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Abstract

The extremely localized molecular orbitals (ELMOs) are a set of molecular orbitals strictly localized only on a few atoms of a

molecule. They are obtained in an a priori fashion through the direct application of the variation principle. Even if the

theoretical aspects of their determination have been discussed already in the literature, stable and fast algorithms to obtain

ELMOs are still not trivial and a comparison between different methods is reported. We furthermore investigate the

applicability of ELMOs to quantum mechanics/molecular mechanics (QM/MM) methods which employ frozen localized

orbitals to represent covalent bonds across the QM and the MM region. In addition it is shown that ELMOs can be used to

describe species with intramolecular hydrogen bonds, where a correct elimination of the intramolecular basis set superposition

error can be essential to perform accurate conformational studies.
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1. Introduction

It is well known that the picture offered by the

molecular orbitals (MOs) yielded by the self-consist-

ent resolution of the canonical Hartree – Fock

equations is in general much far from the classical

representation of the structure of a molecule. Indeed,

we often consider molecules as an assembly of

functional groups whose properties are transferable

from one molecule to another. Furthermore, in the

rationalization of chemical structure and reactivity we

heavily rely on local concepts, as when we draw lines

or points to indicate lone pairs and electron pairs

shared between atoms. MOs are instead spread out on

the whole molecule and this prevents their transfer

between molecules, even if differing for the addition

of just a few atoms.

In the past years several efforts have been made to

recover the concept of locality in theoretical calcu-

lations: a number of methods have indeed been

developed to localize MOs by unitary transformations

at the end of a traditional HF calculation. These
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a posteriori approaches differ for the localization

criterion, i.e. for the localization functional of the

orbitals to be optimized: the Boys method [1]

minimizes the spatial extension of the orbitals, while

in the technique proposed by Edmiston and Rueden-

berg [2] the self-repulsion energy is maximized. Also

known is the Pipek and Mezey approach [3], based on

the minimization of a functional correlated with the

Mulliken population analysis that measures the

number of atoms over which a given orbital extends.

Even if localized molecular orbitals (LMOs) yielded

by different a posteriori procedures have the same

general main features, this variety of criteria gives to

these methods some degree of arbitrariness. Further-

more, the LMOs show ‘tails’ beyond the localization

region, i.e. they are not strictly localized. This

drawback makes their transfer difficult: indeed, even

if the coefficients associated to these tails are small,

their effect on the energy is not negligible. At last, a

posteriori methods need a complete traditional SCF

calculation, so they cannot exploit the computational

advantages that may arise from the local character of

the electron distribution.

This is instead the purpose of the a priori

approaches, which partition the molecule into sub-

units and try to calculate the global wavefunction or

the electron density function as a sum of contributions

coming from each fragment and from the interactions

between them. Walker and Mezey proposed to build-

up the electron density of a polypeptide superimpos-

ing the densities determined on smaller fragments,

giving rise to the ‘LEGO’ approach [4]. They showed

that the resulting electron density function is almost

indistinguishable from that determined with a direct

calculation on the whole molecule. Yang et al. [5–7]

furthermore developed a ‘divide and conquer’ (D &

C) approach, where the electron density correspond-

ing to the solution of the Kohn–Sham equations is

obtained through a proper definition of the electron

densities of smaller parts of the target molecule. Due

to the success obtained, the D & C strategy has been

also implemented in the framework of the Hartree–

Fock theory and semi-empirical approaches [8,9].

The methods based on the determination of

‘extremely localized molecular orbitals’ (ELMOs),

known in the literature also as ‘strictly localized

molecular orbitals’ (SLMOs) [10] and ‘non-orthogonal

localized molecular orbitals’ (NOLMO) [11], are

closely related to the group function method

introduced by McWeeny [12], one of the first

theoretical approaches to the decomposition of the

total electronic wavefunction into functions describing

subsets of electrons. As in the conventional ‘linear

combination of atomic orbitals’ (LCAO) approxi-

mation, ELMOs are expanded in terms of atomic

orbitals (AOs). However, for each ELMO it is possible

to use only a part of the total basis, namely the functions

centred on a given subset of atoms, whose choice can be

defined on the basis of the chemical problem under

investigation. Thus they are characterized by the

absence of any tail, as the localization region is defined

before the calculation. The orbitals obtained in this way

are rigorously localized and this makes the ELMOs

ideal candidates for transfer. It should also be noticed

that the procedure for the determination of ELMOs

yields strictly localized virtual orbitals as well. This

could be an attractive feature, since attempts to localize

virtual orbitals, useful to describe the correlation on a

local basis, are not always successful, particularly with

large basis sets [13].

In this work we will discuss two different

applications of ELMOs at present under study in our

laboratory, the first of which concerns the description

of frontier regions in quantum mechanics/molecular

mechanics (QM/MM) methods. The mixed QM/MM

approaches are used for large systems which cannot

be represented entirely at the quantum level, but have

only a small part which requires to be modelled with

high accuracy (e.g. the active site of an enzyme). The

chief difficulty in these hybrid methods is the coupling

between the QM and the MM level of theory,

particularly when the QM and the MM regions are

connected by a covalent bond. Several coupling

scheme have been proposed [14–21]. In particular,

there are methods (such as the LSCF of Rivail et al.

[16,22,23]), which describe the frontier bonds by

means of ‘frozen’ localized orbitals. These are

generally obtained with the a posteriori localization

techniques mentioned earlier, followed by ‘tail

deletion’, i.e. the annihilation of the ‘forbidden’

coefficients. In the present work, instead, we will

discuss the possibility to model the frontier bonds

through the ELMOs and we will present a preliminary

QM/MM calculation performed on a test molecule.

The second application of ELMOs that we

are studying is the elimination of the basis set
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superposition error (BSSE) in the calculation of

intramolecular interactions. This problem is closely

related to the intermolecular analogue, but it has been

much less discussed in the literature. A few correction

schemes of intramolecular BSSE have been suggested

[24–26], which are based on modifications of the a

posteriori counterpoise (CP) method introduced by

Boys and Bernardi [27] for the intermolecular case.

Here an a priori technique is proposed, that employs

the ELMO wavefunction to describe molecular

fragments constrained to be strictly localized on the

appropriate centers. This approach can be considered

as a generalization of the SCF for Molecular

Interactions (SCF–MI) method, proposed by Giani-

netti et al. [28,29] to correct intermolecular interaction

energies.

The article is organized as follows: we will first

discuss briefly the ELMO theory and the algorithms

implemented for their determination. Then, some

peculiar features of ELMOs (such as strict localization

and transferability) will be exemplified through

calculations on a test molecule. At last, the preliminary

results of the ELMO-based approaches to the descrip-

tion of frontier bonds in hybrid methods and to the

elimination of intramolecular BSSE will be presented.

2. Theory

Let us consider a system composed by one or more

closed shell molecules. ELMOs are defined partition-

ing the N MOs (where 2N is the total number of

electrons) into n subgroups or fragments and then

assigning to each fragment j a ‘partial’ basis set

{lxj
pl}

mj

p¼1; built-up with mj functions of the total basis.

The ath ELMO of the jth fragment can thus be written

as

lwj
al ¼

Xmj

p¼1

Cj
palxj

pl:

The coefficients C
j
pa are determined minimizing

the expectation value of the energy of the electronic

ELMO wavefunction

lcl ¼ Â
Yn

j¼1

YNj

a¼1

wj
a �w

j
a

2
4

3
5

where Â is the antisymmetrizer and Nj the number of

the doubly occupied ELMOs of the fragment j: Thus

the ELMOs are determined with a straightforward use

of the variation principle.

It must be noted that different fragments can share

one or more AOs: therefore, if F is the row vector

built up with all the occupied ELMOs of the system,

written as

F ¼ ½lw1
1l· · ·lw1

N1
l· · ·lwj

1l· · ·lwj
Nj
l· · ·�;

while X is the row vector constructed with the full

atomic basis set {lxql}m
q¼1 (ignoring the subdivision in

fragments, so that only unique AOs are considered),

written as X ¼ ½lx1l· · ·lxml�; the matrix C in F ¼ X·

C has the general structure shown in Fig. 1. It is worth

pointing out that in general ELMOs cannot be

orthogonalized without loosing the ‘block’ structure

of C:

As mentioned earlier, the SCF–MI equations were

originally developed by Gianinetti et al. [28] to

eliminate BSSE from the calculation of intermolecu-

lar interaction energies: in that case it was necessary

to define only one fragment for each molecule of the

system, so that each AO appeared in one subgroup

only and the matrix C acquired a block diagonal

structure. It was demonstrated that the minimum total

energy is achieved by satisfying the following

eigenvalue–eigenvector equations

F0
jCj ¼ S0

jCjEj ð1aÞ

Fig. 1. Schematic representation of an ELMO coefficient matrix C.
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where

F0
j ¼ ½ðI 2 SD þ dbðSC ~S21Þ ~S21CTÞFðI 2 DS

þ C ~S21dbð ~S21CTSÞÞ�jj; ð1bÞ

S0
j ¼ ½dbðSÞ2 dbðSDSÞ þ dbðSC ~S21Þdbð ~S21CTSÞ�jj;

ð1cÞ

Cj ¼ ½C�jj and Ej is a diagonal matrix. In the

preceding expressions D is the density matrix defined

as D ¼ C ~S21CT; S and ~S contain the overlap integrals

between AOs and ELMOs, respectively, F is the Fock

matrix and I is the identity matrix. Furthermore, the

notation ½M�jkor Mjk indicates the block of the matrix

M with the row index running along the fragment j

and the column index running along the fragment k;

while dbðMÞ is the diagonal block matrix built-up

with the n Mjj blocks.

The block diagonal shape of C can be recovered

also in the general case if we ‘expand’ the AO row

vector X into

X
_

¼ ½lx1
1l· · ·lx1

m1
l· · ·lxj

1l· · ·lxj
mj
l· · ·�;

where AOs belonging to more than one subgroup are

repeated in each fragment, so that the dimension of

the basis now is m
_

¼
Pn

j¼1 mj; which is in general

greater than m: With this ‘redundant’ basis we thus

have ‘supermatrices’ C
_

and D
_

defined as F ¼ X
_

· C
_

and D
_

¼ C
_ ~S21 C

_ T ; respectively. Eqs. (1a)–(1c) are

still valid if we replace matrices F and S with

supermatrices F
_

and S
_

with dimension m
_

£ m
_
;

whose blocks ij are defined as

ðF
_

ijÞpq ¼ kxi
plF̂lxj

ql and ð S
_

ijÞpq ¼ kxi
plxj

ql;

with p ¼ 1; mi and q ¼ 1; mj: Nevertheless, Sironi

et al. [30] showed that F0
j and S0

j can be

calculated as

F0
j ¼

Xn

ik

½ I
_

iidij 2 ðV
_ T

ji 2 V
_ T

jj
~S21

ji ÞC
_ T

i �F
_

ik½ I
_

kkdkj

2 C
_

kðV
_

kj 2 ~S21
kj V

_

jjÞ� ð2aÞ

S0
j ¼ S

_

jj 2
Xn

i

S
_

ji C
_

i V
_

ij þ V
_ T

jj V
_

jj; ð2bÞ

where V
_

¼ ~S21 C
_ T S

_
; so that its block ij is given

by

V
_

ij ¼
Xn

k

~S21
ik C

_ T
k S
_

kj ð2cÞ

Therefore, neither F0
j nor S0

j requires that the

supermatrices M
_

are actually used in the calcu-

lations. A drawback of the method based on the

Eqs. (1a) and (2a)–(2c), which will be denoted as

ELMO1, is that it involves a S
_

matrix which is

singular; the singularity is also transferred to the

S0
j matrix, so that Eq. (1a) have to be solved with

the canonical orthogonalization method [30,31].

Although the algorithm converges in most cases, it

is sometimes affected by a certain instability,

which makes convergence very difficult.

A related formalism for determining ELMOs

proposed by Stoll et al. [32] explicitly uses

the dual orbitals of the ELMOs, which are

defined as

l ~wi
al ¼

Xn

j

XNj

b

ð~S21
ji Þbalw

j
bl:

It was shown that ELMOs can be deter-

mined by solving the following equations [32]

kxj
ql ~̂Fjlwj

bl ¼ 1
j
bkx

j
qlw

j
bl

kwj
alw

j
bl ¼ dab

8<
: ; ð3Þ

where

~̂Fj ¼ ð1 2 r̂þ r̂jþÞF̂ð1 2 r̂þ r̂jÞ and 1
j
b ¼ kwj

bl ~̂F
jlwj

bl:

The density and ‘partial’ density operators r̂

and r̂j are defined as

r̂ ¼
Xn

j

XNj

a

l ~wj
alkw

j
al and r̂j ¼

XNj

a

l ~wj
alkw

j
al:

In the following, we will refer to this approach as

ELMO2. Both the sets of Eqs. (1a) and (3) have to

be solved self-consistently. In general we observed

that the ELMO1 algorithm, when converging, is

much faster than ELMO2, which nevertheless

proved to be more stable in some cases.

The convergence properties of these algorithms

proved to be heavily affected also by the number of

AOs shared by the fragments. For a given molecule,
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there can be different ways of defining the ELMOs,

i.e. it is possible to define several ‘localization

schemes’. In the most localized scheme, which

generally can be built-up by inspection of the Lewis

structure of the molecule, a fragment is defined for

each bond, employing AOs centered only on the

atoms involved in the bond, while the ELMOs which

correspond to core electrons or lone pairs belonging to

a given atom use only the basis functions located on it.

Nevertheless it is possible to ‘partially’ delocalize

ELMOs which are intended to describe bonds and

lone pairs, e.g. allowing them to use also AOs

centered on next neighbours: thus the number of

AOs shared by the fragments increases. The localiz-

ation scheme chosen generally depends on the

particular application of the ELMOs and in this

paper we will give some examples of different

partitioning schemes. From our experience the

convergence rate of both the ELMO1 and ELMO2

algorithms decreases as the delocalization of the

partitioning scheme increases, probably as a conse-

quence of a stronger coupling between equations

relative to different fragments. In addition some

partitionings schemes showed even a divergent

behavior.

The convergence difficulties associated to the

resolution of Eq. (3) were already illustrated in

previous works [11,32]. Algorithms which exploit

the information provided by exact first and

approximate second derivatives of the energy with

respect to the ELMO coefficients have been

proposed [11,32,33]. These derivatives can be

calculated with the following expressions, taken

from Ref. [32]:

›E

›C
j
qb

¼ 4kxj
qlð1 2 r̂ÞF̂l ~wj

bl; ð4Þ

›2E

›C
j
pb›Ck

qg

¼ 4ð ~S21
kj Þgbkx

j
plð1 2 r̂ÞF̂ð1 2 r̂Þlxk

ql

2 4kxj
plð1 2 r̂Þlxk

qlk ~w
k
glF̂l ~w

j
bl

2 4kxj
plð1 2 r̂ÞF̂l ~wk

glkx
k
ql ~w

j
bl

2 4kxk
qlð1 2 r̂ÞF̂l ~wj

blkx
j
pl ~wk

gl ð5Þ

where Eq. (5) was obtained from Eq. (4) neglecting

the dependence of the Fock operator on the ELMO

coefficients. A DIIS approach using these

expressions was proposed [11]: nevertheless, even

if DIIS techniques proved useful to overcome

convergence difficulties, in certain cases we have

seen that these algorithms can be very unstable.

Hence we tried a conjugate gradient procedure,

based on the Polak–Ribiere formula [34], which

nevertheless was found to be still too slow near the

minimum. Thus, we decided to implement an

augmented Hessian Newton–Raphson algorithm,

using the shift parameter suggested by Goldfeld

et al. [35]. This method converges with much

fewer iterations than both the ELMO2 and the

conjugate gradient algorithms and it is free from

the instability that affects the ELMO1 method.

In Fig. 2 and Table 1 we report a test calculation

performed on benzene with the different methods

considered, using a TZV basis set. The starting point

was the same for each procedure and it was prepared

performing a partial localization by means of the

method of Pipek and Mezey [3] on Hartree–Fock

canonical orbitals. Then some coefficients were

annihilated according to a partitioning scheme

where the ELMOs describing the C core electrons

could use only the AOs centered on the corresponding

atom, while the ELMOs describing the C–C single

bonds could use only the AOs centered on the atoms

involved in the bond. Each of the three ELMOs which

were intended to represent the p electrons, was

developed on AOs centered on three contiguous

carbon atoms. One can see from Fig. 2 that the

ELMO1 procedure was initially much faster than

ELMO2, but it failed to converge. The conjugate

gradient method (ELMO-CG) was slightly better than

ELMO2, while the augmented Hessian Newton–

Raphson (ELMO-NR) algorithm succeeded in reach-

ing the convergence threshold in much fewer

iterations (see also Table 1).

The ELMO-NR method was successful also for

partitionings schemes which turned out to be particu-

larly ‘difficult’ cases, where all the other algorithms

failed to converge. However also this procedure has

some drawbacks, i.e. the computational cost of each

iteration and the storage of the Hessian matrix, which

can become very large as the number of coefficients

increases. To solve the first problem we have
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implemented a quasi-Newton procedure, where the

approximate analytic Hessian given by Eq. (5) is

calculated only in the first iteration and it is

successively updated with a variable metric algorithm.

Both the Davidon–Fletcher–Powell and Broyden–

Fletcher–Goldfarb–Shanno updating formulae have

been used [34]. The latter proved to be more efficient

than the former, so that here we report only the BFGS

results (see ELMO-BFGS in Fig. 2 and Table 1). This

procedure converges with a number of iterations

slightly larger than ELMO-NR, but, as each iteration

is much cheaper, the overall computing time is largely

reduced. Furthermore, the cost of the calculation, as

well as the memory needed for the storage of the

Hessian matrix, could be reduced using only a part of

the Hessian, e.g. the blocks relative to a given fragment

[33]. This aspect will be investigated in future work.

The development of a robust algorithm, which

permits to obtain a tight convergence, was a

necessary step to the subsequent implementation of

the geometry optimization. The derivative of the

electronic energy with respect to the generic

coordinate a; ›Eelec

›a
; can be evaluated through the

known expression [29,36]:

›Eelec

›a
¼2

Xm

pq

Dpq

›hpq

›a
þ

Xm

pqrs

ð2DpqDrs 2 DpsDqrÞ

�
›ðpqlrsÞ

›a
2 2

Xm

pq

Wpq

›Spq

›a
;

where hpq and ðpqlrsÞ are the one and two-electron

AO integrals, respectively. Wpq is an element of

Fig. 2. ELMO total energy of benzene (in a.u.) vs iteration number, calculated with ELMO1, ELMO2, ELMO-CG, ELMO-NR and ELMO-

BFGS algorithms. The basis set used is the TZV.

Table 1

Number of iterations needed by each ELMO algorithm to reach the

convergence threshold (set to 5 £ 1027 a:u: on the maximum

component of the gradient) in the calculations of Fig. 2

Algorithm Number of iterations

ELMO2 192

ELMO-CG 121

ELMO-NR 22

ELMO-BFGS 27

The ELMO1 method is not reported as it failed to converge.

A. Fornili et al. / Journal of Molecular Structure (Theochem) 632 (2003) 157–172162



the Lagrangian matrix, that is defined as Wpq ¼PN
a C0

paC0
qa1a; where C0

pa are the components in the

AO basis of the eigenvectors of the Fock operator

represented in the basis of the occupied ELMOs��wi
a

�
and 1a are the corresponding eigenvalues. The

algorithm has been interfaced with the PC-GAMESS

version [37] of the GAMESS-US package [38]: it thus

permits to carry out both conventional and direct

‘single point’ calculations and to perform geometry

optimizations.

3. Calculations

3.1. Test calculations

Some test calculations have been made on the

acetone molecule to compare some electronic proper-

ties (such as the electrostatic potential and the

Mulliken populations) and the optimized geometry

calculated with the conventional SCF and the ELMO

wavefunction. All calculations have been performed

with the 6-31G** basis set and for the ELMO

calculations the most localized partitioning scheme

(see Section 2) has been chosen. The structure used,

unless otherwise stated, is the SCF optimized

geometry shown in Fig. 3.

First we can note that the difference between

ELMO and SCF energy values can be large: for

acetone with the chosen basis set and localization

scheme, the ELMO energy is ,40 kcal/mol higher

than the SCF value. This result is to be ascribed to the

reduction in the number of variational parameters

caused by the a priori annihilation of some elements

of the coefficient matrix. However, it is to be

remarked that the ELMO wavefunction provides the

lowest possible energy for a given partitioning

scheme. Indeed, by performing an a posteriori

localization on HF canonical orbitals and annihilating

the ‘tails’, we obtain an energy value which is much

above that yielded by the ELMO calculation. In our

case the LMO wavefunction (localized according to

the Pipek and Mezey criterion [3]) subjected to the

‘tail deletion’ produced an increment of ,80 kcal/

mol with respect to the SCF value and thus of

,40 kcal/mol with respect to the ELMO. In Fig. 4 we

report the LMO and ELMO describing one of the C–

C bonds of acetone, to give a pictorial representation

of the ‘extreme’ localization of ELMOs: on the atoms

next to those involved in the bond, it is possible to see

clearly the tails of the LMO, responsible for the

significant contribution to the total energy. Further-

more, in Fig. 5(a) we compare the electrostatic

potential calculated along the molecular plane of

acetone with the SCF, the ELMO and the LMO

subjected to the ‘tail deletion’ (td LMO) wavefunc-

tion: in spite of the large energy difference, both

td LMO and ELMO contours have the same main

features as the SCF wavefunction, which nevertheless

is more closely approximated by the ELMO

calculation.

Finally, we point out that the SCF energy can be

recovered to a highly significant extent just allowing a

partial delocalization of the ELMOs. If the ELMOs are

partially ‘relaxed’ performing just a single SCF

iteration, an energy value only 3 kcal/mol above

the converged SCF value is obtained. This behavior

Fig. 4. Isosurfaces of the ELMO and LMO (lwðrÞl2 ¼ 0:0009 for

each point r of the surface) describing one of the C–C bonds of

acetone.

Fig. 3. Ball and stick representation of the structure of acetone

optimized at the RHF/6-31G** level.
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has already been observed by Hierse et al. [39], who

pointed out that ELMO ‘relaxation’ can increase

significantly the accuracy of energy barriers evaluated

with an ELMO calculation at DFT level. Electronic

properties are improved as well, as one can see in

Fig. 5(b), where electrostatic potentials generated by

SCF and ELMO with partial relaxation (rel ELMO)

wavefunctions are compared: it can be noted that the

rel ELMO contours show deviations from the SCF

electrostatic potential which are significantly smaller

than the ELMO calculations (Fig. 5(a)). Moreover, in

Table 2 we report the Mulliken population analysis

performed with SCF, ELMO and rel ELMO wavefunc-

tions: the partial ‘relaxation’ improves by one order of

magnitude the overall deviation (s) from the SCF

values.

The complete absence of ‘tails’ makes ELMOs

particularly suitable to be transferred from one

molecule to another. We have thus performed on the

test molecule a few preliminary calculations to study

ELMOs transferability. In a recent article [40], it

was shown that the electronic properties of some

ortho-substituted biphenyl molecules determined at

the SCF level can be reproduced optimizing only the

ELMOs associated to the substituent group, while

keeping all the other ELMOs identical to those of

biphenyl. In the present calculation ethane and

formaldehyde were chosen to provide the building

blocks of acetone: ELMOs calculated on ethane were

used to describe the C–H and C–C bonds together

with core electrons of methyl C atoms of acetone, while

the carbonyl group was described by ELMOs calcu-

lated on formaldehyde. It can be seen from Table 2 that

Mulliken populations calculated using transferred

ELMOs without any further optimization (t ELMO)

are better than expected, considering the crude

approximation due to the use of the ‘unpolarized’

ELMO of ethane to describe the C–C bonds of

acetone. Indeed, the chief deviations from SCF values

stem from the populations of the methyl C and H

atoms. The same trend is present in the electrostatic

potential contours shown in Fig. 5(c), where the main

departures from SCF contours are near the methyl

groups. In Table 2 and Fig. 5(d) we report the results

obtained by performing two standard SCF iterations on

transferred ELMOs (named rel-t ELMO): it can be

seen that this partial relaxation is sufficient to

significantly improve both Mulliken populations and

electrostatic potential contours. This behavior suggests

that ELMOs describing small functional groups could

be also employed to build-up good starting points for

SCF calculations on large molecules.

Fig. 5. Contour plots of electrostatic potential calculated along

the molecular plane of the SCF optimized structure of acetone

with the SCF (—) and (a) ELMO (- - -) and td LMO (– – –),

(b) rel ELMO (- - -), (c) t ELMO (- - -) and (d) rel-t ELMO (- - -)

wavefunctions.

Table 2

Mulliken populations (in electrons) relative to the SCF optimized

structure of acetone (see Fig. 3) calculated from SCF, ELMO,

ELMO with partial relaxation (rel ELMO), transferred ELMO

(t ELMO) and transferred ELMO with partial relaxation (rel-

t ELMO) wavefunctions

Atom SCF ELMO rel ELMO t ELMO rel-t ELMO

C1 5.499 5.304 5.510 5.462 5.464

O2 8.516 8.559 8.497 8.500 8.537

C3 6.421 6.439 6.421 6.267 6.406

H4 0.841 0.855 0.837 0.916 0.850

H5 0.865 0.887 0.869 0.918 0.872

s 0.101 0.011 0.092 0.022

Only ‘unique’ atoms are considered, since the conformation

considered has C2v symmetry. In the last row the root mean square

deviation from SCF values ðsÞ is reported for each ELMO

wavefunction.
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The possibility to perform geometry optimization

with the ELMO wavefunction, which was mentioned

in Section 2, turns out to be useful for both the

generation of BSSE-free minimum structures and the

optimization of systems described with a QM/MM

method. Here we want to compare some geometric

parameters of the ELMO and SCF optimized

structures (see Table 3 and Fig. 3 for atom number-

ing). Both optimizations yielded the same confor-

mation, in which the two methyl groups ‘eclipse’ the

carbonyl group (see Fig. 3). It can be noted that the

agreement between ELMO and SCF minimum

geometries is good, with only the ELMO C–O bond

length and C3–C1–C7 bond angle differing signifi-

cantly from the SCF values. This behavior was

already pointed out by other Authors, which showed

that the observed variations were of the same order of

magnitude as those which generally arise from a

change of the basis set at the SCF level [11].

3.2. Description of the frontier regions in QM/MM

methods

The QM/MM methods can be classified according

to the strategy adopted to cope with the discontinuity

created when two parts of a given system are

represented at different levels of theory [41]. This

problem is particularly complicated when the two

regions strongly interact (e.g. through a covalent

bond): in this case it cannot be solved at a satisfactory

level in a simple and univocal way.

In the so-called ‘link atom’ methods the frontier

bonds are ‘cut’ and the free valencies are saturated

with ‘capping’ atoms, so that the resulting QM

subsystem is well defined [14,15]. The link atoms

are generally hydrogen atoms, but ‘pseudoatoms’

have also been used, to better reproduce the electron

donating or electron withdrawing effect of the

environment [42,43]. The obvious drawback of the

link atom approach is that an extra non-physical atom

is introduced in the original system. Some techniques

try to eliminate the contribution of link atoms to the

total energy adding molecular mechanical correction

terms [17,44,45]. However, the definition of the

potential surface is still difficult owing to the extra

degrees of freedom relative to the link atoms [45].

Thus some approaches have been developed which

‘merge’ the classical frontier atom and the link atom

in a single boundary atom with both QM and MM

features. These methods ensure the correct behavior

of the frontier bond using optimized semi-empirical

parameters [18,20] or effective core potentials [19] for

the boundary atom.

Another class of QM/MM techniques alternative to

the link atom ones are those based on frozen localized

frontier orbitals. They originate from an idea proposed

by Warshel and Levitt [46], who employed hybrid

orbitals to describe the QM/MM interface. Among

these, we mention the local self-consistent field

(LSCF) method, developed by Rivail and coworkers

first at the semi-empirical [22] and then at the ab initio

level [16,23], and the method of Friesner et al.,

characterized by the large effort in the parametrization

of the interface interactions (both at the HF [21,47]

and DFT [47,48] level).

In both these methods, the localized orbitals used

to describe the frontier bonds are calculated on a

model molecule (see later) by unitary transformation

of the SCF canonical MOs and subsequent tail

deletion: thus they are the td LMOs discussed in

Section 3.1. Considering that the ELMOs reproduce

better the SCF energy and other molecular properties

(such as the electrostatic potential), we thought worth

investigating their applicability to this kind of QM/

MM methods.

Let us consider a system partitioned into a QM and

a MM region, with the frontier atoms X (QM) and Y

(MM) connected by a covalent bond (however the

procedure can be readily generalized to more than

one frontier bond). Correspondingly, the effective

Table 3

Geometric parameters of SCF and ELMO optimized structures of

acetone, together with the percent deviation of the ELMO from the

SCF values

SCF ELMO D (%)

C1–O2 1.192 1.216 2.0

C1–C3 1.513 1.528 1.0

C3–H4 1.081 1.080 20.2

C3–H5 1.086 1.084 20.2

C3–C1–C7 116.70 119.18 2.1

C3–C1–O2 121.65 120.41 21.0

C1–C3–H4 109.73 109.29 20.4

C1–C3–H5 110.30 110.40 0.1

Units are Å for bond lengths and degrees for bond angles.
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hamiltonian of the total system can be written as

Ĥeff ¼ ĤQM þ ĤMM þ ĤQM=MM;

where ĤQM and ĤMM concern only the QM and the

MM region, respectively, while ĤQM=MM comprises

the interactions between the two parts. In the

following we will describe the quantum mechanical

part of the calculation (implemented at the Hartree–

Fock level), postponing to future works the details on

the calculation of the ‘classical’ contributions to ĤMM

and ĤQM=MM:

The electron density associated to the frontier bond

is represented quantum mechanically through the

localized orbital. Thus the total basis set used in the

QM calculation comprises also the AOs centered on

the MM frontier atom Y, which acquires a partial QM

character. The quantum mechanical part of the

QM/MM procedure differs from a traditional SCF

calculation in the following aspects: (a) one of the

MOs (the frontier ELMO determined in a previous

step) is kept unchanged during the calculation; (b) the

‘active’ MOs are forbidden to use the AOs centered on

the frontier atom Y, to prevent charge transfer to the

MM subsystem [21]; (c) the electronic hamiltonian

contains also the coulomb interactions between the

QM electrons and the MM atoms, represented by

point charges. The frontier ELMO in (a) is strictly

localized on atoms X and Y and it is determined with

an ELMO calculation on a model molecule built-up

with the frontier atoms X and Y and as many atoms of

the original system as needed to reproduce the

chemical environment of the frontier bond [21]. The

ELMO is then transferred to the system under study:

during this operation one has to ensure that the

orientation of the orbital matches that of the frontier

bond and that its normalization is preserved. The

points (a) and (b) can be achieved again by an ELMO

calculation. Once the MOs of the QM subsystem and

the frontier bond are defined, together with their

different basis sets, the SCF procedure for the active

QM subsystem is started, while the frontier orbital is

kept frozen. This ‘freezing’ is due to the fact that the

representation of the frontier region provided by the

localized orbital should be as close as possible to that

obtained with a QM calculation performed on the

whole system. Indeed, the relaxation of the frontier

orbital in a hybrid environment would produce

artificial effects: it is to be considered that in the

QM/MM calculation the atom Y has only a partial

QM character (as only one of its electrons is explicitly

represented) and the frontier bond is very close to the

classical charges, so that the relaxed ELMO would be

much different from that obtained with a full-QM

calculation. The coulomb QM/MM interactions in (c)

can be introduced using a modified ‘core’ operator

ĥpð1Þ ¼ 2
72

1

2
2

XnQM

a¼1

Za

Ra 2 r1j j
2

XnMM

p¼1

Qp

Rp 2 r1

���
���
;

where nQM and nMM are the total number of QM and

MM atoms, respectively, while Za indicates the

charge of the QM nucleus a and Qp the charge of

the MM atom p. The Qp charges are taken from

standard force fields, except for QY; which is adjusted

so that the total charge of the MM subsystem amounts

to þ1 (but other more ‘refined’ schemes can be used

[21,23,49]).

As a first application of this procedure, we discuss

here the following preliminary QM/MM calculations

on the tripeptide GLY-HIS(1)-GLY. The partitioning

of the molecule into a QM and a MM region is shown

in Fig. 6(a), where the QM and MM subsystems are

represented with thick and thin sticks, respectively;

black spheres indicate the QM and MM frontier

atoms. In Fig. 6(b) the model molecule (represented

with thick sticks) which was used for the calculation

of the frontier orbital, is superimposed to the total

system (represented with thin sticks); it is possible to

Fig. 6. (a) Representation of the partitioning of the GLY-HIS (1)-

GLY tripeptide into the MM region (thin sticks) and the QM region

(thick sticks). Black spheres indicate the QM and MM frontier

atoms. (b) Representation of the model molecule (thick sticks)

superimposed to the tripeptide (thin sticks). Added hydrogen atoms

(see text) are also visible in black.
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see also the hydrogen atoms (in black) which were

added to fill the free valencies of the model molecule.

The geometry of the tripeptide was optimized at the

AM1 level [50]; owing to the preliminary nature of

this study, the subsequent SCF and QM/MM calcu-

lations were performed with the STO-3G basis set.

The ‘classical’ atom charges Qp were taken from the

AMBER force field [51]. Thanks to the relatively

small dimensions of this molecule, it has been

possible to perform also QM calculations on the

entire system. In Table 4 we report the Mulliken

populations of the QM subsystem calculated with both

the SCF and the QM/MM wavefunction (see Fig. 7 for

atom numbering). The general good agreement

between the two sets of results is promising. As

expected, the greater deviations of the QM/MM

values from the SCF come from the atoms which

are closer to the QM boundary.

3.3. Elimination of the intramolecular BSSE:

an intramolecular hydrogen bond case

It is well known that the description of the

intermolecular interaction at the traditional SCF

level is affected by the basis set superposition error

(BSSE). This error arises when two molecules

approach each other, as one molecule can begin to

use also the atomic functions centered on the other

molecule to describe its wavefunction, yielding in this

way an artificial lowering of the energy. One of

the most used techniques to correct a posteriori this

error is the CP method proposed by Boys and Bernardi

[27]. However, there are drawbacks inherent to this

approach [52–54]. The SCF–MI wavefunction [28,

29], which avoids a priori this error, has been recently

used for molecules ranging from water dimer [55] to

DNA pairs [56].

Elimination of the intramolecular BSSE is a

problem much less discussed. However, it is well

known that the energy difference between confor-

mations of a molecule depends on the basis set. This

effect can be partially ascribed to the fact that energy

calculations on different conformations are affected

by a bias of the basis set, as the nuclei change position

carrying their AOs, which can be better suited to

describe other parts of the molecule [25]. The main

difficulty in the elimination of this intramolecular

BSSE is that it is not possible to uniquely determine

and isolate the interacting fragments.

Previous attempts to eliminate intramolecular

BSSE were all based on modifications of the CP

method. Brickmann et al. [24], in their work on the

relative stability of 1,2-ethanediol conformers, pro-

posed two methods for the correction of BSSE: (1) in

the additive CP (aCP) approach the greater flexibility

Fig. 7. Ball and stick representation of the QM region, with atom

numbering.

Table 4

Mulliken populations (in electrons) of the GLY-HIS(1)-GLY

tripeptide calculated with SCF and QM/MM wavefunctions (see

Fig. 7 for atom numbering)

Atom SCF QM/MM

C1 6.097 5.959

H2 0.928 0.967

H3 0.932 0.970

C4 5.953 5.948

C5 5.983 5.997

H6 0.920 0.926

N7 7.318 7.321

H8 0.763 0.769

C9 5.879 5.885

H10 0.916 0.922

N11 7.281 7.292

Root mean square deviation of QM/MM values from SCF is

0.05 electrons.
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of the basis set in proximity of the OH groups in

hydrogen-bonded conformers is compensated adding

ghost atoms to the non H-bonded ones; (2) in the

equivalence CP (eCP) method the intramolecular

BSSE for each minimum conformation is evaluated

by a standard CP calculation on a water dimer, with

the relative orientation of the OH groups in the glycol

conformer.

Jensen [25] suggested a new strategy and built-up a

common basis for two different conformations of a

given molecule superimposing the two structures and

replacing the atoms of one conformation with ghost

atoms. However, as stated by Jensen himself, this

procedure may become computationally very

demanding for large molecules. In addition, increas-

ing the size of the basis set, problems of linear

dependence can arise. Moreover, Senent et al. [26]

pointed out that, if more than two conformations have

to be compared, BSSE corrections evaluated with this

method are additive (and thus consistent) only if the

same basis set for each structure is used: this means

that the basis for one conformation has to contain

ghost atoms in place of the ‘true’ atoms of all the other

structures. Another complication arises from geome-

try relaxation effects.

The use of the ELMO wavefunction to avoid

intramolecular BSSE appears as a natural extension

of the SCF–MI method developed for the study of

intermolecular interactions. Indeed, strictly localized

MOs allow the description of a given group of

atoms in a molecule through a given subset of AOs,

thereby preventing the use of ‘forbidden’ basis

functions.

We present here our preliminary results on 1,2

ethanediol, already studied by Brickmann et al.[24]:

we performed traditional SCF and ELMO calculations

on ten conformations of the molecule (see Fig. 8),

whose structures were found starting from the

geometries reported by Brickmann et al. [24],

employing various basis sets (i.e. 6-31G**,

6-311G** and 6-311þþG(2d,2p)). The nomencla-

ture of the conformers was taken from Ref. [24]: small

letters relate to torsion around C–O bonds (t means a

trans disposition, i.e. a dihedral angle H–O–C–C

,1808, while g and g0 mean a gauche disposition, i.e.

H–O–C–C ,608 and , 2 608, respectively), while

capital letters describe the arrangement of the O–C–

C–O torsion, with an analogous meaning.

The SCF energies of the ten conformations relative

to the most stable one (i.e. tGg0), are reported in

Table 5 for each basis set. It can be noted that the first

three conformers, due to the G torsion at the central

bond and a particularly favourable interaction

between the two OH groups (see Fig. 8), can be

defined as hydrogen-bonded. The other three G

conformations, which are not stabilized by an

Fig. 8. Ball and stick representation of the ten conformations of 1,2-

ethanediol (see text for nomenclature).
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intramolecular hydrogen bond, prove to be less stable

than T conformations mainly for steric reasons.

The ELMO calculations used a coefficient matrix

corresponding to the localization scheme shown in

Table 6 (see Fig. 9 for atom numbering): in this way

no ELMO was allowed to use AOs belonging to the

O3–H5 group and AOs belonging to the O4–H6

group, while ELMOs relative to C–H and C–C

bonds, which do not directly participate in the

hydrogen bond, were partially delocalized according

to a ‘next neighbours’ criterion. Moreover, some

delocalization of the oxygen lone pairs was allowed,

to improve the description of polarization effects and

recover a significant part of the SCF energy. Core

electrons, which are not reported in Table 6, were

strictly localized on their corresponding atoms.

The ELMO relative energies are shown in Table 5,

together with the values of relative BSSE, calculated

as difference between SCF and ELMO relative

energies. It is worth noting that these BSSE values

are internally consistent: if BSSErel(x, y) is the BSSE

of the species y relative to the x, BSSErel(x, z)-

BSSErel(x, y) can be taken as the BSSE of the species

z relative to the y. Moreover, only one ELMO

calculation is required for each conformer. It can be

seen that the values of BSSErel for H-bonded

Table 5

SCF and ELMO relative energies (in kcal/mol) of the ten conformations of 1,2-ethanediol, calculated with the 6-31G**, 6-311G** and 6-

311þþG(2d,2p) basis sets

6-31G** 6-311G** 6-311þþG(2d,2p)

SCF ELMO BSSErel SCF ELMO BSSErel SCF ELMO BSSErel

tGg0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

gGg0 0.64 0.79 20.15 0.72 1.01 20.29 0.67 0.74 2 0.07

g0Gg0 1.28 1.16 0.12 1.50 1.35 0.15 1.01 0.98 0.03

tTt 2.02 1.37 0.65 1.89 1.32 0.57 1.74 1.46 0.28

tTg 2.36 1.80 0.56 2.33 1.93 0.40 2.11 1.91 0.20

gTg0 2.43 2.01 0.42 2.49 2.26 0.23 2.30 2.18 0.12

gTg 2.80 2.45 0.35 2.86 2.72 0.14 2.60 2.52 0.08

gGg 3.36 2.79 0.57 3.29 2.94 0.35 2.98 2.88 0.10

tGt 3.66 3.18 0.48 3.50 3.04 0.46 2.90 2.94 2 0.04

tGg 4.10 3.49 0.61 4.01 3.58 0.43 3.46 3.36 0.10

The geometry of each conformation has been minimized at SCF level for each basis set. Relative BSSE values (calculated as BSSErel ¼

SCF-ELMO) are also reported.

Table 6

Localization scheme used in the ELMO calculations on 1,2-

ethanediol

ELMO AOs

C1–O3 C1, O3

O3–H5 O3, H5

C2–O4 C2, O4

O4–H6 O4, H6

C1–C2 C1, C2, H7, H8, H9, H10

C1–H7 and C1–H8 C1, H7, H8, C2, O3

C2–H9 and C2–H10 C2, H9, H10, C1, O4

O3 lone pairs O3, C1, H5

O4 lone pairs O4, C2, H6

ELMOs labelled in the first column with the corresponding bond

or lone pair can use AOs centered on the atoms indicated in the

second column.

Fig. 9. Ball and stick representation of the tGg’ conformation of 1,2-

ethanediol with atom numbering.
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conformations are generally smaller than those for the

non H-bonded ones: this can be explained considering

that the reference conformation contains an intramo-

lecular hydrogen bond. Furthermore, it can be

observed that the values of BSSErel calculated with

the largest basis set decrease with respect to the

smaller one, as expected.

To test the reliability of the ELMO approach to

the elimination of the intramolecular BSSE, we

compared both SCF and BSSE-corrected SCF

calculations performed using the smallest of the

basis sets considered (6-31G**), with SCF values

obtained with a much larger basis set, namely the

6-311þþG(3df,3pd) (see Fig. 10). In addition to the

ELMO BSSE-corrected values, also the eCP relative

energies previously calculated by Brickmann et al.

[24] are reported. As SCF/6-311þþG(3df,3pd)

relative energies are supposed to be much less

affected by BSSE than SCF/6-31G**, we can

conclude that a good method for eliminating BSSE

has to correct the values obtained with the small

basis set so that they approach the results yielded by

the larger. This seems to be the behavior of both

the ELMO and eCP correction schemes, even if the

ELMO approach in general proves to be more

effective, particularly for the conformers with high

relative energies. These observations suggest that the

ELMO approach can be an alternative method to

correct energy differences which are affected by

intramolecular BSSE.

4. Conclusions

The ELMOs, contrary to the orbitals obtained

from the a posteriori localization techniques (LMOs),

are characterized by the complete absence of ‘tails’.

This feature allows to associate in a rigorous way the

MOs to ‘molecular fragments’, whose size can be

chosen a priori selecting the more appropriate

localization pattern. So we can obtain ELMOs

which describe single bonds, lone pairs or functional

groups, to be used to assemble more complicated

wavefunctions.

In this work we have presented the development

of a robust algorithm for the determination of

Fig. 10. SCF, ELMO and eCP relative energies (in kcal/mol) of the ten conformations of 1,2-ethanediol calculated with the 6-31G** and (only

for SCF calculations) 6-311þþG(3df, 3pd) basis sets on SCF/6-31G** optimized structures. The eCP values are taken from Ref. [24].
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the ELMOs; their intrinsic non-orthogonality makes

convergence difficult, so that Newton–Raphson

techniques were needed. Our code has been interfaced

with the PC-GAMESS package [37,38] and it can be

used to perform both single point (conventional and

direct) energy calculations and geometry

optimizations.

Furthermore, two possible applications of the

ELMOs have been discussed. The first one concerns

the description of the frontier regions in systems

modelled with a mixed QM/MM method. As in the

LSCF method of Rivail et al. [16], LMOs orbitals

computed on a model molecule can be used to

represent the frontier bonds between the QM and the

MM part of the real molecule. Here we have shown

how to use ELMOs in this context and we have

presented our first calculations on the GLY-HIS(e)-

GLY tripeptide. The ELMO QM/MM results

relative to the Mulliken population analysis are in

good agreement with the description of the system

at the ‘pure’ QM level. The inclusion of the MM

and QM/MM ‘classical’ contributions to the total

energy and the implementation of energy first

derivatives with respect to the atomic coordinates,

as well as a more extensive testing of the method,

are work in progress.

The second application of the ELMOs presented

concerns the description of the intramolecular

hydrogen bonding, which in a traditional SCF

calculation is affected by the intramolecular BSSE.

In this case the widely used CP correction [27]

cannot be directly applied and some peculiar

strategies have to be adopted [24–26]. The a priori

ELMO-based method which is here suggested can be

considered as a natural development of the SCF–MI

approach to the study of intermolecular interactions

[28]. We used the ELMO wavefunction in the study

of the relative stability of ten conformations of 1,2

ethanediol and the results indicate that this approach

can be one of the possible strategies to avoid

intramolecular BSSE. It is worth pointing out that

this method is not affected by the huge increment of

the basis set which characterizes the CP-derived a

posteriori approaches when the number of confor-

mations to be compared increases. In addition it

permits to include in a simple way the geometry

relaxation effects.
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