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We present the time-dependent holographic electron density theorem (TD-HEDT), which lays the

foundation of time-dependent density-functional theory (TDDFT) for open electronic systems.

For any finite electronic system, the TD-HEDT formally establishes a one-to-one correspondence

between the electron density inside any finite subsystem and the time-dependent external

potential. As a result, any electronic property of an open system in principle can be determined

uniquely by the electron density function inside the open region. Implications of the TD-HEDT

on the practicality of TDDFT are also discussed.

I. Introduction

The Hohenberg–Kohn theorem1 states that the ground state

electron density function of an isolated time-independent

system determines all electronic properties of the system, and

thus lays the foundation of density-functional theory (DFT).

The Kohn–Sham formalism2 provides a practical scheme to

calculate the ground-state properties of electronic systems.

The Runge–Gross theorem extends the Hohenberg–Kohn

theorem to the time-dependent electronic systems and asserts

that the time-dependent electron density function determines

uniquely all electronic properties of the corresponding time-

dependent system.3 Based on the Runge–Gross theorem, time-

dependent density-functional theory (TDDFT) was developed

to calculate the excited-state properties of electronic systems.

The accuracy of DFT or TDDFT is determined by the quality

of exchange–correlation (XC) functional. If the exact XC

functional were known, the Kohn–Sham formalism would

have provided the exact ground-state properties, and a time-

dependent Kohn–Sham extension would have yielded exact

time-dependent and excited-state properties. Despite their

wide range of applications, DFT and TDDFT have been

mostly limited to isolated systems.

In fact, all systems are in principle open systems which

exchanges energy, matter, or phase information with the

surrounding environments. The environment usually contains

a much larger number of degrees of freedom than the system

does, and significantly affects the system physical properties.

In quantum dissipation theory (QDT) which focuses on the

reduced dynamics of open systems, the environment is

commonly taken as a bath, and its effects are treated in a

statistical manner.4 A molecular electronic device is one

example of open systems. Bulk electrodes in contact with the

device play the roles of electron reservoir and energy sink, and

hence can be treated as fermionic baths. The presence of

realistic open system can also be found in dye-sensitized solar

cells, where a dye molecule adsorbed on the surface of solid

titanium dioxide (TiO2) can be deemed as an open system.

The strong covalent bonding between the dye and the TiO2 surface

facilitates ultrafast photo-induced interfacial electron transfer.5,6

Bulk TiO2 can be regarded as the fermionic bath, which influences

the excited-state electron dynamics at the dye-TiO2 interface.

There are also open systems whose number of electrons is

considered to be conserved. For instance, for condense-phase

chemical reactions, the solvent vibration modes or solid phonon

modes can be regarded as thermal (bosonic) baths,7 which affect

the electronic properties of substrate molecules.

Ground-state DFT methods were used to calculate the static

electronic response of open systems under external fields. For

instance, to calculate steady-state transmission coefficients of

molecular devices for quantum transport, the ground-state

Kohn–Sham Fock operator is taken as the effective single-

electron model Hamiltonian, and electronic properties of

interest are evaluated within the noninteracting electron

model.8–12 However, the investigated systems are not in their

ground states, and applying ground-state DFT methods for

such systems is only an approximation.13,14 To resolve this

issue, DFT formalisms adapted for current-carrying systems

have been proposed, such as Kosov’s Kohn–Sham equations

with direct current.15 Despite the progress, static DFT

approaches cannot address the dynamic electronic properties

or transient phenomena. To this end, one needs to resort to

TDDFT for open systems.
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TDDFT for open quantum systems with conserved number

of electrons have been proposed. Burke et al. have proved the

existence of TDDFT for such open systems by establishing a

Runge–Gross-type theorem. They have also constructed a

Markovian Kohn–Sham master equation including dissipa-

tion to phonons.16 Yuen-Zhou et al. have extended the

Runge–Gross theorem to open quantum systems described

by a master equation involving non-Markovian dissipation to

environment.17 Tempel et al. have proved the existence of

TDDFT Kohn–Sham scheme for general open systems, and

proposed a linear-response master equation approach to

address the broadening and shifting of electronic excitation

spectra of open systems by coupling to environment.18 These

approaches have been applied and tested on model systems.

For open systems with variable number of electrons, we

have proved the existence of a rigorous TDDFT through the

establishment of the time-dependent holographic electron

density theorem (TD-HEDT).19–23 Based on the TD-HEDT,

we have further developed a Kohn–Sham equation-of-motion

formalism for the transient reduced dynamics of the open

system.22 Practical TDDFT schemes have also been proposed

by other authors, mostly in the context of quantum transport,

such as Kurth et al.’s formulation for propagation of

Kohn–Sham wavefunctions with open boundary condition,14

and Cui et al.’s quantum master equation employing complete

second-order QDT.24,25

This paper aims at providing a comprehensive account for

TD-HEDT, which lays the foundation of TDDFT for open

systems that allow both particle exchange and energy dissipa-

tion. In addition to reviewing some of the existing work, this

paper also provides substantial new result, such as a neat

proof for the holographic property of real analytic functions,

and new understanding and insight, such as the extensive

discussions on the conceptual and practical implications of

the HEDT, particularly for time-dependent open systems.

The remainder of this paper is organized as follows. In

section 2 we revisit the mathematical background and physical

aspects of ground-state HEDT (GS-HEDT). In section 3 we

give a detailed proof of TD-HEDT, and clarify some impor-

tant issues. We then highlight the fundamental significance of

TD-HEDT by elaborating its implication on the existence and

practicality of TDDFT for open systems. Concluding remarks

are finally given in section 4.

II. Ground-state holographic electron density

theorem

As early as in 1981, Riess and Münch proposed26 a conjecture

which states that any nonzero volume piece of the ground-

state electron density determines the electron density distribu-

tion of a molecular system. This was based on their hypothesis

that the electron density functions of atomic and molecular

eigenfunctions are real analytic away from nuclei. In their

proof, they argued that the real analyticity of ground-state

many-body wavefunction leads directly to the real analyticity

of corresponding electron density function. However, this is

neither obvious nor trivial, and was not proved rigorously

yet. In 1999 Mezey has extended Riess and Münch’s work,

and termed their conjecture as the GS-HEDT.27 In 2004

Fournais et al. have proved the real analyticity of electron

density function of any atomic or molecular eigenstate.28,29

This lays a solid mathematical basis for the GS-HEDT. A new

proof for the real analyticity of electron density has been

given by Jecko in 2010.30 The GS-HEDT has been constantly

related to quantum similarity measures in the scope of

conceptual DFT.31,32

Mathematically, a real function is real analytic if it possesses

derivatives of all orders and agrees with its Taylor series in a

neighborhood of every point. For real physical systems,

such as systems made of atoms and molecules, the external

potential acting on each electron, v(r), is real analytic except at

nuclei. Nuclei are treated as point charges. This only leads to

non-analytic electron density at isolated points. Apart from

the isolated nuclear positions, the r-space is all connected, on

which r(r) is real analytic. In practical quantum mechanical

calculations, real analytic functions such as Gaussian functions

and plane waves are commonly used as basis sets, which

naturally results in real analytic electron density function.

As a consequence of real analyticity, r(r) inside a subspace

determines uniquely its values on the entire physical space. In

principle, this can be realized by the analytic continuation of a

real analytic function. The proof for the univariable real

analytic functions can be found in textbooks such as ref. 33.

Although the extension to multivariable real analytic functions

is not difficult, such a proof has not been found by us. Here, we

provide a simple proof for the holographic property of real

analytic r(r) in three-dimensional physical space.

Lemma: Let r be a continuous function on R3, and r is

real analytic on an open connected subset U, with its comple-

mentary subset
�
U consisting of isolated points only. If r is

known on an open subset W D U and W a +, then r is

uniquely determined on R3.

Proof: For brevity, we introduce the notation Z+ =

{0,1,2,. . .}, and the multiindex g = (g1,g2,g3) A (Z+)3.

We use three-dimensional variable x = (x1,x2,x3) A R3 to

represent the displacement vector r, and we have

g! ¼ g1!g2!g3!;

xg ¼ x
g1
1 x

g2
2 x

g3
3 ;

@g

@xg
¼ @g1

@x
g1
1

@g2

@x
g2
2

@g3

@x
g3
3

:

ð1Þ

First we show that r is uniquely determined onU. The proof is

trivial if W = U, so we only need to consider the case of

+aW C U (W is a proper subset of U). Suppose there is

another function r0(x) also continuous on R3, real analytic on

U, and equal to r(x) for all x A W. Based on the real analytic

properties of both r and r0, we immediately have
@grðxÞ
@xg ¼

@gr0ðxÞ
@xg , 8x A W and g A (Z+)3. We set

V � U \ x :
@grðxÞ
@xg

¼ @
gr0ðxÞ
@xg

; 8g 2 ðZþÞ3
� �

: ð2Þ

Because of the continuity of @
grðxÞ
@xg and @gr0ðxÞ

@xg , V is obviously a

closed subset in the relative topology of U. On the other hand,

due to the fact that both r and r0 are real analytic on V, for

every x0 A V, there exists b 4 0 such that the power series
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P
g2ðZþÞ3

1
g!
@grðx0Þ
@xg ðy� x0Þg and

P
g2ðZþÞ3

1
g!
@gr0ðx0Þ
@xg ðy� x0Þg con-

verge to r(y) and r0(y) on the neighborhood Db(x0) = U -
{y:|y�x0| o b}, respectively. This infers that @gr

@xg ¼
@gr0

@xg holds

for all y A Db(x0). Based on eqn (2) any y in Db(x0) also

belongs to V. Therefore, V is also an open subset based on the

definition of openness. In a word, V is found to be a clopen

subset of U. However, because the set U is connected, it

should not contain any proper clopen subset. Since W a +,

we have V a +, and thus V has to be exactly the same as U.

By taking specifically g = (0,0,0) in eqn (2) , we have r(x) =
r0(x) for all x A U.

To complete the proof we need to verify that r is also

uniquely determined on
�
U. These nonanalytic points are

collected by the continuity of r. Suppose there is another

function r0 equal to r on U, but different at y A
�
U. For that

particular y, there always exists a sequence {qn} A U (n A Z+)

which converges to y, since
�
U consists of isolated points.

Define d = |r(y)�r0(y)|. Since {qn} A U, r(qn) = r0(qn) holds
for all n. Due to the continuity of both r and r0 on R3, 8 A
with 0oeo d

2, (qm(m A Z+) so that |r(y)�r(qm)| o e and

|r0(y)�r0(qm)| o e. This leads to

d = |r(y)�r0(y)| = |r(y)�r(qm) + r(qm)�r0(y)|
= |r(y)�r(qm) + r0(qm)�r0(y)| p |r(y)�r(qm)|

+ |r0(y)�r0(qm)| o 2e o d. (3)

This cannot be true anyway, therefore r(y) = r0(y) holds for
all y A

�
U.

In conclusion, we have proved that r is uniquely determined

on R3 as the theorem states. In this sense, if r is taken as the

electron density function and W as the region D which spans

the open system of primary interest, any functional of r can

thus be viewed as a functional of rD without any ambiguity.

Based on the lemma, we proceed to prove the GS-HEDT.

GS-HEDT: The electron density r(r) inside a subsystem of a

connected real physical system in its ground state determines

uniquely all electronic properties of the entire system.

Proof: Suppose the physical space spanned by the subsystem

and the real physical system are D and U, respectively. By

definition D is a subspace of U, i.e. D D U. According to the

above lemma, r(r) inside subsystem D, rD(r), determines

uniquely its values on the entire system U.

For a system in its ground state, the Hohenberg–Kohn

theorem establishes the one-to-one correspondence between

external potential v(r) and electron density r(r). It states that
r(r) determines uniquely v(r), and hence determines uniquely

all electronic properties of the system. Comining the above facts,

we come to the conclusion that r(r) inside a subsystem determines

r(r) of the entire system, and hence determines uniquely all

electronic properties of the real physical system. Q.E.D.

The GS-HEDT establishes a one-to-one correspondence

between the external potential v(r) and ground-state electron

density function inside any subsystem D, rD(r). It thus affirms

the existence of a rigorous DFT for open systems. In principle,

all information we need is the electron density inside the

subsystem of our primary interest. It is important to point

out that the analytical continuation is only for the formal

proof of the GS-HEDT. In practice, such a continuation

would be numerically unstable and intractable. Similar

scenario applies also for the TD-HEDT to be discussed in below.

III. Time-dependent holographic electron density

theorem

A. The TD-HEDT and its proof

Extending GS-HEDT to time-dependent open systems is not

trivial. Although it seems intuitive that the time-dependent

electron density function r(r,t) is real analytic except for

isolated points in space-time, to the best of our knowledge,

there is no rigorous proof which can justify the real analyticity

of r(r,t). Fortunately, we are able to circumvent this uncertainty,

and establish a one-to-one correspondence between the time-

dependent electron density function of any finite subsystem D,

rD(r,t), and the external potential field v(r,t), provided that

external potential is real analytic in both t-space and r-space.

This gives the TD-HEDT as follows.

TD-HEDT: If the electron density function of a real finite

physical system at t0, r(r,t0), is real analytic in r-space, the

corresponding wave function is F(t0), and a real analytic

(in both t-space and r-space) external potential field v(r,t) is

applied to the system after t0, the time-dependent electron

density function on any finite subspace D, rD(r,t), has a

one-to-one correspondence with v(r,t) (up to an additive

merely time-dependent function), and determines uniquely

all electronic properties of the entire time-dependent system.

Proof: Let v(r,t) and v0(r,t) be two real analytic potentials in

both t-space and r-space, which differ by more than a constant

at any time t X t+0 . Their corresponding electron density

functions are r(r,t) and r0(r,t), respectively. There must exist

a minimal nonnegative integer k, so that the k-th order

derivative differentiates these two potentials at t0 by a non-

constant function w(r):

wðrÞ � @k

@tk
½vðr; tÞ � v0ðr; tÞ�

����
t¼tþ

0

aconst: ð4Þ

Following exactly eqn (3)–(6) of ref. 3, we have

@kþ2

@tkþ2
½rðr; tÞ � r0ðr; tÞ�

����
t¼tþ

0

¼ �r � uðrÞ; ð5Þ

where u(r) is a vector function of r expressed by

u(r) = r(r,t0)rw(r) (6)

Due to the real analyticity of r(r,t0), v(r,t), and v0(r,t), r�u(r) is
also real analytic in r-space. In ref. 3 it has been argued that

r�u(r) can not be everywhere zero in r-space, provided that

(i) r(r,t0) falls off rapidly enough away from the system, and

(ii) there is no finite subregion in r-space in which r(r,t0) = 0

and w(r) = const. Here, condition (i) is satisfied for any finite

physical system, and the pathological situation raised in

(ii) can also be excluded, since r(r,t0) is presumed to be real

analytic (otherwise r(r,t0) is everywhere zero based on the

lemma proved in section II). Therefore, it is impossible to have

r�u(r) = 0 everywhere in any finite subsystem D, because of

its real analyticity in r-space. Denoting rD(r,t) for r(r,t) on D,
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we have

@kþ2

@tkþ2
½rDðr; tÞ � r0Dðr; tÞ�

����
t¼tþ

0

a0 ð7Þ

on subsystem D, i.e., the (k+2)-th order derivative differentiates

the two electron density functions in any finite subsystem D.

This confirms the existence of a one-to-one correspondence

between v(r,t) and rD(r,t). As a consequence, rD(r,t) deter-

mines uniquely v(r,t), and hence determines all electronic

properties of the entire system. Q.E.D.

The TD-HEDT for time-dependent open systems plays an

analogous role as Runge–Gross theorem for isolated systems.

It affirms the existence of a rigorous TDDFT for general time-

dependent open systems with variable number of electrons. In

principle, all one needs to know is the electron density function

in a local subsystem.

B. Important insight into the TD-HEDT

For the TD-HEDT to be valid, the total physical system

(including the environment) has to be finite, which means

one can define a finite region in r-space, beyond which

electrons cannot be bound locally by v(r,t). The finiteness

condition is required to ensure r(r,t0) vanish at the ‘‘surface’’

of the system, which is needed for the above proof of the

TD-HEDT. Moreover, one may understand the finiteness

requirement by considering a system consisting of two remotely

separated atoms. For any finite time-dependent system, the

real analyticity of v(r,t) ensures any change in v(r,t) at any

finite distance away from subsystem D immediately modify the

local potential vD(r,t), and vD(r,t) will invoke instantaneous

response in local electron density rD(r,t). For the two-atom

system, if the interatomic distance is finite, and one of

the nuclei is displaced after time t0. The local electrostatic

potential at the other atom is perturbed through the long-

range Coulomb interaction, which results in instantaneous

response in local electron density. However, if the two atoms

are infinitely far away, the response in local electron density is

infinitesimally small. Therefore, in the practical sense the

electron density can neither feel nor determine the external

potential infinitely far away. On the other hand, a finite system

can be very large. In an overall finite system, the environment

surrounding an open subsystem can be properly treated in a

statistical manner, as long as the recurrence time of the

environment is much longer than the characteristic dynamic

time of the subsystem. For instance, for quantum transport

through a nanoelectronic device, the macroscopic but finite

leads have orders of magnitude more degrees of freedom than

the device, and can thus be treated as the electron reservoir

(fermionic bath) for the open system, the nanodevice. Further-

more, for a finite total system, its number of electrons, N, is

known via the initial state F(t0). N together with external field

v(r,t) determine uniquely the Hamiltonian of entire system.

The proof of GS-HEDT is based on the analytical conti-

nuation of real analytic ground-state electron density function

from within a finite subregion to the entire r-space. In contrast,

the validity of TD-HEDT does not require the time-dependent

electron density function r(r,t) be real analytic in r-space

except at t = t0. Instead, it requires the external potential

v(r,t) to be real analytic in space-time (after initial time t0),

which is indeed the case for physical systems, such as systems

made of atoms and molecules. It is often the case that the

initial state F(t0) is a ground state, so that r(r,t0) automatically

possesses the analyticity property based on the lemma in

section II. It is important to emphasize that the real analyticity

of r(r,t0) and v(r,t) is utilized only to establish the formal

one-to-one mapping between rD(r,t) and v(r,t). Although in

principle rD determines completely and uniquely r of total

system, one should not take analytical continuation as a

practical scheme to extend electron density from inside of a

subsystem to the outer region, as it is numerically extremely

unstable, and also unjustified for time-dependent systems

where the validity of real analyticity is unknown. Therefore,

in practice more convenient and reliable approaches are

needed to exploit the explicit or implicit dependence of electronic

properties on rD(r,t).
The TD-HEDT for time-dependent open systems given in

section 3.1 parallels the Runge–Gross theorem for isolated

systems. The real analyticity of external potential in t-space is

adopted implicitly in the proof of the Runge–Gross theorem.

van Leeuwen has extended the Runge–Gross theorem by

explicitly using the real analyticity of time-dependent potential

in t-space.34,35 The extended theorem illustrates a formal

scheme of constructing the single-electron potential of a

reference system, v0(r,t), in which the electron density, r0(r,t),
reproduces exactly that of the original physical system, r(r,t).
At the initial time t0, a set of Sturm-Liouville-type equations

are derived for v0(r,t0) and all the time derivatives @k

@tk
v0ðr; tÞjt¼t0

(k = 1,2,. . .), which are solved from the information of r(r,t)

and initial state, subject to the boundary condition v0ðr; t0Þ ¼
@kv0

@tk
jt¼t0 ¼ 0 at r - N. At a later time t14t0, v

0(r,t1) can be

constructed by an analytical continuation from t0 to t1,

provided that t1 is within the convergence radius of the Taylor

expansion of v0(r,t) at t0. This procedure can be repeated by

propagating the reference system to t1 and taking t1 as a new

initial time. In this way v0(r,t) in all t 4 t0 is established

completely and uniquely.34,35

Extension of the van Leeuwen scheme to open systems is

nontrivial. If a such extension exists for the TD-HEDT, it

would provide a formal scheme to construct v0(r,t) of a

reference system, so that the reference electron density repro-

duces that of the original physical system inside the open

region D, i.e., r0D(r,t) = rD(r,t). Note that v0(r,t) in the entire

r-space is needed to define the Hamiltonian of the reference

system without ambiguity. The same set of Sturm–Liouville-

type equations can be derived for v0 and @kv0

@tk
(k= 1,2,. . .) inside

D. A boundary condition is needed to obtain a unique solution

to these equations. At the initial time t0, v0(r,t0) can be

extracted from the initial state of reference system. However,

it remains unclear how to determine the values of @kv0

@tk
at the

boundary of D. Moreover, even with the Sturm–Liouville-

type equations uniquely solved inside D, the values of v0 and
@kv0

@tk
outside D remain unspecified. In principle any value that

is physically sound can be assigned to these unspecified

quantities, which lead to possible multiple solutions for v0(r,t).

For the uniqueness of v0(r,t), one would presume that v0 and
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@kv0

@tk
are real analytic functions in r-space, so that their values

can be analytically continued from inside D to the entire

r-space. However, real analyticity of v0 and its time derivatives

would necessarily require the real analyticity of time-

dependent electron density in r-space, as v0 and r (r0) are

related by the Sturm-Liouville-type equation.

Alternatively, one could extend the domain for the set of

Sturm–Liouville-type equations from inside D to the entire

r-space, so that v0 ¼ @kv0

@tk
¼ 0 at r - N can be used as the

boundary condition, same as in the van Leeuwen scheme for

isolated systems. Extra pieces of information, the reference

electron density and its time derivatives outside D, are re-

quired to complete the equations. One obvious choice is to set

r0= r and @kr
@tk
¼ @kr0

@tk
(k= 1,2,. . .) outsideD at any time t. This

amounts to treating the whole system as an isolated system,

and the construction of v0 follows exactly the original van

Leeuwen scheme. However, one cannot exclude other possi-

bilities of assigning values to r0 and @kr0

@tk
outside D, as long as

the resulting r0(r,t) is physically sound, correctly normalized, and

continuously connected to r at the boundary of D. Consequently,
for open systems there may exist multiple solutions for v0(r,t),

which yield r0D(r,t) = rD(r,t). To have a unique v0(r,t), extra

constraints need to be imposed. In the TD-HEDT described in

section 3.1 , only those potentials that are real analytic in both

r- and t-space are considered. In contrast, here one cannot directly

impose real analyticity on v0(r,t) since it is determined by the

Sturm-Liouville-type equation. Instead, to have a unique v0(r,t)

that is real analytic in r-space, it is necessary for r0 to be real

analytic in the entire r-space, so that r0 outside D is uniquely

determined by r inside D. This also requires the electron density

of original physical system, r(r,t), always be real analytic insideD.
Based on the above discussions, we conclude that a van

Leeuwen like scheme can be established for open electronic

systems. For any physical open system, a reference system can

be constructed, so that the reference electron density reproduces

exactly the physical electron density within the open system.

Unlike the original van Leeuwen scheme for isolated systems in

which the single-electron reference potential is uniquely con-

structed, for open systems there exist multiple solutions for the

reference potential. To make such a construction scheme an

extension for the TD-HEDT theorem, an extra constraint, real

analyticity in r-space, needs to be imposed on the reference

potential. However, this would necessarily require the time-

dependent electron density be real analytic in r-space, for which

a rigorous mathematical proof is still in pursue.

It is worth pointing out that piecewise time-analytic physical

potentials are admitted in van Leeuwen schemes for both

isolated and open systems. This is because the isolated non-

analytic time (say t1) can be taken as a new initial time, and the

corresponding new initial state is obtained by system evolution

under the external potential which is time-analytic until t1.

From the new initial state, the construction of reference

potential can be continued to a later time.

C. Implication for practical calculations

Noting the formal analogy between the TD-HEDT and

Runge–Gross theorem, we can define an action integral

functional, A[rD(r,t)], by following the original Runge–Gross

paper3

A½rD� ¼
Z t1

t0

dthF½rD�ji@t � ĤðtÞjF½rD�i: ð8Þ

Here, F[rD] is the time-dependent many-body wavefunction,

and Ĥ(t) is the many-body Hamiltonian. A[rD] is uniquely

determined by rD, since the phase associated with the

merely additive time-dependent constant potential cancels

out automatically. Applying the stationary action principle,

the exact electron density function on subsystem D can be

obtained by solving dA/drD(r,t) = 0. Note that the electron

density on total system is also completely determined by

rD, i.e. r(r,t) = r[r,t;rD], based on the TD-HEDT. In practice,

one can also construct universal functionals such as Axc[rD]
in the same fashion as in ref. 3, and develop a Kohn–

Sham scheme for calculations of realistic open systems. The

dependence of Kohn–Sham effective potential on rD(r,t)
is also universal under any external field. It is worth mention-

ing that the definition of action functional A[rD], eqn (8),

leads to the well-known causality paradox. A number of

approaches have been proposed to resolve this paradox,

such as van Leeuwen’s action functional established within

Keldysh formalism,36 Mukamel’s unified description of

density response and spontaneous fluctuation in Liouville

space,37 and Vignale’s correction term to the action functional

derivative.38

The TD-HEDT applies to the same phenomena and/or

properties as those intended by Runge–Gross theorem, i.e.,

where the electron density, in principle, provides the minimal

amount of information necessary for establishing a one-to-one

mapping with the scalar external field. This is true when the

interaction between electrons and magnetic field is negligible.

However, in the presence of an appreciable magnetic field,

electron density alone becomes insufficient to determine the

system properties. In such cases, extra system information,

the current density, is needed. The above theorem for TDDFT

should be generalized into the framework of time-dependent

current-density-functional theory (TDCDFT).39,40 Progress

has been made along this direction. Di Ventra et al. have

developed a TDCDFT method for open systems via the real-

time propagation of a stochastic Schrödinger equation.41

Yuen-Zhou et al. have proposed a TDCDFT Kohn–Sham

scheme for generalized open systems.42

Without the HEDT, to investigate an open system in the

DFT framework, one has to treat the total system (open

system along with its environment) as a whole isolated entity,

and apply Hohenberg–Kohn–Sham’s ground-state DFT

and/or Runge-Gross’s TDDFT. In practice, this presents a

major obstacle in simulating realistic open systems, due to the

enormous number of degrees of freedom in the environment.

It is thus ideal to establish DFT and TDDFT for open systems

based on the HEDT, since in principle it only requires the

electron density function inside the open system of primary

interest, which means that the amount of necessary informa-

tion required is greatly reduced.

We have developed a practical TDDFT equation-of-motion

(EOM) formalism, in which the basic variable is the
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Kohn–Sham reduced single-electron density matrix of the

open system D, rD(t).
22 The form of the EOM is as follows:

i _rD ¼ ½hD½t; rDðr; tÞ�; rD� � iQ½t; rDðr; tÞ�: ð9Þ

Here, hD[t;r(r,t)] is the Kohn–Sham Fock matrix of the

open system, including the XC potential as a functional of

rD(r,t); and Q[t;rD(r,t)] is also a functional of rD(r,t), which
describes the dissipative interaction between the open system

D and its environment. Eqn (9) is formally closed, since

rD(r,t) = rD(r,r;t). If the dissipation functional, Q[t;rD(r,t)],
is omitted, eqn (9) reduces to the TDDFT-EOM for the

isolated system D. Fourier-transforming the EOM for an

isolated system into frequency domain while considering only

the linear response, the conventional Casida’s equation43 is

recovered.44

In the context of time-dependent quantum transport, practical

schemes for Q[t;rD(r,t)] have been developed by using non-

equilibriumGreen’s function formalism22 or hierarchical quantum

dissipation theory.23 The TDDFT-EOM approach based on

eqn (9) has been applied to simulate the transient electron

transport through carbon-nanotube-based nanoelectronic

devices.45,46

IV. Concluding remarks

To conclude, in this paper we have proved the HEDT for

ground-state and time-dependent open electronic systems,

respectively. The HEDT establishes a one-to-one mapping

between electron density inside the open system and the

external potential, and hence affirms the existence of rigorous

DFT (TDDFT) for ground-state (time-dependent) open

systems. While the GS-HEDT is based on real analyticity

(or ‘‘holographic’’ property) of ground-state electron density

function, the TD-HEDT does not require the time-dependent

electron density to be real analytic in space-time. Instead, the

TD-HEDT only requires the electron density at initial time is

real analytic in r-space, which is obviously true when the initial

state is a ground state. The HEDT lays the foundation of

DFT/TDDFT methods for open systems, and provides a

rigorous theoretical framework, in which accurate and efficient

practical methods can be developed for the simulations of

realistic open systems.
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