constant determined from the slope of the termi-
nal log linear phase following oral dosing for a drug where 

(24)

Rate constant of reaction after oral dosing =

ka ⋅ kd

ka + kd

=

kd

1 +
kd

ka

after iv bolus dosing the terminal slope is consistent with kd. 
Thus, the rate of the reaction following oral dosing would 
only be described by the elimination constant kd if ka were 
much greater than kd. Converting Eq. 24 to characterize the 
rate of reaction in terms of clearance parameters in Eq. 3, 
thereby changing the ka rate constants into clearance of 
absorption and the kd rate constant into clearance of elimi-
nation via an iv bolus dose, yields Eq. 22. Mean residence 
time concepts for in-series steps are inherently defined by 
Kirchhoff’s Laws. Thus, the field has been using Kirchhoff’s 
Laws concepts in pharmacokinetics for approximately the 
same time period as the importance of clearance in defining 
pharmacokinetic processes has been recognized. The field 
just had never previously used Kirchhoff’s Laws to define 
clearance relationships as we do here.
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Discussion

In this paper, we show how rates of reactions for first-
order processes can be determined independent of differ-
ential equation derivations when (a) amounts drive the 
reaction and the coefficient of proportionality is a rate 
constant (Eq. 2) as is applicable in chemistry and (b) 
when concentrations drive the reaction and the coefficient 
of proportionality is a clearance (Eq. 3) as is applicable 
in pharmacology and pharmacokinetics and in choosing 
and adjusting drug dosing. We accomplish this by apply-
ing Kirchhoff’s Laws for rate-defining processes that are 
either in parallel or in series as we recently demonstrated 
(1). Reviewers have asked us to stress that in the present 
manuscript we are only considering first-order processes. 
We will address non-first-order and saturable systems in 
a future publication, but the great majority of pharma-
cokinetic theory and evaluations are consistent with first-
order processes. We characterize a rate-defining process 
as either a rate constant or a clearance that under certain 
conditions could potentially singly predict the relation-
ships between the rate of reaction and the driving force for 
that reaction in Eqs. 2 and 3, even when other processes 
are known to be operational. For example, hepatic drug 
elimination could be affected by hepatic blood flow, by 
transport at the basolateral hepatocyte membrane, and by 
elimination by hepatic metabolism and/or biliary excre-
tion. For certain drugs, it is possible that each of these pro-
cesses may effectively singly describe elimination if the 
other processes are significantly larger. The coefficients of 
proportionality (an overall system rate constant in Eq. 2 
and an overall system clearance in Eq. 3) are derived by 
summing parallel rate-defining processes (Eqs. 6 and 8) 
and by summing the inverse of the rate-defining in-series 
processes that is equal to the inverse of the overall system 
value for in-series processes (Eqs. 7 and 9).

We also showed that although we first identified the uni-
versal application of Kirchhoff’s Laws to solving the coeffi-
cients of proportionality for first-order reactions in chemistry 
and pharmacokinetics independent of differential equation 
derivations; in fact, the process had been unknowingly uti-
lized in pharmacokinetics for at least four decades in mean 
residence time calculations (see above). This identification 
of the unrecognized long-term use of Kirchhoff’s Laws to 
define rate constants as inverse mean residence time param-
eters provides the clue as to why Kirchhoff’s Laws may 
be used under non-steady-state conditions. It is generally 
believed that Kirchhoff’s Laws are only applicable to steady-
state conditions (3, 4). However, it is well recognized in 
chemical kinetics and pharmacokinetics that for linear sys-
tems the integration of amounts or concentrations following 
the time course of a reaction or a single dose of a drug over 

all time will yield the same measure as obtained at steady 
state, where n is the number of doses and τ is the dosing 
interval. For example,

Thus, we believe that the reason Kirchhoff’s Laws appear 
to be valid for single-dose drug pharmacokinetics and chem-
ical reactions is that the parameters are a function of integra-
tion over all time, which is equivalent to steady-state condi-
tions when those parameters are determined.

The most important contribution in this manuscript is 
the recognition that the clearance of in-series processes in 
pharmacology and pharmacokinetics can be derived inde-
pendent of differential equations. Prior to the Pachter et al. 
(1) publication, the only method available to derive clear-
ance relationships was to solve the rate of drug elimination 
using rate constants (Eq. 2) to include all the potential rel-
evant pharmacokinetic processes and then multiply/divide 
the resulting equation by the volume of distribution of drug 
in the fluid in which the drug concentrations are measured. 
This works fine in chemical reactions where all processes 
occur in the same volume of distribution, the fluid volume 
of the reaction mixture. Thus, in chemistry, there is no need 
to determine clearance. But in pharmacokinetics, the in vivo 
volumes of distribution of the parent drug and its subse-
quent in-series metabolites will all be different. Therefore, 
the differential equation approach we presently utilize will 
frequently not correctly quantitatively characterize the clear-
ance that drives the in vivo processes. The organs of elimina-
tion, primarily the liver and kidney, can only remove drugs 
from the blood flowing to those organs. The end purpose of 
metabolism is to make xenobiotics more polar so that their 
volume of distribution will be smaller, and thus, more of 
the xenobiotic will be in the blood and more easily removed 
from the body. This is the teleological explanation for phase 
I and phase II metabolism, where the phase II conjugative 
processes make the xenobiotic substance even more polar 
than the phase I metabolism by adding, e.g., glucuronide 
and sulfate, moieties.

We point out that the differential equation and clearance 
derivation for the parent drug approach will only give the cor-
rect rate of reaction for the processes for an iv bolus dose of 
drug. This is because for an iv bolus dose there is only one rate-
defining process, the clearance of parent drug from the systemic 
circulation. In all other pharmacokinetic scenarios, there will 
be clearance entering, such as absorption from an oral dose or 
an intramuscular or a subcutaneous dose, and even a zero order 
infusion. With an iv bolus dose, we assume that clearance enter-
ing is infinite so that clearance leaving of parent drug (elimi-
nation) is the only relevant process and only one volume term 
is of relevance. However, all other presently derived clearance 

(25)CL =
Dosesingle

AUC0→∞

=
Doserepeated at steady−state

AUCn�→(n+1)�
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equations for any in-series in vivo relationship will only be cor-
rect if the numerical values of potential rate-defining processes 
are so different that one does not affect the other. This is also 
true for parallel processes, since CLentering must always be in 
series with the parallel processes. In Pachter et al. (1), we used 
renal clearance to exemplify parallel pharmacokinetic processes.

However, there are also in-series processes related to 
renal elimination, since kidney blood flow (QK) can also 
be rate defining. The correct renal clearance equation fol-
lowing an iv bolus dose should include CLentering as QK.

We note that both hepatic and renal clearances may 
be defined by three potential rate-defining processes: 
(a) blood flow, (b) reversible permeability processes 
(PSinflux − PSefflux) in the liver and (CLsecretion − CLreabsorption) 
in the kidney, and (c) unidirectional elimination processes 
(CLint,metabolic + CLint, biliary) in the liver and CLGlomerularFiltration 
in the kidney. Thus, recognizing what processes are in paral-
lel and what processes are in series, using Kirchhoff’s Laws 
one may immediately derive the relevant equations for CLH 
and CLR. Then, depending upon the values expected for each 
of the three processes, the equations can be modulated to 
eliminate one or even two of the three potential rate-defining 
processes. We do recognize that if extensive drug excreted 
into the bile is reabsorbed, the simple derivation becomes 
significantly more complicated, but believe this becomes a 
bioavailability issue, not a clearance phenomenon.

Above we stated that the most important contribution 
in this manuscript is the recognition that the clearance of 
in-series processes in pharmacology and pharmacokinet-
ics can be derived independent of differential equations. 
The major relevant finding from this recognition is that 
the field has been misinterpreting bioavailability concepts 
and has incorrectly taught and believe that absorption 
processes have no effect on clearance measurements (i.e., 
Eq. 19). The field recognizes that F is the product of the 
fraction of the dose absorbed (Fabs), the fraction of the 
dose that gets through the intestinal membranes unmetabo-
lized into the portal vein (Fgut), and the fraction of drug 
not metabolized nor biliary excreted during hepatic first 
pass (Fhepatic), which are all processes with differing driv-
ing force concentrations. The differential equation deriva-
tion assumes that all these processes are driven by F·Dose, 
rather than incrementally decreasing as drug reaches the 
hepatic vein. That is, there is a marked disconnect between 
the differential equation derivation and the physiology of 
the various first-pass processes that are inherently driven 

(26)
CLRenal, not considering renal blood flow = CLGlomerular Filtration + CLsecretion − CLreabsorption

(27)
1

CLRenal

=
1

QK

+
1

CLGlomerular Filtration + CLsecretion − CLreabsorption

by different concentrations. This approach is further con-
founded, since Fhepatic is dependent on clearance itself.

A major outcome of this analysis is the recognition that it 
is not possible to determine bioavailability following oral dos-
ing when one only knows Doseoral and measuresAUC0→∞ , 
since there are two unknowns, CLafter oral dosing and F, as given 
in Eq. 22. This finding has significant effects on the accuracy 
and relevance of present bioavailability measures and could 
explain why frequently investigators observe dose corrected 
measures of AUC0→∞,non−iv bolus

AUC0→∞,iv bolus

 greater than 1.0 following intra-
muscular, subcutaneous, and oral dosing that we will address 
separately. However, here we present one example to illustrate 
the issue. Well-respected Swedish scientists from the National 
Board of Health and Welfare (17) reported following oral and 
iv bolus administration of cimetidine in 10 healthy subjects 
that dose corrected AUC0→∞,oral

AUC0→∞,iv bolus

 was 110.6%, while the dose 
corrected urinary excretion ratio of unchanged drug 
(

Amount excreted unchangedoral

Amount excreted unchangediv bolus

) was 59.5%. The authors conclude 
the paper stating “The results clearly demonstrate that bioa-
vailability studies using AUC -measurements are misleading 
for several drugs including cimetidine.” But now, we believe 
that the Kirchhoff’s Laws approach can potentially explain the 
results. The average bioavailability is accurately predicted 
from the urinary data, F = 0.595, since the urinary excretion 
values are independent of any model or calculated relation-
ship. Taking the published (17) average clearance from sys-
temic concentrations for a 100 mg iv bolus dose (45.5 L/hr) 
and the published average AUC 0→∞ for the 400 mg oral dose 
(10.4 mg·hr/L), we can determine CLafter oral dosing from Eq. 22 
as 22.9 L/hr. Then, using Eq. 22, CLgut can be calculated to be 
46.1 L/hr. That is, the fast systemic clearance of cimetidine 
due to active secretion in the kidney tubule after an iv bolus 
dose is almost the same as the clearance of cimetidine from 
the gut as it is absorbed. Thus, the systemic AUC  of cimeti-
dine following oral dosing will be markedly affected by both 
gut clearance and systemic clearance. From the Kirchhoff’s 
Law’s derivation, the finding of a dose-corrected AUC  ratio 
(oral/iv) greater than 1.0 is not an error in measurement, rather 
a result of believing that determining clearance via differential 
equations and dividing by the systemic volume of distribution 
is valid. We believe that the application of Kirchhoff’s Laws 
to calculate the overall clearance term in Eq. 3 allows the cor-
rect relationship to be determined.

Conclusions

• Clearance relationships, as well as rate constant relation-
ships, may be derived independent of differential equa-
tions using Kirchhoff’s Laws from physics.
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• Clearance in the liver and kidney may be derived using 
Kirchhoff’s Laws by appropriately considering three 
potential rate-defining processes: (a) blood flow, (b) 
reversible permeability, and (c) unidirectional elimination.

• Prior to the recent recognition that Kirchhoff’s Laws can 
be applied to characterize pharmacokinetic processes 
(1), utilizing differential equations was the only available 
approach to deriving clearance equations, which relies on 
a volume of distribution term.

• The traditional differential equation approach relates the 
rate of elimination to drug amount, but then is converted 
to a clearance by dividing/multiplying by volume of 
distribution, to convert drug amounts to concentrations 
and the rate constant to a clearance. This methodology 
assumes that a single volume of distribution governs the 
various pharmacokinetic processes. An assumption we 
will investigate in detail in our next publication.

• The field of pharmacokinetics has been utilizing Kirch-
hoff’s Laws to evaluate in-series rate constant steps for 
decades, without recognizing it. However, the application 
of Kirchhoff’s Laws to in-series clearance steps had not 
previously been employed.

• When calculating the overall rate constant relation-
ships exemplified by Eq. 2, the simplified Kirchhoff’s 
Law approach gives the same results obtained from the 
multistep differential equation analysis, since differ-
ences in distribution volume for different processes are 
not relevant when calculating rate constants. However, 
for clearance relationships exemplified by Eq. 3, only 
Kirchhoff’s Laws may give the correct result due to the 

fact that differences in volumes of distribution do affect 
clearance determinations.

• The approach presented here provides the pharmacoki-
netic community with an opportunity to analyze and 
interpret pharmacokinetic relationships without requir-
ing the use of hepatic disposition models with differing 
degrees of complexities and assumptions and without 
needing to consider differences in volume of distribution 
for the various pharmacokinetic processes. The current 
approach enhances understanding of how to best analyze 
and interpret pharmacokinetic relationships.

Appendix. In‑series metabolic steps

Characteristics

For the metabolic process

Let us assume for the scheme above that the drug and the 
metabolites can each be described by a one-compartment 
model, that intravenous bolus dosing of drug M1 and M2 
was carried out separately, and that both plasma and urine 
concentrations were measured so that the following param-
eters could all be determined.

kd = (kd→m1 + kd→urine) = (0.06 + 0.01) = 0.07hr−1,

km1 = (km1→m2 + km1→urine) = (0.10 + 0.02) = 0.12hr−1,

km2 =
(

km2→m3 + km2→urine

)

= (0.38 + 0.04) = 0.42hr−1,

VD = 200L,VM1 = 150L,VM2 = 100L,

amount of drug = 0.90mM (we define dose in moles since the various metabolites will have different molecular weights),

Solving for Concentration of M2 Using 
the Traditional Differential Equation Approach

The Laplace transform of the concentration of M2 (18) for 
this metabolic process in terms of micromoles, where s is 
the Laplace operator, will be

CLD = 14.0
L

hr
,CLM1 = 18.0

L

hr
,CLM2 = 42.0

L

hr
.

(A.1)CM2 =
kd→m1 ⋅ km1→m2 ⋅ Dose

(s + kd) ⋅ (s + km1) ⋅ (s + km2) ⋅ VM2

Solving the Laplace transform for the micromoles of M2 
as a function of time

Substituting the individual values from above gives the 
concentration of M2 (μM/L) with time as

(A.2)

CM2
=

kd→m1 ⋅ km1→m2 ⋅ Dose

(km1 − kd) ⋅ (km2 − kd) ⋅ VM2

e−kd ⋅t

+
kd→m1 ⋅ km1→m2 ⋅ Dose

(kd − km1) ⋅ (km2 − km1) ⋅ VM2

e−km1⋅t

+
kd→m1 ⋅ km1→m2 ⋅ Dose

(kd − km2) ⋅ (km1 − km2) ⋅ VM2

e−km2⋅t
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One may now calculate the mean residence time for M2 , 
by determining area under the moment curve (AUMC) from 
the sum of the coefficients divided by the exponents squared, 
and area under the curve (AUC ) from the sum of the coef-
ficients divided by the exponents (16)

Thus, the overall measured rate constant for the elimi-
nation of M2 would be the inverse of the calculated mean 
residence time for M2 or 0.040  h−1.
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