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Broadening of the derivative discontinuity in density functional theory
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We clarify an important aspect of density functional theories, the broadening of the derivative

discontinuity (DD) in a quantum system, with fluctuating particle number. Our focus is on a

correlated model system, the single level quantum dot in the regime of the Coulomb blockade.

We find that the DD-broadening is controlled by the small parameter G/U, where G is the level

broadening due to contacting and U is a measure of the charging energy. Our analysis suggests

that Kondoesque fluctuations have a tendency to increase the DD-broadening in our model by a

factor of two.

Introduction

Over the years the density functional theory (DFT) developed

into an important tool to study transport properties of nano-

systems and single molecules.1–5 This development occured

despite of the fact, that often the results are quantitatively

sensitive to the approximations made for the exchange correlation

(XC) functional, VXC[n], underlying such calculations.6–10 In

principle, dc-transport calculations should combine either

long-time evolution of wavepackets or a KS-based quasi-

stationary formalism, in both cases with special dynamical

XC-functionals.9,11,12 In practice, the available ground state

functionals are being used.

The neglect of dynamical correlations for simulation of

dc-transport was justfied for spinless systems for which a

Friedel-sum rule holds.13 In such systems, approximations to

the XC-potential of the ground state introduce the largest

numerical error in the regime of Coulomb blockade (CB) where

the system (‘‘quantum dot’’, QD) is only weakly coupled to the

electronic reservoirs and the filling is close to an integer. Its

signature is an addition energy, U, that largely exceeds the

(single particle) level spacing of the QD.

In this Letter we exploit the observation that CB is intrinsi-

cally an equilibrium phenomenon even though it is mostly

discussed in its effect on transport measurements;14,15 in a

broader context it is a typical manifestation of the diminished

compressibility, dn(r)/dm, of repulsively interacting fermion

gases (n(rn): local particle density; m: electrochemical potential).

Therefore, it has a reincarnation in XC-functionals of DFT

where it appears as the derivative discontinuity (DD).

Starting from the seminal work by Perdew et al.,16 the DD

was almost exclusively discussed in the limiting case of

decoupled quantum dots, i.e. closed systems. There, the

XC-functional jumps discontinuously when tuning the particle

number, N, of a closed system in its ground state through an

integer value

DXC ¼ lim
dN!0
½VNþdN

XC � VN�dN
XC �; ð1Þ

hence the name. In this context the DD often makes a

quantitatively relevant contribution to the band gap

D ¼ lim
dN!0
½mNþdN � mN�dN �; ð2Þ

where mN denotes the electrochemical potential of theN particle

system which (up to a sign) equals the workfunction.17,18 The

relation between D and DXC is easy to see. Due to Janak’s

theorem the energy of a KS-orbital, index M, in the N-particle

system, eNM is related directly to the work functions: mN�dN =

eN�dNN , mN+dN = eN+dN
N+1 .19,20 With eqn (2) we conclude

D = DKS + DXC, (3)

where DKS is the energy spacing between the lowest unoccupied

(M = N + 1, LUMO) and the highest occupied (M = N,

HOMO) KS states, DKS = eN�dNN+1 � eN�dNN , and

DXC = eN+dN
N+1 � eN�dNN+1 . (4)

It follows that the DD, DXC, accounts for the difference

between the bare, single particle gap, DKS, and the addition

energy, D, for supplying one more particle. This extra energy

cost, DXC, related to the repulsive interaction of fermions

confined in a narrow region of space is also the origin of the

CB and incompressibility. The DD in closed N-particle

systems and ways to include it into approximate schemes have

been a subject of intense research, recently.21 In local or semi-

local approximations of XC-functionals artifacts in the

description of charge transfer and transport processes arise,

because the DD is not accounted for.21–23,31

In open systems the understanding of the DD is still

relatively poorly developed. In particular, its fate in a situation
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with weakly coupled subsystems, e.g., QD and electronic/

thermal reservoirs, has not yet been studied systematically.

This is our focus here. We investigate the equilibrium

compressibility, dn(r)/dm, in a generic model system, the

Anderson (or single site Hubbard) model with a repulsive

on-site interaction U. The smearing of the discontinuity (1),

as a consequence of coupling to a reservoir, can be observed in

simulations employing the density matrix renormalization

group (DMRG).13,24,25 Insight about parametrical dependency

is drawn from analytical results that also allow the construction

of ‘‘toy’’ XC-functionals to study CB in DFT.

Specifically, we report the compressibility dN/dm near

integer filling, N = 1, in three different temperature regimes.

We summarize our findings. (i) For the isolated level we have

at nonzero temperatures (b = 1/T) the exact result:

dvXC
dN

���
N¼1
¼ TebU=2 þ T �U=2. The derivative is finite as T 4 0

and the discontinuity is broadened by temperature. A dimen-

sionless measure of this smearing is provided by the number of

particles dN that need to flow into the level in order to

fascilitate the increase (‘‘jump’’) of D(N) by DXC E U:

dN = UdN/dm|N=1 = bU(ebU/2 + 1)�1 TG t T (5)

In this perspective, the DD is the statement that in the zero

temperature limit the amount of particles needed to drive the

jump becomes arbitrarily small. (ii) In the presence of a weak

coupling to an electronic reservoir, the single level acquires a

width G. Below a certain cross-over temperature, TGG, we
witness that dN stops to decrease and the lifetime broadening

leads to an intermediate saturation; we obtain

dN E 4G/pU + O(1), TK { T t TG (6)

dvXC

dN

����
N¼1
� UðpU=4Gþ Oð1ÞÞ:

The exponential growth of dvXC/d(UN) in U/T gives way to a

linear scaling in U/G in this temperature window. (iii) At even

lower temperatures, below the Kondo scale, TK, where the

Abrikosov-Suhl resonance if fully developed, we cite an exact

asymptotic result:

dN = 8G/pU + O(1), T { TK (7)

dvXC

dN

����
N¼1
¼ UðpU=8Gþ Oð1ÞÞ

In cases (ii) and (iii) model XC-functionals are given, that

reproduce the CB-features on a qualitative level.

Anderson model

The Anderson model26 describes a single level QD coupled to a

reservoir (G):

Ĥ ¼ ĤQD þ ĤR þ V
X
s¼";#

X
k

ðcyskds þ dyscskÞ; ð8Þ

where ĤR =
P

sk ekc
w
skcsk, ek =� 2tcos(ka)(a: lattice spacing)

and in the presence of spin-rotational invariance (n̂s = dwsds,

N̂ = n̂m + n̂k, hn̂si = N/2): ĤQD = edN̂ + Un̂mn̂k. The

observable of interest in DFT is the local density and its

variation with exernal parameters, e.g. ed and m: N(m) and

dN/dm especially near integer fillings, N = 1. The inverse,

m(N), will then be related to the exchange–correlation potential

on the QD via

vXC(N) = m(N) � UN/2 � ed; (9)

Hartree and on site potential here must be subtracted. To

calculate physical observables in the presence of reservoirs,

thermal Green’s functions provide a convenient formalism.

For the thermal occupation numbers we have quite generally

N=2 ¼ hn̂si ¼ T
X
m

GsðiomÞ ¼
Z

dEfEAsðEÞ ð10Þ

where we have introduced the spectral function As(E) =

(�1/p)
P

s IGs(E) and fe = (eb(e�m) + 1)�1.

a. Thermal coupling

In the absense of particle fluctuations, V = 0, the spectral

function can be calculated exactly.26 It is given by (�s = � s)

As(E) = (1 � hn�si)d(E � ed) + hn�sid(E � (ed + U)) (11)

The two ‘‘Hubbard bands’’ are reflecting the energy cost, U,

for adding the second particle to the QD. Recalling (11)

we obtain

N/2 = fed(fed + f2m�ed � U)�1, (12)

which implies that at integer filling, N = 1, we have m1 =

ed + U/2. Recalling eqn (9) we conclude vXC|N=1 = 0. By

inverting (12) we obtain the general answer

mðNÞ ¼ T ln
N � 1

2�N
ebU þ aebU=2

2�N

� �
þ ed ð13Þ

and

dm/dN = T(ebU�1)(aebU/2�a2)�1 (14)

with aðbU;NÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðebU � 1ÞðN � 1Þ2

q
. It is implied that

near integer filling dm/dN|N=1 = T + TebU/2 and

dvXC

dN

����
N¼1
¼ TebU=2 þ T �U=2 ð15Þ

From this expression it is obvious how the DD emerges: at any

nonzero value of the interaction parameter U, the slope near

N = 1 diverges in the zero temperature limit. The divergency

occurs in an exponential way because those fluctuations in

particle numbers that give m a nonvanishing slope are sup-

pressed by a factor of exp bU/2.

The diverging slope can also be interpreted in the following

way. At low temperature and near integer filling a very small

change in the local particle number, dN, can increase the

effective on-site potential by the finite amount U: dN �
UdN/dm = bU(ebU/2 + 1)�1. We have arrived at eqn (5).

b. The quantum limit

T - 0: In the presence of the nonvanishing coupling, V 4 0,

the occupation numbers n̂s no longer commute with the

Hamiltonian, Ĥ, and the Anderson model becomes nontrivial.

Two essential changes occur. First, the Hubbard bands

acquire a finite width, G. As a consequence, the decrease of
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dN(bU) stops when T falls below G. The residual density

fluctuations near integer filling then are no longer controlled

by thermal but by quantum fluctuations. The control para-

meter for the latter is G/U; it measures the overlap of the

Hubbard bands with the Fermi-energy. Second, at lowest

temperatures, T { TK, the spectral function acquires a third

peak, the Abrikosov–Suhl resonance.

c. Intermediate temperatures

TK { T t G,U. We first imagine that the Kondo temperature

is by far the smallest energy scale, in particular TK { T, so

that the Kondo effect can be ignored. This is justified in

effectively finite systems, like large molecules, where the

density of states (DoS) near the highest occupied molecular

energy level is not truely continuous. In this situation the

presence of the reservoirs is easily dealt with on a qualitative

level by equipping the thermal Green’s function eqn (10) with

a self energy, S(iom). It determines the inverse lifetime G(E) =
�IS(E) which evaluates to G(E) = p|V|2rR(E) for noninter-
acting reservoirs (rR(E): reservoir DoS). The qualitative effect

can be studied in the simplest approximation where we ignore

the energy dependency of the self energy (‘‘wide band limit’’).

Then, the spectral function for a given Hubbard subband

takes the Lorentzian shape

LðEÞ ¼ 1

p
G

E2 þ G2
: ð16Þ

As a consequence of the peak broadening, eqn (12) generalizes,

N

2
¼

Fe�
d

Fe�
d
þ F2m�e�

d
�U

; Fu ¼
Z 1
�1

dE fEþuLðEÞ; ð17Þ

with the zero temperature limit

Fu ¼
T!0

1=2þ arctan½ðm� uÞ=G�=p ð18Þ

where e�d ¼ ed þ<S. Eqn (17) reveals that at N = 1 we still

have m1 ¼ e�d þU=2 at arbitrary T, G values. The formulae

(17,19) combine into a transcendental equation for m(N) and

by virtue of eqn (9) into a functional vXC.

For calculating the dN/dm we notice, that m enters Fe�
d
and

F2m�e�
d
�U with the opposite sign, implying that the m derivative

of the denominator of (17) vanishes atN= 1. Hence we derive

dN

dm
¼ F�1e�

d

dFe�
d

dm

����
N¼1
¼

T!0

LðU=2Þ
1=2þ arctanðU=2GÞ=p ð19Þ

which implies

dN ¼ 1

p
2G=U

1þ ð2G=UÞ2
2

1=2þ arctanðU=2GÞ=p ð20Þ

Eqn (6) follows via expansion in G/U.

d. The Kondo limit

T { TK. When the temperature decreases down to the Kondo

scale, T B TK,

TK ¼ c
ffiffiffiffiffiffiffiffi
UG
p

e�pjm�e
�
d
jjm�e�

d
�Uj=2UG; e�d �o m �o e�d þU ð21Þ

the Abrikosov-Suhl (AS) resonance starts to build up.26,27

(c E 0.29 in the wide band limit). When it is fully developed,

T { TK, its shape is roughly Lorentzian, AAS(E) E
(1/pG)T2

K/((E � m)2 + T2
K)
�1 and it adds a third resonance

to the spectral function

AðEÞ � p
X
s

AsðEÞ þ pAASðEÞ ð22Þ

with a normalizing coefficient, p= 1/(1 + TK/2G). As written,

eqn (22) has an artificial feature in the sense that the peak

values at all resonances coincide: 1/pG. A slightly more

accurate representation incorporates a change in the shape

of the Hubbard bands in the Kondo regime which we here

account for by replacing the original width ofAs with another

one, G - GK, specified below. With this caveat we have

(c =
R
dE f EAAS(E) = TK/2G):

N ¼
2pFe�

d
þ pc

1� pþ p Fe�
d
þ F2m�e�

d
�U

� �

¼
2Fe�

d
þ c

Fe�
d
þ F2m�e�

d
�U þ c

:

ð23Þ

Eqn (23) captures qualitative features of N(m) and it can be

used to construct an LDA for a Kondo-system. Eqn (23)

suggests that the impact of the AS-resonance on the compres-

sibility is small as TK/G. The main impact of Kondoesque

fluctuations comes here from the renormalization of the shape

of the Hubbard peaks. Indeed, the exact compressibility known

from Bethe–Ansatz calculations26 reads in the limit of large U:

dN

dm

����
N¼1
¼ 8G

pU2
1� 6

p
2G
U
þ � � �

� 	
; ð24Þ

implying eqn (7). Analogous to eqn (6), an estimate based on (23)

would give 4GK/pU2 which suggests GK E 2G when comparing

with (24). We conclude that within the present framework in the

Kondo-regime dN/dm should be enhanced by a factor B2

reflecting a stronger tendency for charge-fluctuations.

Fig. 1 The change of the dot filling rescaled by |V|�2 in the Coulomb

blockade regime for an on-site repulsion of U= 5t, a hybridization of

V= 0.3t(+) and V= 0.1t(	) for aM= 30 site system obtained from

a ground state DMRG. For comparison results for a 50 site calcula-

tion are also shown (red,blue J) emphasizing convergence with the

system size. Data illustrates the scaling of dN/dm with the hybridiza-

tion G B |V|2. Raw data is shown in the inset. Inset: dot occupation.

D
ow

nl
oa

de
d 

by
 M

as
sa

ch
us

et
ts

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

on
 0

8 
A

ug
us

t 2
01

1
Pu

bl
is

he
d 

on
 2

7 
Ju

ly
 2

01
1 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
1C

P2
12

47
H

View Online

http://dx.doi.org/10.1039/c1cp21247h


14420 Phys. Chem. Chem. Phys., 2011, 13, 14417–14420 This journal is c the Owner Societies 2011

e. DMRG-calculation

To illustrate our analytical arguments DMRG-calculations

have been performed on systems including M = 30,50 sites,

see Fig. 1. The available system sizes do not allow us to resolve

the Kondo-scale TK yet, see eqn (21), but the expected finite

slope of dN/dm at integer filling is clearly visible. The data also

shows the collaps on a single curve when rescaled by |V|�2.

Discussion

Our survey of analytical results obtained in the symmetric

Anderson model suggests that the DD is broadened in systems

coupled to a reservoir: the particle transfer, dN, needed to shift

the local XC-potential by the on-site interaction energy BU is

not infinitesimally small. Within the model considered, the

particle transfer is a two-parameter function, dN(bU,G/U),

that smoothly interpolates between a high temperature and a

low-temperature (‘‘quantum’’) regime.

This result has implications for model studies of quantum

transport within the framework of time dependent DFT. The

importance of the DD for such transport simulations has been

emphasized in several recent works.7,22,28 Our work implies,

that effective functionals used in such simulations should

exhibit a parametric dependency on G/U. In particular, only

terms quadratic in the coupling, V2, appear in single channel

quantum transport. The ABALDA-functional proposed in

ref. 28 does not adhere to this principle since it depends

explicitly on the parameter U/Vlink.

Our results also have implications for molecules, i.e. systems

where one subsystem couples weakly to a small number of other

subsystems, but not to a (macroscopic) reservoir, proper. In this

situation, the spectral function As, eqn (11), will translate into

the local spectral function of the given subsystem: each Hubbard

peak acquires a splitting indicative of the hybridization of states

with the environment. Again, the amount of charge needed to fill

into the subsystem to drive vXC up by U will not be zero but

rather reflect this hybridization induced substructure.

Discussions with P. Wölfle and support by the DFG priority

program 1243 are gratefully acknowledged. After completing

and submitting our work we became aware of independent,

related research by Bergfield, Liu, Burke and Stafford.30
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