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ABSTRACT. In vitro-in vivo correlations (IVIVCs) play an important role in formulation development
and drug approval. At the heart of IVIVC is deconvolution, the method of deriving an in vivo
“dissolution profile” for comparison with in vitro dissolution data. IVIVCs are generally believed to be
possible for highly permeable and highly soluble compounds with release/dissolution as the rate-limiting
step. In this manuscript, we apply the traditional deconvolution methods, Wagner-Nelson and numerical
deconvolution, to profiles simulated using a simplified small intestine absorption and transit model. Small
intestinal transit, dissolution, and absorption rate constants are varied across a range of values
approximately covering those observed in the literature. IVIVC plots and their corresponding correlation
coefficients are analyzed for each combination of parameters to determine the applicability of the
deconvolution methods under a range of rate-limiting conditions. For highly absorbed formulations, the
correlation coefficients obtained during IVIVC are comparable for both methods and steadily decline
with decreasing dissolution rate and increasing transit rate. The applicability of numerical deconvolution
to IVIVC is not greatly affected by absorption rate, whereas the applicability of Wagner-Nelson falls
when dissolution rate overcomes absorption rate and absorption becomes the rate-limiting step. The
discrepancy between the expected and deconvolved input arises from the violation of a key assumption
of deconvolution that the unknown input and unit impulse enter the system in the same location.

KEY WORDS: absorption; dissolution; in vitro-in vivo correlation (IVIVC); numerical deconvolution;
pharmacokinetic modeling.

INTRODUCTION

In vitro-in vivo correlations (IVIVC) play an important
role in the production and approval of drug products and
formulations. Once an IVIVC is established for a set of
formulations, then in vitro dissolution tests can be used in place
of further bioequivalence studies in the production or modifica-
tion of different formulations (1). Thus, IVIVCs play an
important role in the industry, saving time, money, and
unnecessary clinical trials. At the heart of IVIVC is
deconvolution, the method of deriving an in vivo “dissolution
profile” for point by point comparison with in vitro dissolution
data in what is termed a “level A” IVIVC by the FDA (2).

Several methods of deconvolution have been used over
the past 50 years in the field of pharmacokinetics. The
traditional methods, Wagner-Nelson and Loo-Reigelman,
appeared in the 1960s (3,4). These methods have been used
extensively to determine the absorption kinetics following an
oral administration, and Wagner-Nelson is still the most

frequently used method in IVIVC. Numerical deconvolution
emerged in the 1970s as an alternative method of calculating
drug input rates (5) (whether it be the rate of absorption or
rate of dissolution).

These deconvolution methods have been applied to the
calculation of IVIVCs for a variety of compounds and
formulations in the literature, but often, the assumptions
underlying their applicability are not discussed in detail. It has
been noted in the literature that IVIVCs are generally
possible for high permeability compounds and for formula-
tions where release/dissolution is the rate-limiting step, with
dissolution still occurring within the time frame of intestinal
transit (6), provided that there is a dissolution method that
can effectively differentiate between different release charac-
teristics. This manuscript will further challenge this general
rule and intentionally push the boundaries to reveal where
deconvolution can be safely used in IVIVC, and where it can
be expected to fail.

We focus on the traditional deconvolution methods,
Wagner-Nelson and numerical deconvolution, and their
applicability under different rate-limiting conditions. We
chose the former since it is the most widely used
deconvolution method in IVIVC and the latter since it can
be used to predict in vivo dissolution separately from
absorption. The sensitivity of IVIVC with these methods to
different rate-limiting conditions was tested on a simplified
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compartmental transit model. This was achieved by generat-
ing a number of simulations, each with a different combina-
tion of absorption, dissolution, and transit rates, applying the
deconvolution methods to the resulting profiles and estab-
lishing an IVIVC for each case.

METHODS

A simplified absorption and transit model was used to test
the effects of changing dissolution, absorption, and transit rates
on the applicability of two deconvolutionmethods in establishing
IVIVCs. Intestinal transit, dissolution, and absorption rates were
varied across physiologically meaningful ranges obtained from
the literature. For each combination of parameters, the profiles
following administration of an oral solution and an immediate
release formulation were simulated. Wagner-Nelson and numer-
ical deconvolution were applied to obtain the deconvolved
absorption profiles. These absorption profiles were plotted
against the respective fraction dissolved curves representing the
in vitro dissolution curves that would be used to establish an
IVIVC. The corresponding correlation coefficients for each
in vitro fraction dissolved vs. in vivo fraction absorbed plot were
calculated in order to gauge the effect of transit, dissolution, and
absorption rates on the interpretation of deconvolution. Follow-
ing the analysis of the applicability of these methods to IVIVC in
different situations, we analytically deconvolved absorption
models of smaller size to obtain closed form solutions to the
deconvolved input so that the reasons for the discrepancies
between the deconvolution methods and the simulated in vitro
dissolution profile could be determined. The equations associat-
ed with Wagner-Nelson and numerical deconvolution used in
this investigation are provided in the Appendix.

TEST MODEL

Model Structure

In this study, we tested deconvolution on a series of
simplified absorption and transit models, based on the
traditional compartmental transit model (i.e., Yu et al. 1996)
(7). The simplified model used here is comprised of seven
intestinal segments, each with solid and dissolved compart-
ments (see Fig. 1). An oral dosage starts in Asol,1 (or Adis,1 for
an oral solution). The solid drug in each segment, Asol,1, can
either transition to the next segment, Asol,i+1, at a rate of, kT⋅
Asol,i or dissolve according to the rate kD⋅Asol,i and thus enter
Adis,i. From Adis,i, the dissolved drug can be absorbed into the
systemic circulation at a rate of ka⋅Adis,i. Drug is eliminated
from the central compartment with rate ke⋅Acentral. The
system of differential equations describing this model is
presented below.

dAsol;1

dt
¼ − kT⋅Asol;1 þ kD⋅Asol;1

� �
dAdis;1

dt
¼ kD⋅Asol;1− kT þ kað Þ⋅Adis;1

dAsol;i

dt
¼ kT⋅Asol;i−1− kT⋅Asol;i þ kD⋅Asol;i

� �
; f o r i ¼ 2…7

dAdis;i

dt
¼ kT⋅Adis;i−1 þ kD⋅Asol;i− kT þ kað Þ⋅Adis;i; for i ¼ 2…7

dAcentral

dt
¼

X7
i¼1

ka⋅Adis;i

 !
−ke⋅Acentral

For simplicity during our analysis, we assumed that
dissolution followed a first order process with rate constant
kD and that this rate constant was the same for each
compartment. These assumptions are not completely repre-
sentative of the true physiology since the increasing pH
gradient along the intestinal tract can affect the solubility and
therefore the dissolution rate of formulations. In addition, the
first order rate constant for absorption, ka, was assumed the
same in each compartment. However, varied surface area of
the intestinal segments, and the varied surface area of villi
and microvilli along the intestinal tract (8) suggest this is also
an oversimplification. Making these assumptions allowed for
clear analysis of the effect of changing the dissolution and
absorption rates and their impact on the interpretation of the
deconvolved input. The values for these parameters and the
remaining system parameters are discussed in the following
section.

Parameter Values

The effects of changing transit rate, dissolution rate, and
absorption rates on the results of deconvolution were
analyzed. The 7 compartment intestinal transit model was
solved under various scenarios, each with a different set of
values for these parameters, which were selected according to
a range of typical values approximately covering those
observed in the literature (7,9–11). Five values were selected
for each of the transit, dissolution, and mean absorption rates
(see Fig. 2). Simulations using the 7 compartment model were
run with each combination of parameters, obtaining a set of
5×5×5 simulations (totaling 125 simulations; see Appendix
Fig. 8 for the simulated plasma concentration time profiles).

A range of transit rates were calculated based on total
small intestinal transit times of 50, 100, 200, 400, and 800 min,
which approximately covers the range of transit times
described in Yu 1996 (mean 200 min, minimum 30, maximum
570) (7). The total small intestinal transit rate constants from
this range of transit times are 1.2, 0.6, 0.3, 0.15, and 0.75 h−1.
Each simulation assumed one of these transit rates for the
entire small intestine, which was adjusted accordingly for
seven compartments, i.e., individual compartment transit rate
constants of 8.4, 4.2, 2.1, 1.05, and 0.525 h−1.

Fig. 1. Scheme for a 7 compartment absorption and transit test
model. Asol,i and Adis,i represent the amount of solid and dissolved
drug, respectively, in compartment i, and Acentral represents the
amount of drug in the central compartment. Transit, dissolution,
absorption, and elimination are governed by first order rate constants
kT, kD, ka, and ke, respectively
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A range of dissolution rates were calculated based on
96% dissolved after 24, 12, 6, 3, and 1.5 h. Assuming first
order dissolution, this gives dissolution rate constants of
approximately 0.135, 0.27, 0.54, 1.08, and 2.16 h−1.

A range of absorption rates were calculated based on
effective permeability (Peff) values of 0.03×10−4, 0.12×10−4,
0.48 × 10−4, 1.92 × 10−4, and 7.68 × 10−4 cm/s which
approximately cover the range of Peffs reported in
Lennernas (2014) (minimum 0.03×10−4, maximum 8.7×10−4

cm/s) (9). Absorption rates were then calculated as 2×Peff/r
with a radius (r) of 1.75 cm (9) resulting in ka values of
approximately 0.0125, 0.05, 0.2, 0.8, and 3.2 h−1.

Median values for volume of distribution and elimination
rate constants were determined from a database of compounds
analyzed in the PhRMA CPCDC initiative of 2011 (10,11). The
volume of the central compartment was taken to be 120 L, which
is approximately the median of the PhRMA CPCDC initiative
compounds reported in Jones 2011 (10) assuming a body weight
of 70 kg. The elimination rate constant was taken to be 0.2 h−1,
themedian value of clearance divided by volume of distribution,
calculated from the range of clearance values of the PhRMA
CPCDC initiative reported in Ring 2011 (11) and the corre-
sponding volumes of distribution for the same compound set
reported in Jones 2011 (10).

After the sensitivity analysis, we analyzed the interpre-
tation of the deconvolved output using model simulations
evaluated with the mid-range values for intestinal transit rate
(kT of 2.1 h−1 for all seven compartments) and dissolution (kD
of 0.54 h−1). For the absorption rate, we took a typical value
for a highly permeable compound since IVIVC is considered
to be more identifiable for highly permeable compounds (6).
In addition to the 7 compartmental transit model described
above, 2 and 1 compartment transit models were also
analyzed. For these models, transit rates were adjusted
accordingly. For the parameter values used during the
analysis of models of various dimensions, see Table I.

Simulation Conditions

For each parameter set, the test model was used to
simulate plasma concentration profiles following administra-
tion of immediate release formulation and oral solution. The
oral solution was simulated using initial condition of the total

dose in the first dissolved compartment (Adis,1) and zero
elsewhere. The immediate release formulation was simulated
using an initial condition of the total dose in the first solid
compartment (Asol,1) and zero elsewhere. The system of
differential equations was solved in Matlab version R2013a
(The Mathworks, Inc., Natick, Massachusetts) using the built-
in ordinary differential equations solver ode45. The amount
of drug in the central compartment, Acentral, was divided by
VD to obtain the simulated plasma concentration profiles.

DECONVOLUTION METHODS AND IVIVC
PROCEDURE

Wagner-Nelson was applied to the simulated oral formu-
lation concentration profiles, and numerical deconvolution
was applied to the oral formulation profile, using the oral
solution profile as the unit impulse response (UIR) (see
Appendix for more details on the application of these
methods). For the elimination rate constant which is needed
in the calculation of fraction absorbed (fa) via Wagner-
Nelson, we used the actual value of ke from the simulations,
in order to avoid the possibility of flip-flop kinetics that can
occur when ka or kD is the rate-limiting step. This simulates
the ideal scenario in which one had the perfect intravenous
bolus UIR. During numerical deconvolution, the
deconvolved input for the oral formulation was assumed to
take the form of a continuous piecewise quadratic with
continuous first derivative (12).

Note that Wagner-Nelson relies solely upon observed
drug concentrations in the central compartment, and so the
result reflects all processes leading up to systemic circulation,
including absorption as well as dissolution. In contrast, using
an oral solution as the UIR in numerical deconvolution
provides a distinction between the systemic appearance of the
oral solution and the other dosage form. This difference is
considered to represent in vivo dissolution, assuming that all
processes associated with absorption of the solid formulation
and oral solution are identical. Potential errors in and
consequences of this assumption are discussed later in this
paper.

Predicted in vivo fraction of drug absorbed and dissolved
over time obtained through deconvolution using the Wagner-
Nelson and numerical deconvolution methods, respectively,
were plotted against the corresponding simulated in vitro
dissolution profiles. The simulated in vitro dissolution profiles

Fig. 2. Parameter values used for analysis of the effects of intestinal
transit, dissolution, and absorption (kT, kD, and ka, respectively) on
the applicability of the traditional deconvolution methods in IVIVC.
Parameter values were selected to approximately cover those
observed in the literature (7,9). Simulations using the 7 compartment
intestinal model were run with each combination of parameters,
obtaining a set of 5×5×5 simulations

Table I. Parameter Values Used for Analysis of the Intestinal Models
of Various Dimensions

Model Dose (mg) VD (L) kT (h−1) kD (h−1) ka (h
−1)

7 Compartment 200 120 2.1 0.54 3.2
2 Compartment 200 120 0.6 0.54 3.2
1 Compartment 200 120 0.3 0.54 3.2

Middle range values for volume of distribution (VD), systemic
elimination (ke), intestinal transit (kT) and dissolution (kD) were
selected from the literature (7,10,11). A high absorption rate was
selected for in depth analysis since IVIVC is considered to be more
identifiable for highly permeable compounds
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were assumed to be from an ideal in vitro experiment, in
which the same first order kinetics were observed as those
that occurred within the simulated in vivo system. The reason
for assuming this ideal situation was to identify any discrep-
ancy between the deconvolution methods and the dissolution
profiles that they are intended to represent. Correlation
coefficients were obtained for each in vitro fraction
dissolved vs. in vivo fraction absorbed/dissolved plot, for
each combination of parameters simulated, and each of
the two deconvolution methods tested. These correlation
coefficients were analyzed for trends across the different
parameter values and deconvolution methods. In order for
the correlation coefficients to have practical meaning, they
were calculated over the time points 1, 5, 15, 30, and
45 min, and 1, 1.5, 3, 6, and 12 h, simulating realistic
sampling times.

RESULTS

Sensitivity Analysis: Impact of Intestinal Transit, Dissolution,
and Permeability on the Applicability of Deconvolution
Methods During IVIVC

Figure 3 illustrates representative profiles of % absorbed
(Wagner-Nelson) or dissolved (numerical deconvolution)
in vivo vs. % dissolved in vitro with various combinations of
values for the rate parameters. For the ideal case, with a
highly absorbed and rapidly dissolved formulation, both
Wagner-Nelson and numerical deconvolution perform com-
parably well, with R-squared values above 0.9 (Fig. 3, top left
panel). Decreasing the dissolution rate introduces a discrep-
ancy between the deconvolved inputs and the dissolution
profile (Fig. 3, top right panel). However, IVIVC results in

Fig. 3. Plotted are four representative simulated in vivo deconvolved dissolution and absorption over time profiles obtained
using numerical deconvolution (dashed green curves) and Wagner-Nelson (dot-dashed red curves) for different combinations
of parameters, plotted against the theoretical in vitro dissolution profile (solid blue curves). Subpanels display the respective
% dissolved in vitro vs. % dissolved in vivo plots for numerical deconvolution (dashed green curves) and % dissolved in vitro
vs. % absorbed in vivo plots for Wagner-Nelson (dot-dashed red curves) beach of the two deconvolution methods, along with
the associated regression lines (solid blue curves) and their R-squared values. Panels on the left represent the highest
dissolution rate simulated, kD =2.16 h−1, while panels on the right represent the middle value of kD=0.54 h−1. Panels on the
top represent the highest absorption rate simulated, ka=3.2 h−1, while panels on the bottom represent the middle value of
ka=0.2 h−1. All four panels represent the middle value of transit rate, kT=2.1 h−1
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reasonable correlations with R-square values again above 0.9
for both methods. Decreasing ka reveals the difference
between the deconvolution methods during IVIVC. The
numerically deconvolved profile more closely matches the
simulated in vitro dissolution profile, while the fraction
absorbed obtained with Wagner-Nelson is greatly affected
by the decreased ka (Fig. 3, bottom left panel). Adjusting for
fraction absorbed does not resolve this discrepancy for the
Wagner-Nelson method (R-squared value below 0.7), where-
as the R-squared value for numerical deconvolution remains
above 0.9. Figure 3, bottom right panel, displays the
combined effect of decreasing both ka and kD. Interestingly,
the R-squared values for both the numerical deconvolution
and Wagner-Nelson methods are above 0.9, despite the
noticeable decrease in overall fraction absorbed.

Figure 4 plots the correlation coefficients for the IVIVCs
obtained using the Wagner-Nelson (top panels) and numer-
ical deconvolution (bottom panels) methods, varying kD, ka
and kT. It is clear from this figure that for numerical
deconvolution, the highest correlation can be seen when kD
and ka are highest, and kT is the lowest (see the rightmost
panel, topmost curve, leftmost point). In each panel, the
correlation increases with decreasing kT (following each
graph from right to left), and the correlation increases with
increasing kD (moving from the bottommost to the topmost
curve within each of the panels). Increasing kD effectively
decreases the transit rate within the solid compartments,
decreasing the effect of transit on the numerically
deconvolved input. ka has little impact on the correlation
obtained with numerical deconvolution.

In contrast, ka has a great impact on the correlations
obtained for the Wagner-Nelson method. For the highest ka,

the relationship between the effects of transit and dissolution
on the correlation mirrors that of numerical deconvolution.
For low kT, dissolution rate has little impact on the
correlation, while for high kT, the higher the dissolution the
better the correlation. As ka is decreased, an interesting
relationship between transit rate and dissolution rate is
revealed. For decreasing values of kT (left of each panel),
the higher values of kD result in lower correlations, and this
effect is steadily magnified as ka decreases (from the
rightmost to the leftmost panel). Following the panels from
left to right, the correlation obtained for middle range values
of kT and kD increases with increasing ka. This observation is
in agreement with previous statements that IVIVC is more
likely to be possible for highly permeable compounds.

Analytical Deconvolution of Simplified Absorption Models:
What is Numerical Deconvolution Really Giving Us?

In the previous section, we illustrated that the perfor-
mance of IVIVC using Wagner-Nelson is highly impacted by
absorption rate, while that using numerical deconvolution is
relatively stable across different absorption rates, being
affected more by dissolution and transit rates. The reason
for this difference in the sensitivity to absorption rate is clear
and should be expected based on what each method is
measuring. The Wagner-Nelson method provides an estimate
of amount of drug entering the systemic circulation, while
numerical deconvolution (with an oral solution as the unit
impulse response (UIR)) provides an estimate of amount of
drug that has entered a dissolved state. Numerical
deconvolution is still noticeably affected by transit and
dissolution rates, and in this section, we will explore the

Fig. 4. Correlation coefficients (R) for IVIVCs obtained using Wagner-Nelson (top panels) and numerical deconvolution (bottom panels),
varying the rates for dissolution, absorption, and transit. Within each panel, transit rate constants increase from 0.525 on the left to 8.4 h−1 on
the right and dissolution rate constants increase from 0.135 (blue circles) to 2.16 h−1 (magenta diamonds). Each panel represents a different
absorption rate constant, increasing from 0.0125 in the leftmost panel, to 3.2 h−1 in the rightmost panel
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reasons, looking at models with fewer transit compartments,
and analytically deconvolving these model simulations.

The previous section compared the deconvolved fraction
absorbed over time with a theoretical in vitro dissolution
profile of the form (Dose 1−e−kDt

� �
), the rate of which is

kDe−kDt . However, this is not exactly the rate by which the
oral formulation enters the point of application of the oral
solution, which was the assumption required to use the oral
solution as the UIR. Thus, we observed the differences
between the simulated in vitro dissolution profile and the
numerically deconvolved absorption profile.

As an alternative, it may be reasonable for one to expect
the deconvolved input to be that which enters the system in
the same location as the oral solution, the first dissolved
compartment, namely kD⋅Asol,1(t). However, this assump-
tion neglects the fact that the oral formulation may travel
from the first solid compartment to the next before
dissolving. Keeping this in mind, another possibly more
reasonable expectation for the deconvolved input may be
∑7

i kD⋅Asol,i(t), the sum of all of the rates by which the
oral formulation enters a dissolved state. It may be hard
to imagine, but this expectation is not correct either. Figure 5
illustrates the difference. The first expectation kD⋅Asol,1(t)
drastically underpredicts, while the second ∑i

7kD⋅Asol,i(t)
overpredicts the deconvolved input. However, the second
expectation is a vast improvement over the theoretical
dissolution rate, kDe−kDt .

Applying the same analysis to an intestinal transit model
with only one solid and one dissolved compartment reveals
that the reasonably expected input, kD⋅Asol,1(t), and the
numerically deconvolved input match exactly (Fig. 6, top
panels). Adding just one transit compartment to the model
introduces a discrepancy between the expected and observed
numerically deconvolved input (Fig. 6, bottom panels). To
understand how the transit compartment affects the
deconvolved input, we derived an analytical expression for
the deconvolved input for the two compartment transit
model.

The two compartment transit model can be solved
analytically, and the deconvolved input can be determined
using the properties of the Laplace transform. The analytical
solution to the two compartment transit model for the oral

formulation (Acentral,form(t)) in terms of that for the oral
solution (Acentral,soln(t)) is

Acentral;form tð Þ ¼ kDAsol;1 tð Þ*Acentral;soln tð Þ
þ kDAsol;2 tð Þ*kae− kTþkað Þt*e−ket

where * is the convolution operator. This expression can be
easily related to the schematic diagram for the model (see
Fig. 6), following the two routes by which the drug may
dissolve: (1) The drug may enter the first dissolution
compartment giving the first term in the above expression,
and (2) the drug may transit to the second solid compartment
and then to the second dissolution compartment giving the
second term.

Deconvolving the oral solution from the first term in this
expression is straightforward, giving kDAsol , 1( t) .
Deconvolving the second term is more complex, the details
of which we will omit here. The resulting analytically derived
input for the two compartment transit model is

I tð Þ ¼ kDAsol;1 tð Þ þ kDAsol;2 tð Þ−kT e− 2kTþkað Þt
n o

* kDAsol;2 tð Þ� �
:

Figure 6, bottom panels, plot the analytically derived
input against the numerically deconvolved input, verifying
that the numerical deconvolution is in agreement with the
analytically derived input.

Now that we have a closed form for the deconvolved
input, we can see how the transit of the solid dosage form has
an impact on the form for the deconvolved input. The
significance of this will depend on the magnitude of the
transit rate compared to dissolution and absorption. For
highly soluble and highly permeable compounds, transit will
have little impact on the interpretation of the deconvolved
input. For poorly soluble compounds, transit will have more
of an impact. This is in agreement with the results of the
previous section, where the impact of transit rate on IVIVC
with numerical deconvolution was magnified for slower
dissolution rates (Fig. 4b).

Fig. 5. The panel on the left compares the numerically deconvolved input (green dashed curve) with the theoretical in vitro
dissolution rate kDe−kDt (solid blue curve), and the “reasonably expected” inputs kDAsol,1(t) (red dot-dashed curve) and
∑i

7kDAsol,i(t) (cyan dotted curve). The panel on the right plots the integrals over time of the “expected” and the numerically
deconvolved inputs, i.e., the cumulative inputs over time. These can be thought of as the respective in vivo absorption/
dissolution profiles which would be used to establish an IVIVC

Margolskee et al.



DISCUSSION

Supposing it was possible to perform the perfect in vitro
experiment that would exactly match the in vivo dissolution
kinetics, we might assume the widely accepted deconvolution
methods would be able to obtain a reasonable IVIVC.
Plotting the first order dissolution curve using the simulated
in vivo first order rate constant gives us this theoretically
perfect in vitro dissolution profile. Plotting this simulated
in vitro dissolution profile against the dissolution/absorption
profile deconvolved from the simulated in vivo profiles, one
can determine whether an IVIVC can be established.

The sensitivity analysis we performed offers a perspec-
tive on the rate-limiting steps involved during IVIVC. For the
Wagner-Nelson method, rate-limiting transit reveals the
importance of the relationship between absorption and
dissolution. As ka decreases, higher kD gives poorer IVIVC
which is in agreement with the idea that IVIVC is likely to be
possible for high permeability, dissolution rate-limited formu-
lations. However, this interaction is not observed for numer-
ical deconvolution using an oral solution as the UIR.
Numerical deconvolution gives very consistent results across
the range of absorption rates, regardless of whether or not
dissolution is the rate limiting step. Dissolution rate does
however play a role in the applicability of numerical
deconvolution to IVIVC when dissolution occurs outside of
the intestinal transit window. In this case, IVIVC is more
likely possible when intestinal transit is the rate-limiting step.

Though the simulated in vitro dissolution profile and the
simulated in vivo dissolution incorporated into the model

follow the exact same kinetics, the application of
deconvolution does not obtain a reasonable IVIVC in every
situation. The reason for this discrepancy is in the underlying
assumptions required to apply deconvolution. Recall that
there are two major assumptions in the derivation of
numerical deconvolution. The first is that the system is linear,
i.e., dose independent. This first assumption is not violated as
all of the expressions in the test problem are linear in the
state variables. The second is that the unknown input and the
UIR enter the system in the same location. This is where the
violation occurs.

It is clear that Wagner-Nelson is estimating the input in a
location different to that where dissolution occurs since it is
providing an estimate of the amount entering the systemic
circulation, following both dissolution and permeation. It may
not be obvious that this assumption is also violated for
numerical deconvolution using the oral solution as the UIR.
The transit of solid drug before dissolution is where the
violation occurs.

In fact, when intestinal transit was removed from the
system, and the intestinal compartments were replaced with
one compartment each for the solid and dissolved drug, the
deconvolved input then had the expected form of kD⋅
Asol,1(t). Including intestinal transit of the solid compartment
introduces a complexity into the model so that the
deconvolved input no longer has the “reasonably expected”
form.

The underperformance of Wagner-Nelson for low per-
meability compounds should be expected based on the fact
that it is measuring the in vivo fraction absorbed, not the

Fig. 6. Top left: comparison of the “reasonably expected” input kD⋅Asol,1(t) (red dot-dashed curve) with the numerically deconvolved input
(green dashed curve) for the system with only one solid and one dissolved compartment (schematic diagram on the right). Removing intestinal
transit from the model results in the numerically deconvolved input matching the “expected” input. Bottom left: comparison of the analytically
derived input (magenta x marked curve) with the numerically deconvolved input (green dashed curve) and the “reasonably expected” inputs
(red dot-dashed and cyan dotted curves) for the two compartmental absorption and transit model (schematic diagram on the right). The
analytically derived input matches the numerically deconvolved input; thus, the analytical solution can be analyzed to determine why the
deconvolved input deviates from the expected input. The middle panels represent the integral over time of the input profiles, and can be
considered as the respective in vivo absorption/dissolution profiles
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fraction dissolved. The relative stability of numerical
deconvolution in response to a wide range of absorption
rates should also be expected since using an IR solution as the
UIR measures the in vivo fraction dissolved. Despite this fact,
Wagner-Nelson is still the method of choice in the literature.
In a literature search of journal articles in 2013 in which
dissolution IVIVIC was performed, Wagner-Nelson was the
most frequently applied method. Of the 27 articles identified
in the search, 15 applied Wagner-Nelson (e.g., 13–15), while
only 4 applied numerical deconvolution (e.g., 16). The
remaining either applied a different method to obtain a level
A IVIVC (e.g., a mechanistic model) or did not attempt a
level A IVIVC at all. Considering the class of compounds that
were investigated, it is perhaps not surprising that Wagner-
Nelson was generally found to be sufficient. BCS class could
be identified for 13 of the 27 publications examined, and all
but one of these fell into BCS class 1 or 2, indicating that they
were high permeability compounds. The remaining com-
pound was of BCS class 3, and in that investigation, a level
A IVIVC was not attempted (17). The absence of level A
IVIVCs in the literature for these classes of compounds might
reflect on the ability (or inability) to establish such IVIVCs,
as unsuccessful IVIVCs tend not to be published. Since
Wagner-Nelson, as the predominant method applied in the
literature, performs poorly under absorption limited condi-
tions, it would be interesting to see if a more widespread
adoption of numerical deconvolution resulted in more
successful IVIVCs for class 3 and 4.

While numerical deconvolution seemed to perform
consistently well across the different scenarios, this perfor-
mance can be dependent upon the accuracy of the numerical
method applied. In the previous section, we noted that for a
smaller test problem, our numerically deconvolved input
exactly matched the analytically derived input (Fig. 6b). This
may not be representative of the practical application of
numerical deconvolution, which can be highly sensitive to
noisy data, and results can vary depending on the prescribed
form for the unknown input function. So in practice,
numerical deconvolution may also have its limitations.

The simplicity of our test model and the range of parameter
values selected may also indicate some limitations to our
analysis, as some of the simulated scenarios may not have
practical significance. For example, IVIVC is mainly applied to
modified release formulations which often target the colon as
the site of absorption, while the test model only included the
small intestine. Several of the simulated combinations may
result in a slower dissolution rate than could be realistically
simulated with this test model. For the simulations involving the
middle kT value, the residence time was 3.33 h, and a
formulation that would ensure 80% dissolution in this time
frame would need a kD greater than approximately 0.483 h−1.
For the longest simulated residence time of 13.3 h, kD would
need to be greater than 0.121 h−1, and for the shortest time of
0.833 h, kD would need to be greater than 1.93 h−1. In this range,
numerical deconvolution performs very well, producing
correlation coefficients consistently above 0.9.

However, the simplicity of our test model may also
underestimate the disparity between in vitro dissolution tests
and the simulated in vivo environment since the simulations
have not taken into account that dissolution may vary with pH,
which varies along the intestinal tract, and that absorption may

vary with surface area of the different intestinal segments.
Additionally, intestinal absorption may create sink conditions
in vivo which can increase the in vivo release/dissolution rate.

Experimentalists have acknowledged the discrepancy be-
tween in vitro dissolution testing and the in vivo intestinal
environment. For example, some have introduced a permeabil-
ity compartment into their in vitro dissolution methods (18),
acknowledging the effect of absorption on dissolution testing.
Other examples include a modified USP 2 apparatus with a
built-in pH gradient to account for pH-dependent solubility of
poorly soluble basic drugs (19), or a multi-compartment
stomach-duodenum model to simulate the dynamic conditions
brought on by transport from the stomach to the duodenum as
well as pH-dependent solubility (20). Taking things even further
are in vitro digestion models with compartments for each of the
stomach, duodenum, jejunum, and ileum, with lipases and acids
incorporated in the stomach and pancreatic juices and bile in a
duodenal compartment, among other simulated physiological
attributes (21). However, these in vitromethods may be difficult
to translate to the in vivo situation, with the scaling of in vitro
compartment volumes up to physiological volumes, the transits
between the in vitro compartments to physiological transit times,
and the effect of absorption on dissolution kinetics.

Instead of creating an all encompassing in vitro system,
physiologically based in silico models (e.g., GastroPlus™, PK-
Sim®, and SimCYP®) have gone a different route by taking
separate dissolution and absorption measurements in vitro
and physiological parameters obtained in vivo and combining
them into one dynamic model within the in silico environ-
ment. For example, a solubility model can be fit to data
obtained at a range of pH, Caco-2 permeability can be scaled
to in vivo permeability, and these properties and more can be
incorporated into an in silico model which accounts for the
varied intestinal environment with the transition through
different pH values, surface area to volume ratios, all with the
appropriate transit times (22). These models have been used
recently in the establishment of IVIVCs, among other
applications. For example, GastroPlus™ proved useful in
the case of a manufacturing site change for a low solubility
compound that dissolved rapidly in the stomach, with two
formulations showing similarity in dissolution at pH 2,
however failing to show similarity at higher pH (23). In
another application of physiologically based IVIVC,
SimCYP® was useful in separately accounting for intestinal
and hepatic first pass metabolism during IVIVC, which
clouded the in vivo dissolution profile obtained with tradi-
tional deconvolution methods (24). However, these in silico
models also have their challenges with the multitude of
in vitro and in vivo data required to build and validate them
(GastroPlus™: Simulations Plus, Inc, Lancaster, CA http://
www.simulations-plus.com, PK-Sim®: Bayer Technology Ser-
vices, Leverkusen, Germany, http: / /www.systems-
biology.com/products/pk-sim.html, SimCYP®: Simcyp Ltd,
Sheffield, UK, http://www.simcyp.com).

With experimentalists pushing the boundary of in vitro
dissolution and absorption systems, and modellers broadening
the scope of in silico models, it is clear that deconvolution in
IVIVC does not exist in isolation. The limitations and boundaries
of applicability for deconvolution that have been discussed here
may well be overcome with the right choice of in vitro experiment
or in silico model.
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CONCLUSION

The performance of both the Wagner-Nelson and
numerical deconvolution methods during IVIVC is compara-
ble for highly absorbed formulations, steadily declining with
decreasing dissolution rate and increasing transit rate. The
applicability of numerical deconvolution to IVIVC is not
greatly affected by absorption rate, whereas the performance
of Wagner-Nelson declines when absorption is the rate-
limiting step. The theory of deconvolution relies on the
underlying assumption that the unknown input and unit
impulse enter the system in the same location, which is
violated for slow release formulations. In order to broaden
the scope of IVIVC, we must bridge the gap between in vitro
dissolution and in vivo response, pushing the in vitro and in
silico closer to in vivo conditions.
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APPENDIX

Linear Systems Theory

The concept of deconvolution comes out of the theory of
linear time invariant systems. Deconvolution is the process of
determining an unknown input rate into a system given
knowledge of the response to this input, and some additional
information about how the system behaves. This additional
information is the response of the system to a unit impulse
rate that is an impulse rate function, e.g., δ(t), with area under
the curve equal to unity. Since the input into the system
represents a rate, the area under the curve of an input rate is
the total amount entering the system with this input. The unit
impulse can be thought of as a very rapid injection of unit
dose into the system. The response to the unit impulse is
called the unit impulse response (UIR) (25); here we will use
F(t) to denote this response.

An arbitrary input I(t) can be approximated as a sum
of impulses I(τ)δ(t−τ), centered at time τ, with magnitude
I(τ), i.e.,

I tð Þ≈
X
τ

I τð Þδ t−τð Þdτ:

Assuming the system is linear and time invariant, the
laws of superposition allow us to say that the response to

a sum of impulses is equal to the sum of the responses to
the individual impulses. Thus, the response, Y(t), to an
arbitrary input I(t), can be approximated as a sum of unit
impulse responses F(t−τ), centered at time τ with magni-
tude I(τ), i.e.,

Y tð Þ≈
X
τ

I τð ÞF t−τð Þdτ:

Taking the limit of this approximation as the width of the
impulses goes to zero, we have an integral expression for Y(t):

Y tð Þ ¼
Z t

0
I τð ÞF t−τð Þdτ:

This integral expression is called a convolution, and is
sometimes expressed using the symbol *, i.e.,

I tð Þ*F tð Þ :¼
Z t

0
I τð ÞF t−τð Þdτ:

For a graphical interpretation of the above formulation,
see Fig. 7.

If two of the three functions, Y(t), I(t), F(t), are known,
then the third is uniquely defined, and can be determined.
Here, we focus on the situation in which the UIR, F(t) and
the response Y(t) to an unknown input I(t) are known, and
the unknown input I(t) is to be determined. The process of
determining an unknown input provided its response and
the UIR are known is called deconvolution. In IVIVC of an
oral formulation, the UIR can be the plasma concentration
profile following an IV bolus dose or following an
immediate release formulation or solution, and the un-
known input is the rate of in vivo absorption/dissolution.
Integrating the input over time will give the cumulative
amount absorbed or dissolved, which can then be used
along with the in vitro dissolution profile to establish an
IVIVC.

Numerical Deconvolution

Numerical deconvolution utilizes linear systems theory,
applying a minimization process directly to the convolution
integral to obtain the unknown input. A functional form for
the input I(t) is assumed; the parameters of which can be
obtained by fitting the convolved response to observed data.
This optimization problem is usually performed by minimiz-
ing the sum of square residuals (SSR) between the estimated
(convolved) and observed responses (25,26).

Yest tð Þ ¼
Z t

0
Iest τð ÞF t−τð Þdτ

SSR ¼
X

i

Yobs tið Þ−Yest tið Þð Þ2

Numerical deconvolution is a model invariant method,
making no assumption about the mathematical form for the
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system, i.e., it does not assume first order kinetics for
elimination, or any compartmental model, etc. Numerical
deconvolution is also more flexible in the assumptions for
the absorption, the flexibility of which depends on the
parameterized form for the input function. When the
general behavior of the absorption kinetics is known a
priori, this can help with the choice of the form for the input
function, e.g., a first order absorption function can be
assumed if first order absorption is expected. However, a
more general input function may be selected for situations
where the absorption behavior is not well characterized
ahead of time, or when dealing with some of the nonstan-
dard formulations. Gamel et al. (12) examined several
options for the input function, including a single polynomial
fit, a continuous piecewise linear function, and a continuous
piecewise quadratic with continuous first derivative. Numer-
ical deconvolution is one of the more stable methods of
deconvolution (12), especially when it comes to noisy data
(5), much more stable than the Fourier transform method
for example.

Wagner-Nelson

The Wagner-Nelson method gives an estimate of the
percent of drug absorbed as a function of time. The percent
of drug absorbed at time t is equal to the amount absorbed up
to time t, divided by the total amount eventually absorbed.
The amount of drug that has been absorbed up to time t can
be expressed as the amount in the body at time t plus the
amount that has been eliminated up to that time point.
Assuming first order kinetics, we have

%absorbed ¼ A tð Þ
A ∞ð Þ � 100 ¼

A tð Þ þ k
Z t

τ¼0
A τð Þdτ

k
Z ∞

τ¼0
A τð Þdτ

� 100

Where A(t) is the amount of drug in the system at time t
and k is the first order elimination rate constant (4). If a fixed
volume of distribution is assumed, amount can be replaced
with concentration C(t).

%absorbed ¼
C tð Þ þ k

Z t

τ¼0
C τð Þdτ

k
Z ∞

τ¼0
C τð Þdτ

� 100

Ideally, the elimination rate constant should be estimated
by fitting a one compartment model to IV plasma data. In
practice, many people will use the elimination rate constant
obtained from a compartmental model fit to oral data. This
practice is not always adequate considering the well-known
phenomenon of flip-flop kinetics which occurs when absorp-
tion is the rate-limiting step. Absorption will be the rate-
limiting step for many modified release formulations, i.e., for
extended or delayed release formulations which are designed
to slow the absorption rate. Absorption will also be rate-
limiting for poorly permeable compounds. Thus, estimating
the systemic elimination rate constant from a modified release
profile, or any oral profile for a poorly absorbed compound,
should be avoided.

Fig. 7. The response Y(t) of a linear time invariant system to an arbitrary input I(t) can be approximated as the sum of responses to
impulse functions δ(t−τ) of magnitude I(τ), for τ up to time t
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Typical Concentration Profiles Obtained in the Simulations

Figure 8 displays typical plasma concentration vs
time profiles following IV, oral solution, and IR formu-

lation administration, simulated using the 7 compart-
ment absorption and transit model for different values
of ka’ kD’ kT.
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