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Abstract. Different approaches based on deconvolution and convolution analyses have
been proposed to establish IVIVC. A new implementation of the convolution-based model
was used to evaluate the time-scaled IVIVC using the convolution (method 1) and the
deconvolution-based (method 2) approaches. With the deconvolution-based approach, time-
scaling was detected and estimated using Levy’s plots while with the convolution-based
approach, time-scaling was directly determined by a time-scaling sub-model of the
convolution integral model by nonlinear regression. The objectives of this study were (i) to
show how time-scaled deconvolution and convolution-based approaches can be implemented
using population modeling approach using standard nonlinear mixed-effect modeling
software such as NONMEM and R, and (ii) to compare the performances of the two
methods for assessing IVIVC using complex in vivo drug release process. The impact of
different PK scenarios (linear and nonlinear PK disposition models, and increasing levels of
inter-individual variability (IIV) on in vivo drug release process) was considered. The
performances of the methods were assessed by computing the prediction error (%PE) on
Cmax, AUC, and partial AUC values. The mean %PE values estimated with the two methods
were compliant with the IVIVC validation criteria. However, different from convolution-
based, deconvolution-based approach showed that (i) the increase of IIV on in vivo drug
release significantly affects the maximal %PE values of Cmax leading to failure of IVIVC
validation, and (ii) larger %PE values for Cmax were associated to complex nonlinear PK
disposition models. These results suggest that convolution-based approach could be
considered at preferred approach for assessing time-scaled IVIVC.

KEY WORDS: convolution-based IVIVC; deconvolution-based IVIVC; NONMEM; population
approach; time-scaling.

INTRODUCTION

A critical step in the development and in the optimiza-
tion of dosage forms is the assessment of the relationship
between in vitro drug release and time course of the in vivo
drug concentrations (IVIVC).

The IVIVC is a tool not only for reducing the number of
comparative bioavailability studies but also for improving and
optimizing the drug performances (1).

The most useful correlation is level A IVIVC where a
point to point correlation between in vitro dissolution and

in vivo absorption is established. Different approaches have
been proposed to establish this correlation. These methods
are generally classified as methods based on deconvolution
and methods based on convolution analysis.

Among the deconvolution-based approaches, the
methods of Wagner-Nelson and Loo-Riegelman were initially
developed (2,3). These methods have been extensively used
to determine the absorption kinetics following an oral
administration with the assumption that the drug disposition
was linear and described by a one- or by a two-compartment
model. Numerical deconvolution methods were subsequently
developed as alternative methods for calculating the drug
input rates for generic PK models (4,5).

A number of concerns on the performances of these
methodologies have been raised. These concerns were
primarily associated with the assumptions and the approxi-
mations required by the numerical methods used to imple-
ment the deconvolution analysis (6). To overcome these
limitations, convolution-based methods gained increasing
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interest for the assessment of IVIVC as these methods
presented some appealing features with respect to the
deconvolution-based methods such as their ability to conduct
IVIVC using nonlinear mixed-effect modeling approach in
one single analysis step (7,8).

The performances of the deconvolution and convolution-
based approaches were compared in a study conducted on
simulated data (9). In that study, the deconvolution analysis
was performed using a dedicated software implementing a
regularization method constrained to nonnegative values.
This comparison showed that the convolution-based modeling
approach accurately predicted the observed plasma
concentration–time course, while the accuracy of the plasma
concentration predicted using the deconvolution method
failed to comply with the expected requirements of the
FDA (6).

More recently, a new implementation of the convolution-
based model has been proposed (1). One of the appealing
features of this new implementation is the ability of the model
not only to account for any parametric and nonparametric
dissolution time course and any in vivo input function but also
to estimate the time-scaling necessary to normalize the
in vitro dissolution time scale in order to match that of the
in vivo dissolution/absorption (10).

The assessment of IVIVC requires that the in vitro
dissolution and in vivo input curves may be directly superim-
posable or may be made superimposable by the use of
appropriate scaling factors when the timing of the dissolution
and the in vivo release processes significantly differ (11).
When used, time-scaling factors are requested to be the same
for all formulations.

With the deconvolution-based approach, time-scaling is
traditionally detected and estimated using Levy’s plots where
the time required to achieve a certain percent of the dose
released/absorbed in vivo (obtained through deconvolution)
is plotted against the time required to achieve the same
percent of the dose released in vitro. A unitary slope with a
zero-intercept line in the Levy’s plot indicates similar time
frame of the in vitro and in vivo processes; otherwise, a
curvilinear shape of this plot indicates the presence of a
different time frame for the two processes.

With the convolution-based approach, the time-scaling
accounting for potential time differences in the in vitro and
in vivo processes can be directly determined by estimating the
parameters of a general time-scaling sub-model of the
convolution integral model when estimating the IVIVC using
a nonlinear regression (1).

The availability of these new computational tools raises a
number of questions when the population approach is used to
assess the time-scaled IVIVC. In particular what is the impact
on the performance of deconvolution-based and convolution-
based methods when (i) the PK disposition is described by
linear or nonlinear processes, and (ii) the in vivo drug release
is characterized by high inter-individual variability (IIV)?

The primary objective of this study was to show how the
convolution-based (method 1) and the deconvolution-based
(method 2) approaches, including the assessment of time-
scaling and the Levy’s plot generation, can be easily
implemented using a standard nonlinear mixed-effect model-
ing software such as NONMEM and R without the need of
dedicated software for numerical deconvolution.

The secondary objective was to compare the perfor-
mances of the two methods for assessing IVIVC using (i):
linear and nonlinear PK deposition models, and (ii) increas-
ing levels of IIV in the in vivo drug release process. Clinical
trial simulation was used to generate the time course of the
drug dissolved over time and the time course of the plasma
concentrations resulting from the administration of three
extended release (ER) and one immediate release (IR)
formulation to 12 subjects in a crossover study design. The
data were simulated assuming the presence of a time-scaling
between in vitro dissolution and in vivo absorption. The
performances of the methods were assessed by estimating the
prediction error on the individual Cmax, AUC, and partial
AUC (pAUC) values estimated using a population modeling
approach.

METHODS

The Convolution-Based Model

The time course of the drug concentration (Cp) resulting
from an arbitrary dose was described by a convolution model
as a function of the in vivo drug release (f) and the disposition
and elimination processes defined by the unit impulse
response (UIR) function according to the convolution
integral:

Cp tð Þ ¼ ∫t0 f τð Þ • UIR t−τð Þ • dτ ¼ f �UIR ð1Þ

where f is the rate at which drug is released from a dosage
form, and * is the symbol defining the convolution.

The function characterizing the drug delivery f was
estimated as the first derivative of the cumulative drug
release function r:

f tð Þ ¼ dr tð Þ
dt

ð2Þ

The convolution integral (Eq. 1) was represented in a
more manageable form as system of differential equations
(7). In case of a simple disposition process (say one
compartment process (model 1)), the UIR function was
characterized by the volume of distribution (V) and the first
order elimination rate constant (kel). In this scenario, the
convolution integral was written as:

dAp tð Þ
dt

¼ BI • Dose •

dr tð Þ
dt

−kel • Ap ð3Þ

where Ap(t) is the amount of drug, and BI is the relative
bioavailability of the current formulation with respect to the
reference formulation (the one that provided an estimate of
the UIR function).

To assess the potential implication of more complex
models on the performances of the convolution and
deconvolution-based time-scaled IVIVC, a nonlinear model
UIR model (model 2) was considered:
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dAp tð Þ
dt

¼ BI • Dose •

dr tð Þ
dt

−Cp •

Vm
Kmþ Cp

−k12 • Apþ k21 • A2 ð4Þ

dA2 tð Þ
dt

¼ k12 • Ap−k21 • A2

where Vm is the maximum elimination rate, and Km is the
Michaelis-Menten constant (drug concentration at which the
rate of elimination is 50% of Vm).

Cp was estimated as Ap(t)/V by numerical integration of
Eqs. 3 and 4. These models can be easily generalizable to
account for more complex and nonlinear disposition pro-
cesses using the compartmental theory (12).

The r(t) function characterizes the dissolution/absorption
process. In the context of the present analysis the same
double Weibull model was used for the two UIR models:

r tð Þ ¼ 1− FF⋅e−
t

TDð Þssð Þ þ 1−FFð Þ⋅e− t
TD1ð Þss1

� �� �
ð5Þ

where t is time, FF is the fraction of the dose released in the
1st process, TD and TD1 are times to release 63.2% of the
dose in the 1st and in the 2nd process, and SS and SS1 are the
sigmoidicity factors for the 1st and the 2nd process.

The solution of the differential equation models (Eqs. 3
and 4) required the estimate of the first derivative of the r(t),
dr/dt. This was estimated using a finite difference approach:

dr
dt

≅
r tð Þ−r t þΔð Þ

Δ
ð6Þ

where Δ is a sufficiently small number.
One of the benefits of representing the drug concentra-

tion (Cp) using a convolution-based model was the ability to
easily conduct both convolution and deconvolution analyses
using the same modeling framework.

The deconvolution analysis was conducted by fitting the
convolution-based model to the observed data with the
parameters defining the UIR function fixed to the values
estimated in the analysis of the IR data. In this scenario, the
only parameters estimated in the nonlinear regression were
the parameters defining the r(t) function characterizing the
in vivo drug release.

The convolution analysis was conducted by simulating
the Cp values when the parameters defining the UIR function
were fixed to the values estimated by fitting the IR data, and
the parameters of the r(t) function were fixed to some
reference value (for example, to the values estimated in the
analysis of the in vitro dissolution data).

Data

Clinical trial simulation was used to generate the
dissolution data of the three ER formulations with different
release rates (form A, fast; form B, medium; and form C,
slow), and the PK data of 12 subjects included in a crossover
study where the same ER formulations and one IR formula-
tion were administered.

The individual data were simulated using dissolution and
in vivo PK data mimicking the dissolution and the PK time
course of an ER formulation developed using the osmotic
controlled-release oral-delivery-system OROS® of methyl-
phenidate (MPH) (10). The in vitro dissolution data were
simulated for each formulation at 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3,
3.5, 4, 5, 6, 8, 10, 12, 14, 17, 20, and 24 h. The in vivo PK data
of the three ER and one IR formulation were simulated at 0,
0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, 4, 4.5, 5, 6, 7, 7.5,
8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, and 24 h post
dose. Simulation of the Dissolution Data. The dissolution
data of the three formulations were described by the double
Weibull model (Eq. 5). The parameters of the model were
selected to assure a sufficiently distinct time course of drug
release using the following assumptions: (i) 20% of the dose
was released in the first dissolution process for the three
formulations (FF = 0.2), (ii) the time necessary to dissolve
50% of the dose was ~ 35% faster for the formulation A that
for the reference formulation B, and (iii) the time necessary
to dissolve 50% of the dose was ~ 35% slower for the
formulation C than for the reference formulation B. The
dissolution measurements were simulated assuming a residual
error normally distributed with a variance of 0.5 (%2).

Simulation of the IR Data. The individual IR PK data
were generated assuming two different UIR models: a one-
compartment model (Eq. 7)

dAb tð Þ
dt

¼ −ka • Ab

dAc tð Þ
dt

¼ ka • Ab−kel • Ac

ð7Þ

and a two-compartment model with nonlinear elimination
(Eq. 8).

dAb tð Þ
dt

¼ −ka • Ab

dAc tð Þ
dt

¼ ka • Ab−Cp •

Vm
Kmþ Cp

−k12 • Apþ k21 • A2

dAp tð Þ
dt

¼ k12 • Ap−k21 • A2

ð8Þ

where ka and kel are the first order absorption and
elimination constants, V the volume of distribution, Vm is
the maximum elimination rate, Km is the Michaelis-Menten
constant, and k12 and k21 are the first order transfer rate
constants from/to the central and the peripheral compart-
ment. Ab, Ac, and Ap are the amount of drug at the
absorption site, in the central compartment, and in the
peripheral compartment, respectively. Cp is the drug concen-
tration estimated as Ac(t)/V. For the two models, the inter-
individual variability was assumed log-normally distributed
and the residual error model was assumed to be a combined
additive and proportional model.
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The following population parameters were used in the
simulations:

& Model 1, ka = 2.02 (hr−1), kel = 0.25 (hr−1), V = 2.94
(L). Each parameter was assumed log-normally distrib-
uted with an inter-individual variability (IIV) defined by a
coefficient of variation of 30%. The additive and propor-
tional residual errors were characterized by a variance of
0.08 and 0.0634, respectively. These parameter values
were selected to mimic the population PK parameters of
MPH IR formulation (1).

& Model 2, ka = 1.25 (hr−1), k12 = 0.02 (hr−1), k21 =
0.385 (hr−1), Vm=5.2 (ng/h), Km=10 (ng/mL), V = 0.484
(L). Each parameter was assumed log-normally distrib-
uted with an inter-individual variability (IIV) defined by a
coefficient of variation of 20%. The additive and propor-
tional residual errors were characterized by a variance of
0.0112 and 0.0243, respectively.

The IIV and the residual error parameters for model 2
were fixed at lower values than the ones of model 1 to avoid
parameter identifiability issues due to the limited sample size
and the nonlinearity of the model.

Simulation of the ER Data. The simulation of the
individual concentrations of the three formulations in the 12
subjects was conducted in three steps:

1. Fit the data describing the three individual dissolution
profiles generated in the simulation step of the
dissolution data using Eq. 5;

2. Fit the IR data using a population PK approach and
estimate the individual disposition and elimination PK
parameters of model 1 and 2;

3. Simulate the individual ER PK concentrations for the
three formulations in the 12 subjects using Eqs. 3 and
4 where the individual UIR parameters (Vi, keli and
Vi, k12i, k21i, Vmi, and Kmi) were fixed to the values
estimated in step 2. The BI parameter was fixed to 1,
and the parameters of Eq. 5 of the three formulations
were fixed to the values estimated in step 1. The five
parameters of the Weibull function (TD, SS, TD1,
SS1, and FF) were assumed to be log-normally
distributed to account for the in vivo IIV in the drug
release. The impact of four levels of IIV (20%, 30%,
40%, 50%) on the performance of the convolution-
based and deconvolution-based approaches were
evaluated.

A time-scaling function was included in the simulation
model to account for time differences in the in vitro and the
in vivo processes:

rvivo tð Þ ¼ rvitro ttð Þ
tt ¼ b2⋅tb3

ð9Þ

where rvitro is the function associated with the dissolution of
the three formulations estimated in step 1 and rvivo is the drug
delivery function used in the simulation of the ER profiles. In
case of absence of time-scaling between rvivo and rvitro, b2 = 1
and b3 = 1.

Implementing IVIVC

Two methods were used in the IVIVC analysis that was
conducted in four steps using the convolution-based (method
1) and the deconvolution (method 2) approaches as schemat-
ically presented in Fig. 1. Step 1, 2, and 4 were common to the
two methods while step 3 was specific for each of the two
methods.

Step 1 included the modeling of the dissolution data, step
2 included the population PK analysis of the UIR function
using IR data, and step 4 included the model validation
procedures conducted by comparing the observed and model
predicted in vivo data.

Step 3: Method 1. This was a one-step analysis based
on the population fitting of the convolution-based model
(Eqs. 3 and 4) to the ER data. In this model, the individual
parameters defining the UIR function were fixed to the values
estimated in step 2, and the parameters of the r(t) function
were fixed to the values estimated in the analysis of the
dissolution data (step 1). The only parameters estimated in
the nonlinear regression were the parameters of the time-
scaling sub-model (Eq. 9) (1):

rvivo tð Þ ¼ a1 þ a2 • rvitro ttð Þ
tt ¼ b1 þ b2 • tb3

ð10Þ

This general time-scaling function can account for
different linear and nonlinear behavior according to the
estimated values of the parameters a1, a2, b1, b2, and b3. In
case of absence of time-scaling, a1 = 0, a2 = 1, b1 = 0, b2 = 1,
and b3 = 1.

The performance of alternative time-scaling nested
models was evaluated using the objective function value
(OFV) representing minus twice the log of the likelihood
estimated by NONMEM and the likelihood ratio test. This
test was based on the change of OFV (ΔOFV = [
OFVfull−OFVreduced]) associated with a full and a reduced
model. The ΔOFV was chi-squared (χ2) distributed with
degree of freedom equal to the difference of the number of
parameters in the two models. An example of model’s
comparison is when a full model is evaluated against a
reduced model (with a difference of 3 parameters). A
change in OFV ≥ 7.81 is required for the full model to be
statistically better than the reduced model (p < 0.05, df = 3);
otherwise, the reduced model was considered the preferred
one (13).

Method 2. This analysis was conducted in four stages:

1. Deconvolution analysis by nonlinear regression to
estimate the individual in vivo input functions
(parameters of Eq. 5) using the convolution-based
model (Eqs. 3 and 4) with the UIR parameters fixed
to the individual PK parameters (Vi,keli and Vi, k12i,
k21i, Vmi, and Kmi) estimated in step 2.

2. Generation of the Levy’s plot by estimating the time
required to release in vitro and to absorb in vivo the
same percentage of the dose using the outcomes of
stage 1. This analysis was conducted using an R script.
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3. Generation of the time-scaled in vitro dissolution
using the outcomes of stage 2. This analysis was
conducted using an R script.

4. Convolution analysis to simulate the individual ER
drug concentrations using the outcomes of stage 3,
and the individual PK parameters (Vi, keli and Vi,
k12i, k21i, Vmi, and Kmi) estimated in step 2.

The Levy’s plot was used to evaluate the relationship
between in vitro and in vivo time frame of the three
formulations. The plot was generated by graphically
displaying the time needed for in vivo absorption versus the
time needed for in vitro dissolution of a particular amount of
drug from the dosage form (i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1%).

The deviation from the identity line of the generated
curve indicates that the time frame of the in vitro and the
in vivo processes was not the same requiring the use of a
time-scaling factor for estimating the in vitro times of
percentage dissolved equivalent to percentage absorbed.
According to the current FDA guidelines, the introduction
of a time scale factor is acceptable as long as it is used for all
formulations and for all further applications of the IVIVC
model.

The Levy’s plot was generated using the parameters
resulting from the fitting of the dissolution data and from the
deconvolution analysis conducted on the individual plasma
concentrations. The Levy’s plot required the estimate of the
time when the same amount of drug was dissolved or released
from the dosage form. At this purpose, the R code
implementing this analysis interpolated the in vitro and the
in vivo data using the “optimize” function to compute the
exact times when the same amount of drug was dissolved or
released from the dosage form (14).

The LOESS smoothing function was used to characterize
the relationship between the time (t) necessary to absorb a
given fraction of the dose (Abst) and that necessary to
dissolve the same fraction of the dose (Dist). LOESS short for

locally weighted scatter-plot smoother is a nonparametric
approach for fitting a smooth curve between an independent
and a dependent variable (15). Two LOESS functions were
derived: the first one (afd) estimated the time (t) necessary to
absorb a given fraction of the dose (Abst) as a function of the
time necessary to dissolve the same fraction of the dose
(Dist): Abst = afd (Dist), and the second one (dfa) estimated
the time (t) necessary to dissolve a given fraction of the dose
as a function of the time necessary to absorb the same
fraction of the dose (Abst) Dist = dfa (Abst).

The only requirement of this methodology was that the
relationship between dependent and independent variables
can be locally approximated with a member of a simple class
of parametric function.

The time-scaled dissolution data (DisScalPKt) at the time

Fig. 1. Schematic representation of the IVIVC analyses conducted with the convolution-based (method 1) and the
deconvolution-based (method 2) approaches

Fig. 2. Simulated (dots) and model predicted (solid lines) dissolution
data for the three formulations
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of the PK measurements (PKt) were estimated using the
following relationship: DisScalPKt = r [dfa (PKt)]; where r is
the model defining the double Weibull equation (Eq. 5). The
approximated first derivative of the time-scaled dissolution
data was computed as:

dDisScalPKt
dt

≅
DisScal PKtð Þ−DisScal PKtþ Δð Þ

Δ
ð11Þ

where Δ is a sufficiently small number.
The first derivative of the time-scaled dissolution data

was required to estimate the in vivo PK time course using the
convolution analysis (Eqs. 3 and 4).

IVIVC Model Validation

Model validation was the final step in the IVIVC
analysis. This step of the analysis was aimed to provide
quantified evidence of the predictive performance of the
model using data from the formulations used to build the
model (internal validation) or using data obtained from a
different (new) formulation (external validation). The inter-
nal validation was implemented using the IVIVC models
developed for each formulation by comparing the model
predicted to the expected PK values in each simulation
scenario considered. The prediction error (%PE) was com-
puted for each PK parameter using the equation:

%PE ¼ 1
n
∑
n

1

Observed value−Predicted valuej j
Observed value

• 100 ð12Þ

where n is the number of formulations.
The criterion for assessing the level of predictability was

for each PK parameter, the average %PE ≤ 10% with no
individual values > 15%. If this criterion was not met, the
evaluation of external predictability was required (11).

In addition to AUC0-inf and Cmax, specific metrics based
on the concept of partial AUC (pAUC) were recently
recommended by the FDA for extended release formulations
of drugs with complex PK time course such as the one
considered in the present analysis (16). Therefore, the
following pAUC parameters were also evaluated:

& pAUC0–3, AUC from 0 to 3 h,
& pAUC3–7, AUC from 3 to 7 h,
& pAUC7–12, AUC from 7 to 12 h

Based on these recommendations, the %PE values were
assessed using Cmax, AUC0-inf, pAUC0–3, pAUC3–7, and
pAUC7–12.

Simulation Scenarios

Two simulation scenarios were considered to assess the
performance of the time-scaled convolution and
deconvolution-based approaches when the IIV on in vivo
drug release significantly increases (scenario 1) and when
complex models were used to characterize the UIR functions
(scenario 2).

Table I. Convolution-Based Approach: Estimated Time-Scaling Parameter Values in the IVIVC Analysis for Model 1 and Model 2

Run 1 Run 2 Run 1 Run 2

Parameter Estimate RSE Estimate RSE Parameter Estimate RSE Estimate RSE

Model 1: IIV = 0% Model 2: IIV = 0%
a1 0 # 0* a1 − 0.01 20.40% 0*
a2 1 4.70% 1* a2 1.01 0.10% 1*
b1 0.01 # 0* b1 0.01 24.00% 0*
b2 0.22 # 0.23 5.40% b2 0.21 4.40% 0.22 4.40%
b3 1.57 # 1.55 2.20% b3 1.61 1.00% 1.58 1.50%

OFV 878.101 880.232 OFV 5370.134 4312.349
ΔOFV 2.131 ΔOFV − 1057.79

Model 1: IIV = 20% Model 2: IIV = 20%
a1 0 32.60% 0* a1 0 11.20% 0*
a2 1 0.10% 1* a2 1 0.00% 1*
b1 0 88.30% 0* b1 0 32.60% 0*
b2 0.2 1.80% 0.2 3.90% b2 0.2 86.50% 0.2 2.80%
b3 1.61 1% 1.6 1.40% b3 1.61 14.30% 1.6 0.80%

OFV −2358.805 −2355.78 OFV 853.794 858.633
ΔOFV 3.021 ΔOFV 4.839

IIV (CV%) IIV (CV%) IIV (CV%) IIV (CV%)
TD (hour) 18.03% 18.22% TD (hour) 17.52% 17.80%
SS (unitless) 17.18% 17.09% SS (unitless) 17.32% 17.55%
TD1(hour) 19.65% 19.60% TD1(hour) 19.52% 19.62%
SS1(unitless) 17.86% 17.80% SS1(unitless) 18.89% 17.86%

FF (%) 20.15% 20.10% FF (%) 19.72% 20.10%
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The scenario 1 was evaluated by comparing the perfor-
mances of model 1 using the convolution and the
deconvolution-based approaches when the IIV on in vivo
drug release ranged from 20 to 50%. The scenario 2 was
evaluated by comparing the performances of the convolution
and deconvolution-based approaches for model 1 and model
2 at a fixed value of 20% of the IIV on in vivo drug release.

Software

All simulations and parameter estimations were con-
ducted using the NONMEM software version 7.4 (ICON
Development Solutions, Hanover, MD, USA). The data
management and graphical presentation of the results were
conducted using the R language (17). The non-
compartmental analysis was conducted using the validated
and open source R library “NonCompart” (18). The R code
used for generating the Levy’s plot and the time-scaled
dissolution data is provided in the Supplementary file

together with the NONMEM code used for the implementing
methods 1 and 2.

RESULTS

Step 1—Modeling the Dissolution Data

The double Weibull model (Eq. 5) was independently
fitted to the dissolution data of the three formulations. The
estimated parameters are presented in Supplementary
Table S1 and the plot of the simulated dissolution data with
the model predicted values are presented in Fig. 2.

Step 2—Modeling IR Data

The models defining the IR data (Eqs. 7 and 8) were
fitted to the data of the 12 subjects using a population
approach. The estimated parameters for model 1 and model 2
are presented in Table S2 and Table S3 of the Supplementary
material, respectively.

Fig. 3. Method 1–Model 1–Run 2: Observed (dots) and model predicted (solid lines) individual concentrations in the
IVIVC analysis for the three formulations. Red, form A; blue, form B; and green, form C
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The plots of individual and model predicted plasma
concentrations are presented in Supplementary Fig. S2 and
S4 for model 1 and model 2, respectively. The adequacy of
the model was evaluated by the visual predictive checks
(VPC). The individual data of one-hundred subjects were
simulated using a Monte Carlo approach using the parame-
ters presented in Tables S2 and S3. The median and 90%
prediction intervals from model simulations were plotted
along with the data used for estimating the model parameters
(Supplementary Fig. S1 and Fig. S3 for model 1 and model 2,
respectively). It can be seen from the VPC that the models
performed adequately well in describing and predicting the
IR data.

The shrinkages of the empirical Bayes parameter esti-
mates were computed to assess whether the parameters (Vi,
keli for model 1 and Vi, k12i, k21i, Vmi, and Kmi for model 2)
represented reliable estimates of the individual parameters
appropriate for the step 2 of the analysis. On overall, the
estimated shrinkage values were lower than 20% supporting
the use of these parameters in the subsequent analyses. In

case of shrinkage values greater than 30%, two options can
be considered: (1) the number of subject considered is too
small for a correct estimate of the IIV variability, in this case,
a study with a larger sample size have to be considered, and
(2) a study with larger sample size cannot be conducted, in
this case, the IVIVC can be tentatively assessed using the
mean and not the individual values.

Step 3—IVIVC Analysis

Method 1. A population analysis on the ER data was
initially conducted (run 1) for each simulation scenario
assuming no IIV in the parameters of the r(t) function
(IIV = 0%) using the convolution-based model (Eqs. 3 and
4) with the individual parameters defining the UIR function
fixed to the values estimated in step 2, and the parameters of
the r(t) function fixed to the values estimated in the analysis
of dissolution data (step 1). The full time-scaling five-
parameter model defined in Eq. 9 was included in the initial
analysis. The time-scaling parameters were fixed to a common

Fig. 4. Method 1–Model 2–Run 2: Observed (dots) and model predicted (solid lines) individual concentrations in the
IVIVC analysis for the three formulations. Red, form A; blue, form B; and green, form C
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value for all formulations and estimated as fixed-effect
parameters. No random effect was associated to these
parameters to ensure the same time-scaling for all formula-
tions. As an example, the estimated parameters of run 1 for
model 1 and 2 are presented in Table I when the simulated
IIV on in vivo drug release was fixed to 20%. The inspection
of the estimated parameters indicated that the parameters a1,
a2, and b1 were estimated to 0, 1, and 0 by the nonlinear
regression, respectively. Therefore, a second run (run 2) was
conducted fixing these parameter values to 0, 1, and 0, and
including the IIV effect on in vivo drug release as additional

parameters. The results of this new analysis are presented in
Table I.

The changes in OFV (ΔOFV) were always < 7.81
indicating that the reduced models (run 2) provided a better
description of the data (p < 0.05, df = 3). Therefore, the time-
scaling models defined in run 2 were retained as the final and
best performing models.

The plots of the individual observations and model
predictions for the three formulations resulting from the
analysis conducted in run 2 are presented in Fig. 3 for model
1 and Fig. 4 for model 2. The adequacy of the model was

Fig. 5. Model 1—Levy’s plot (function adf) and the inverse Levy’s plot (function dfa) with the individual
data for each formulation (dots). The solid line represents the nonparametric smoothing function and the
dotted line represents the reference identity line

Fig. 6. Model 2—Levy’s plot (function adf) and the inverse Levy’s plot (function dfa) with the individual
data for each formulation (dots). The solid line represents the nonparametric smoothing function and the
dotted line represents the reference identity line
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evaluated by performing visual predictive checks (VPC). The
individual ER data for the three formulations of one-hundred
subjects were simulated using a Monte Carlo approach and
the parameters presented in Table I. The median and 90%
prediction intervals from model (run 2) simulations were
plotted along with the data used for estimating the model
parameters (Supplementary Fig. S5 and Fig. S6 for model 1
and model 2, respectively). It can be seen from the VPC that
the models performed adequately well in describing and
predicting the ER data for the three formulations.

Method 2. The deconvolution analysis was conducted for
each level of IIV on in vivo drug release (20%, 30%, 40%,
and 50%) to estimate the individual in vivo input function
(Eq. 5) using the convolution-based model (Eqs. 3 and 4)
with the parameters of the UIR function fixed to the
individual IR PK parameters estimated in step 2. The
parameters of the Weibull function were estimated by fitting
the model to the ER data using a population approach. In the
initial run (run 1), the population analysis did not include
random effect for the parameters of the Weibull function as
IIV was set zero, while the parameters defining the random
effect of the Weibull function were included in the analysis of
the second run (run 2). The plot of the individual fraction of
the dose absorbed versus time for method 2 and run 2 is
presented in the Supplementary file (Fig. S7 and Fig. S8 for
model 1 and model 2, respectively).

The Levy’s plot (function afd) and the inverse Levy’s
plot (function dfa) are presented in Fig. 5 for model 1 and
Fig. 6 for model 2. Figures S9 and S10 in the Supplementary
file show the dissolution data in the original time frame, the

time-scaled dissolution data, and the individual data resulting
from the deconvolution analysis for each formulation and for
model 1 and model 2.

Step 4—Model Validation

According the FDA guidelines, the validation criteria of
an IVIVC analysis should satisfy the two conditions for each
PK parameter considered: the average absolute percent
prediction error (% PE) should be of 10% or less, and the
maximal %PE value for each formulation should not exceed
15%.

Due to the large number of simulations considered in the
analysis, the results were visualized using radar charts
showing the average and maximal %PE values for each PK
parameter and simulation scenario. On these charts, each
spoke represents the performances of each PK parameter
(Cmax, AUCinf, AUC0–3, AUC3–7, and AUC7–12).

Figure 7 shows the comparison of the performances of
the convolution and deconvolution-based approaches for
model 1 and model 2 at a fixed IIV value of 20% on in vivo
drug release. Panels (a) and (b) show the %PE average
values and the maximal %PE values for the deconvolution-
based approach for models 1 and 2, respectively. Panels (c)
and (d) show the %PE average values and the maximal %PE
values for the convolution-based approach for models 1 and
2, respectively. The results indicate that the performances of
the convolution-based approach remain constant and within
the acceptability criteria for internal validation for the two
models. However, the performance of the deconvolution-

Fig. 7. Comparison of the performances of the convolution and deconvolution-based
approaches for model 1 and model 2 at a fixed IIV value of 20% on in vivo drug release.
Panels a and b show the %PE average values and the maximal %PE values for the
deconvolution-based approach for model 1 and 2, respectively. Panels c and d show the
%PE average values and the maximal %PE values for the convolution-based approach for
model 1 and 2
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based approach seems significantly affected by the complexity
of the UIR model: the maximum %PE for Cmax exceeds the
acceptability criteria, while the average %PE remains in the
acceptable ranges (< 6%) for each PK parameter.

Figure 8 shows the comparison of the performances of
the convolution and the deconvolution-based approaches for
model 1 for increasing values of IIV on in vivo drug
release from 20 to 50%. Panels (a) and (b) show the %PE
average values and the maximal %PE values for the
deconvolution-based approach. Panels (c) and (d) show the
%PE average values and the maximal %PE values for the
convolution-based approach. The results indicate that the
performances of the convolution-based approach remain
constant and within the acceptability criteria for internal
validation for IIV on in vivo drug release ranging from 20 to
50%. However, the performance of the deconvolution-based
approach seems significantly affected by the level of IIV: the
maximum %PE for Cmax exceeds the acceptability criteria,
while the average %PE remains in the acceptable ranges (<
6%) for each PK parameter.

DISCUSSION

The simulation study provided a quantitative framework
for illustrating how IVIVC can be implemented using
alternative analysis methods and for comparing the perfor-
mances of alternative approaches for dealing with different
time frames of dissolution and in vivo absorption processes.

Two methodologies have been presented. The
convolution-based approach (method 1) presents the

advantage to implement the IVIVC with an assessment of
the time-scaling between in vitro and in vivo processes in one
single analysis step using a nonlinear mixed-effect modeling
approach. The quality and the predictive performances of the
model can be evaluated by comparing the observed with the
model predicted in vivo concentrations using the standard
tools for model validation as reported in the FDA guidance
for population modeling (19). The presence or the absence of
a time-scaling can be formally assessed using the standard
statistical tools by comparing the performances of models
with and without time-scaling. The limitation of this approach
is that a formal model describing the time-scaling is
requested; however, this limitation is someway mitigated by
the possibility of comparing alternative models using standard
statistical tools.

The deconvolution-based approach (method 2) requires
few additional analysis steps but presents the advantage to
graphically visualize the presence of a time-scaling between
in vitro and in vivo processes and to time scale the dissolution
data using a nonparametric approach. No formal model is
requested to assess the time-scaling as this is numerically
estimated using a nonparametric smoothing function used to
fit the Levy’s and the inverse Levy’s plots.

One of the nice features of the methodology presented in
this paper is that the same convolution integral model
implemented using a set of differential equations can be used
to evaluate a time-scaled IVIVC using either the
deconvolution or the convolution-based approach.

The traditional approaches for conducting a
deconvolution are based on specific and sophisticated numer-

Fig. 8. Comparison of the performances of the convolution and the deconvolution-based
approaches for model 1 for increasing values of IIVon in vivo drug from 20 to 50%. Panels
a and b show the %PE average values and the maximal %PE values for the deconvolution-
based approach. Panels c and d show the %PE average values and the maximal %PE
values
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ical algorithms such as Fourier transforms, system identifica-
tion, constrained optimization, cubic spline functions, maxi-
mum entropy, and genetic algorithm (20). All these methods
require sometime unrealistic constraints to allow the stable
implementation of the selected algorithms that have to be
implemented using specific software tools. At variance of
these methods, the deconvolution analysis method proposed
in this paper can be easily implemented using the same
nonlinear mixed-effect approach and standard modeling
software (such as NONMEM) used for the convolution-
based approach without the need of implementing sophisti-
cated numerical deconvolution algorithms in dedicated
software.

The example presented was based on a dissolution/
absorption described by a model represented by a Weibull
function. However, this method has been shown to
account for any parametric and nonparametric functions
(10).

Traditionally, the IVIVC analysis is conducted on the
average in vitro and in vivo data. In the present analysis,
IVIVC was conducted using the individual data and a
population approach. This approach has been shown to
present a number of advantages with respect to method
based on the averaging of data. In particular, the comparison
of the population versus the data averaging indicated that
averaging has a significant impact on the accuracy of
predictions (21,22).

In addition, another important difference in the average
versus population approach is that the population approach
allows for evaluating the potential impact of IIV in the
absorption process on the predicted bioavailability.

The objective of the IVIVC analysis was to estimate the
magnitude of the error in predicting the in vivo bioavailability
results from in vitro dissolution data. This is the reason why it
was critical to evaluate and consider in the analysis all factors
that could affect the predictions and the uncertainty on the
predictions. The average %PE values estimated with the two
methods in the different simulation scenarios were below the
critical value of 10%. However, the maximal values of %PE
estimated with the deconvolution-based approach were
significantly affected either by the increase of the IIV on
in vivo drug release or by the complexity of the UIR model
leading to results failing to comply with the IVIVC validation
criteria (maximal %PE > 15%). The convolution-based
modeling approach provided more robust and stable results
in the different simulation scenarios with statistically better
performances associated with the inclusion of random effect
on the in vivo drug release parameters. An additional reason
for considering the convolution-based modeling approach as
the reference method has been illustrated in a recent paper
where this method has been applied in a general in silico
modeling and simulation framework for identifying optimal
doses and in vitro/in vivo release properties providing an
optimized benefit-risk ratio of a treatment (1). In addition to
the findings of this previously published paper, the present
analysis provides quantitative criteria for (i) comparing the
performances of different methodologies for the assessment
of time-scaled IVIVC, and (ii) quantifying the impact of
complex UIR models and large IIVon in vivo drug release on
the performance of IVIVC in a population-based modeling
framework.

CONCLUSION

Different analyses were conducted to assess the impact
of complex UIR models (one-compartment linear versus two-
compartment with nonlinear elimination) and the impact of
increasing levels of IIV (20%, 30%, 40%, and 50%) on
in vivo drug release. The results indicated that the
deconvolution-based method is much more sensitive than
the convolution-based method to the complexity of the UIR
model as well as to the level of IIV leading to results that fail
to support IVIVC. At variance of these results, the perfor-
mance of the convolution-based approach seems independent
of the complexity of the UIR model as well as of the level of
IIV. These findings indicated that the convolution-based
approach should be considered the preferred approach for
assessing IVIVC.
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