
Ab initio simulation of UV/vis absorption spectra for atmospheric

modeling: method design for medium-sized molecules

Anna Melnichuk,* Ajith Perera and Rodney J. Bartlett

Received 28th January 2010, Accepted 16th April 2010

DOI: 10.1039/c001906b

A procedure is presented to obtain accurate absorption cross-sections for dissociative excited

states. The focus is the ability to approximate many vibrational degrees of freedom while

maintaining a minimal computational time. The vibrational Hamiltonian for bound and unbound

surfaces is solved within a discrete variable representation (DVR) framework. Properties and

energies of excited states are computed using electron correlated singles and doubles equation-of-

motion (EOM-CCSD) and similarity transformed equation-of-motion (STEOM-CCSD) methods

as implemented in ACESII. The novelty of this procedure is that it is designed to work for

medium-sized molecules (size limited by the choice of electronic structure method, not vibrational

degrees of freedom) with one or more photodissociation pathways. The theoretical absorption

cross-section of NaOH is presented as a small-scale example.

1 Introduction

The photodissociation rates of volatile organic and inorganic

compounds are critically important in modeling the composition

of the atmosphere, in addressing global warming, ozone

depletion, and other phenomena. The absorption cross section

in the spectral range of solar flux is needed to calculate the

photodissociation rate constant

J =
R
lflslFldl (1)

where l is the incident wavelength, s is the absorption cross

section, f is the quantum yield of photodissociation and F is

the solar actinic flux.

The photodissociation rate constant and its dependence on

temperature can be measured provided a pure sample is

obtained and the absorption cross section at various temperatures

is known.1,2 The pure sample condition becomes increasingly

difficult to satisfy as the size, complexity and stability of the

compound in question impede attempts to synthesize it.

Currently, the absorption cross sections that are used to

determine the photodissociation rates of complex or unstable

molecules are unknown and are crudely estimated. For example,

the photodissociation rate values for organic peroxides are taken

from the absorption cross sections of hydrogen peroxide and

methyl peroxide simply due to their experimental availability,

bypassing the difficulties in obtaining the experimental cross

sections of the actual molecules.3 Using estimated values as

opposed to the true values can lead to serious inaccuracies in

the steady state models of the atmosphere.

Normally, when an absorption cross section is calculated

with ab inito methods a vibronic model can be used to include

some molecular motion. In order to compute a photodissociation

absorption cross section for relatively large species several

complications of the vibronic model need be resolved. None of

the currently available software can properly handle the

dissociative excited state surface, and few can correctly handle

a torsional potential since it does not naturally lend itself to a

quadratic or quartic expansion but rather should be expanded

with a set of trig functions.4,5 Even if this model is made to

work with the types of PESs involved in photodissociation,

there is still the aspect of finding the roots of a very large

matrix which may not be sparse when there are many strong

vibronic couplings present.

The most widely used programs that have the capability to

simulate an absorption spectrum are VIBRON6 and

HOTFCHT.7 All of these programs require a calculation of

the harmonic normal modes of the absorbing state which

works well enough for excited state potential energy surfaces

which have a stationary point, but do not perform well for

dissociative potential energy surfaces. The LEVEL8 program

works for bound and quasi-bound potentials and has been

successfully applied to a variety of diatomic molecules.

We propose a method for computing absorption cross

sections for dissociative surfaces which are geared toward

describing a larger molecule with more than 10 vibrational

degrees of freedom. As an illustration of the methodology we

chose a small molecule, sodium hydroxide. Photodissociation

of gaseous NaOH as well as other sodium oxide compounds is

an important atmospheric process in the mesosphere,9 and the

absorption cross sections leading to photodissociation have

been obtained experimentally using flame absorption10 and

laser spectroscopy.11 The pertinent experimental results are

from the laser spectroscopy study of Self and Plane 2002. No

high level ab inito study of the absorption cross section of

NaOH has been done previously.

In this study we use electron-correlated size extensive

coupled cluster methods12–21 for all of the geometry optimiza-

tions and excited state calculations. We will be comparing

results from the equation-of-motion singles and doubles

method, EOM-CCSD,22 the similarity transformed equation-

of-motion method, STEOM23 and direct energy differences

between states of different symmetries, as implemented in

ACES II,24 using a variety of basis sets.
Quantum Theory Project, University of Florida, Gainesville,
FL 32601. E-mail: melnichu@qtp.ufl.edu

9726 | Phys. Chem. Chem. Phys., 2010, 12, 9726–9735 This journal is �c the Owner Societies 2010

PAPER www.rsc.org/pccp | Physical Chemistry Chemical Physics

D
ow

nl
oa

de
d 

on
 1

7 
A

ug
us

t 2
01

0
Pu

bl
is

he
d 

on
 1

5 
Ju

ne
 2

01
0 

on
 h

ttp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
00

19
06

B
View Online

http://dx.doi.org/10.1039/C001906B


2 Methods

The discrete variable representation (DVR) method25 has been

used to solve the vibrational Hamiltonian for a variety of

small chemical compounds provided a potential energy surface

is known with up to N = 16 vibrational degrees of

freedom.26–28 It can be used to find vibrational wavefunctions

on a dissociative surface.29,30 DVR works by a numerical

discretization of the kinetic energy operator and the potential

into N segments. The detailed derivation of the DVR using the

Fourier grid Hamiltonian method can be found elsewhere.29,31

The discretized form of the kinetic energy operator is shown

below where m is the reduced mass and Dx is the size of the

grid on which the potentials are placed.

Tii0 ¼
�h2

2mDx2
ð�1Þði�i

0Þ �
p2
3

for i ¼ i0

2

ði�i0Þ2 for iai0

8<
: ð2Þ

The Hamiltonian that is diagonalized is shown below where V

is the potential function used to fit the ab intio data points. The

Hamiltonian below is in atomic units.

Hii0 ¼Tii0 þ Vii0dii0 ¼
ð�1Þði�i

0Þ

2dx2
�

p2
3

for i ¼ i0

2

ði�i0Þ2 for iai0

8<
:

9=
;þ Vii0dii0

ð3Þ

The results are sensitive to the resolution of the grid. Since this

is a very fast calculation, it is easy to vary the number of grid

points until the eigenvalues in the energy range of interest

converge. In this work, 501 grid points are enough to reach

convergence.

One can rewrite eqn (1) to include the temperature

dependence of the photodissociation rate constant:

J =
R
lflsl,TFldl (4)

where the temperature dependence is added via the absorption

cross section term. The absorption cross section can be

written as:

sðl;TÞ ¼
XK
k

fhCkjmjC0i
XM
m¼0

XNðTÞ
n¼0
hFm

k jFn
0ig ð5Þ

where m is the electronic transition moment obtained from

the electronic wavefunctions C, and F are the vibrational

wavefunctions. The summations are over K-electronic

excited states, M-vibrational states on the excited PES and

N-vibrational states on the ground PES where N(T) is the

maximum occupied vibrational levels at temperature, T. The

temperature dependence of the absorption cross section comes

from varying the population of the ground state vibrational

energy levels. EOM-CCSD is used to compute the electronic

transition moment and a locally developed DVR code is used

to compute the Franck–Condon integrals. Emphasis is also

placed on creating a ‘‘black-box’’ program such that any user

familiar with ab initio software can obtain a photodissociation

cross section for his or her molecule of choice.

An alternative way to find Franck–Condon integrals on a

dissociative potential can be accomplished by constructing

the ground state wavefunction and propagating it on the

dissociative surface.32 There is not evidence yet to suggest

one approach is better than the other, though this alternative

will be incorporated as an option for the user.

In order to facilitate comparison between the experimental

and the theoretical absorption cross sections it is best to

express all intensities as unit-less oscillator strengths as

opposed to transition dipole moments. The relationship

between the two quantities is:

f0k ¼
8p2mecgn

3he2

� �
o0km0k ð6Þ

o0k is the excitation energy, m0k is the dipole strength, c is the
speed of light, e is the elementary charge, me is the mass of an

electron, h is the Planck constant, and gn is the electronic

degeneracy of the excited state.

The experimental data may also be expressed as the

oscillator strength33 provided that the molar extinction

coefficient is known.

f0k ¼
2303mec

2

pNAe2

� �
F

Z o2

o1

edo ð7Þ

Here, NA is Avogadro’s number, F is the correction for the

refractive index, which can be set to 1 since this applies to a

diffuse gas, and e is the molar extinction coefficient in the units

of L/mol�cm. The quantities obtained from eqn (6) and (7) are

the experimental and theoretical vertical excitation intensities

which may be compared and the agreement is known to be

good based on examples currently found in the literature.34–36

No comprehensive benchmark studies of calculated oscillator

strengths at the coupled-cluster level of theory have been

presented but will be forthcoming.

Care must be taken to properly combine the electronic

structure results (oscillator strength) with the DVR results

(Franck–Condon) such that both are expressed as a function

of o and lie on the same grid. There are several ways to achieve

this. One way is described here.

Solving the Hamiltonian as written in eqn (3) will produce

the following set of Franck–Condon integrals:

FCim ¼
X
j

fmjfji

( )2

ð8Þ

where fmj is the eigenvector corresponding to the mth energy

level of the ground state potential energy surface and fji is the

eigenvector corresponding to the ith energy level of the excited

state potential energy surface. These integrals are normalized

such that
P

iFCim = 1. The difference of eigenvalues for the

ground and excited state are used to build the oi vector:

Ei � Ek = oi.

The oscillator strengths are calculated as a function of

geometry for each electronic transition. However, only the

value at the equilibrium geometry corresponds to the experi-

mental value determined using eqn (7), which is an integral of

the cross section. What is needed is a way to map the oscillator

strength value to the area of the cross section, preferably in cgs

units. First, rearrange eqn (7) to reflect the cgs units:

f0k ¼
mec

2

pe2

� �
F

Z o2

o1

sdo ð9Þ
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where s is the absorption cross section in cm2/molecule. Now,

rearrange to solve for s discretely:

~si ¼
pe2gn
mec2

� �
Fi

oiþ1 � oi
ð10Þ

Note that this ~s is a discrete electronic part of the total s. The
o in the denominator comes from the eigenvalues of the DVR

Hamiltonian. The oscillator strength is also discrete and

obtained from ab initio calculations which is why gn appears

in this equation. At this point, Fi is the oscillator strength

which corresponds to each m - i transition and is estimated

by a weighted average oscillator strength,
�
fi:

�f i ¼
P

j fi � jfmjfjijP
j jfmjfjij

ð11Þ

Combining eqn (10) and (11) allows the electronic part of s to

be placed on the same grid as the Franck–Condon part of s
such that the largest contribution to Fi arise from the portions

of the oscillator strength surface with the greatest

Franck–Condon overlap. The total absorption cross section

for each electronic transition which can be compared with

experiment is then obtained by combining the electronic and

vibrational parts:

s0k ¼
X
i

si �
X
m

cTmFCim ð12Þ

The subscript m will be greater than one when more than one

ground state vibrational energy level is populated. The

population of the m-states are weighted by a set of

temperature-dependent constants cm, which correspond to

the Boltzmann distribution at a given temperature. In the case

of T= 0 K, m will always be set to 1 corresponding to the first

vibrational level.

The final cross sections for each kth excited state are to be

convoluted to obtain a theoretical spectrum in the desired

spectral range.

In order to calculate the absorption cross section for large

molecules several simplifications need to be made. The

recurring theme is trying to remove as many non-vital

vibrational degrees of freedom as possible. These assumptions

are explained below and will be illustrated throughout the

NaOH example.

I Consider the dissociative coordinate as the primary

coordinate

This is the obvious choice since we are initially interested in

those cross sections which lead to dissociation. This method

can be extended to use any degree of freedom as the primary

coordinate.

II Compute the absorption cross section of the primary mode

This will be the zeroth-order solution. The discrete variable

representation method (DVR) is used to compute the

Franck–Condon overlap integrals for a dissociative mode.

III Consider only those vibrations which are significantly

thermally populated

In practice, this would involve a subset of vibrations of

energy equal or lower than the energy of the stretch along

which dissociation takes place. By equal we mean within some

tolerance which is optimal for a given temperature. For

example, if one is interested in going to very high tempera-

tures, modes higher in energy than the primary mode should

be considered.

IV Determine the impact each secondary mode has on the

excitation energies of interest as well as the corresponding dipole

transition moments

If the impact is less than some tolerance, remove that

normal mode from the subset. This will now define the subset

of secondary modes. Any degree of freedom which is not

explicitly a part of the secondary modes’ subset will be relaxed

in all partial geometry optimization calculations so that any

small effect of these modes can be reflected in the final answer.

V Add the effects of other degrees of freedom by perturbing

the primary mode ground state and excited state potentials

This can be done by extrapolating or fitting the curves used

to determine the impacts in step IV.

VI Temperature effects can be introduced at this stage

This step involves redistributing energy quanta among the

vibrational levels of the primary mode and the various

secondary modes.

One consistency check for the procedure outlined above is

to use eqn (7) or (9) to find the oscillator strength once the

calculated absorption cross section is obtained. If the fits to the

PES are adequate and the grid is fine enough, the fDV R should

be close to the calculated f for each transition. Furthermore,

improving upon fits to the potentials (by using more points or

a better analytical fitting function for example) as well as

increasing the resolution of the grid should converge the fDV R

to the correct value.

3 Results and discussion

3.1 Results I: electronic structure

The starting point for calculating an absorption spectrum is to

begin with single point vertical excitation energies. From the

energy range of the experimental spectrum in Fig. 1, we see

that three low energy excited states are required to create a

theoretical spectrum in the near UV spectral range. These

states, their symmetry and character are listed in Table 1. The

error bars from the experimental data show a great deal of

uncertainty in the intensity especially in the peak at 220 nm. In

this example the agreement between the calculated and the

theoretical oscillator strength is not as good as it has been for

other molecules found in the literature34–36 for transitions to

bound excited states. A high resolution absorption cross

section of NaOH would be desirable to obtain for comparison.

As it presently stands, the calculated oscillator strength is

about two times greater than the experimental value.

The geometry is optimized at the CCSD level of theory

using the POL basis set.37 The RNaO = 1.9493 Å and ROH =

0.9589 Å. The best available experimental NaOH geometry38

is RNaO = 1.9500 Å. This geometry is also in good agreement

with the geometries listed in the work of Lee et al. who employ

a variety of high-end methods and basis sets39 which suggests

that CCSD/POL is adequate to proceed as far as geometry is

concerned. Keeping in mind that the method outlined below is

geared for larger molecules, the best optimized geometry will

often be a DFT geometry done with a modest basis set.

9728 | Phys. Chem. Chem. Phys., 2010, 12, 9726–9735 This journal is �c the Owner Societies 2010
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Excitation energies calculated using the EOM-CCSD

method and POL basis set have proven to be a good choice

for describing excitation energies and transition dipole

moments.37 Since NaOH is a small molecule, we are also able

to calculate the spectrum with the aug-cc-pVXZ (X=D,T)40,41

basis sets of Dunning and with the WMR42 basis set of

Widmark. This may not be possible to do for the large

molecules that are our objective, so we will always present

the EOM-CCSD/POL result as an expected electronic

structure level of accuracy along with any energy corrections

made to it based on the results from a more complete basis set

calculation. The best results are shown in Fig. 1 and a

comprehensive list of results is summarized in Table 2.

It should be noted that for both EOM and STEOM calcula-

tions the mean average deviation is on the order of 0.1 eV.

However, the error in the calculated absorption cross section is

Fig. 1 The POL basis set does a reasonable job of describing the Rydberg excited states in the 220 nm region but it underestimates the energy gap

of the valence state. The results from EOM and STEOM calculations with the WMR basis are in good agreement with each other as well as with

the experiment. The dipole transition moments remain largely unaffected by the choice of basis set. Vertical excitation intensities are approximate

but reflect the theoretical relative intensities.

Table 1 Characteristics of the low energy excited states of NaOH. The calculated values for oscillator strength shown here are multiplied by the
applicable electronic degeneracy value. Since the experimental peak from states B and C is unresolved, it needs to be compared to the sum of
calculated oscillator strengths for B and C states. The experimental values were obtained from the results reported by Self and Plane

Calculated excited states for NaOH

State Symmetry Character Type
Electronic
degeneracy

EOM-CCSD/
POL (nm) f calc. f exp.

A 1S(0) -1 P(1) Valence p - s* 2 344.5 0.054 0.017
B 1S(0) - 1P(2) Rydberg p - s* 2 239.2 0.092 0.060
C 1S(0) - 1S(1) Rydberg p - p* 1 227.3 0.026

Table 2 Detailed excitation energy using the EOM-CCSD and STEOM methods with a variety of basis sets. Mean average deviation (MAD)
values and experimental values of Self and Plane are also shown

Near-UV excitation energies for NaOH

EOM-CCSD

State

POL aug-cc-pVDZ aug-cc-pVTZ WMR MAD Exp.

eV nm eV nm eV nm eV nm eV nm nm

A 3.60 344.50 3.65 340.10 3.81 325.70 3.84 322.70 0.10 9.00 313
B 5.18 239.20 5.18 239.30 5.34 232.10 5.42 228.30 0.10 4.50 230
C 5.45 227.30 5.45 227.50 5.61 220.90 5.70 217.90 0.10 4.00 225

STEOM-CCSD

State

POL aug-cc-pVDZ aug-cc-pVTZ WMR MAD Exp.

eV nm eV nm eV nm eV nm eV nm nm

A 3.53 351.10 3.58 346.50 3.76 329.40 3.78 327.90 0.11 10.10 313
B 5.15 240.60 5.16 240.20 5.30 233.70 5.41 229.30 0.10 4.40 230
C 5.26 235.60 5.44 227.70 5.59 221.70 5.66 218.90 0.14 5.70 225
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sensitive to the spectral range: the lower energy wavelengths

carry a higher error than the higher energy wavelengths as

reflected in the MAD values for the energies in nanometer

units. Since there are no significant differences between

STEOM-CCSD and EOM-CCSD methods for the excited

states considered in this work, EOM-CCSD/POL is used in

all subsequent calculations with the final energies of the calcu-

lated spectrum shifted to the best results from Table 2. The

energy adjustments for the absorption peaks are: �21.8 nm for

the A state,�9.9 nm for the B state and�9.4 nm for the C state.

There is no reason to suppose that doubly excited states are

significant contributors since the average excitation level

(AEL)22 is not greater than 1.07 in any of the EOM-CCSD

calculations for the excited states considered.

3.2 Results II: absorption cross section model

This portion of the results section will illustrate the validity

of assumptions made in the methodology section using NaOH

as an example.

I Consider the dissociative coordinate as the primary

coordinate

Fig. 2 shows the behavior of the low energy excited states as

a function of distance between the sodium and oxygen atoms.

Eleven single point calculations are performed for the dis-

tances ranging from 1.7 Å to 5.0 Å. The energy surfaces are

computed using CCSD and EOM-CCSD methods with a

restricted Hartree–Fock (RHF) reference in the vicinity of

the equilibrium geometry and an unrestricted Hartree–Fock

(UHF) reference past the Na–O distance of 2.5 Å at which the

bond begins to break. Energy data points at 2.5 Å are

computed using both RHF and UHF reference functions

and an average value was taken to fill in the small disconti-

nuity. The CCSD UHF-RHF energy gap at Na–O distance

of 2.5 Å for the ground state PES is 0.23 mH, for the excited

state A it is 4.2 mH, and for states B and C it is 7.2 mH.

The valence state is purely dissociative and the Rydberg states

are weakly bound. The ground state surface is fit with a Morse

potential with the unbound limit set to the sum of the calculated

energies of Na and OH radicals (shown as a point at 6.0 Å in

Fig. 2). The excited state surfaces are fitted with eqn (13) which

allows a good fit for a fully dissociative surface, as well as for a

weakly bound surface by setting parameter B to zero.

V(x) = A + Bx�3 + Cexp(�Dx) (13)

The R2 values of the fits are greater than 0.998 with the worst

fit being the Rydberg states due to a small energy gap at

the UHF-RHF junction on the energy surfaces. The dipole

transition moments are fit using a 6th order polynomial.

II Compute the absorption cross section of the primary mode

At this point, a zeroth-order approximation to the spectrum

may be determined. Since the primary mode chosen was a

zeroth-order dissociative mode, the theoretical spectrum will

have the form of a continuum cross section centered at the

vertical excitation of the equilibrium geometry augmented by

the dipole transition moment intensity. One can also make a

different choice for the primary mode and let it be the bending

coordinate, in which case the spectrum will have fine structure

of the vibronic progression but lose the broad continuum

peak. Since the experiment was not done at a high enough

resolution to yield vibronic peaks and we are interested in

photodissociation the choice of primary mode remains the

Na–OH stretch.

Using the above-mentioned fitting parameters for the

energy and dipole strength surfaces the cross section is

calculated using a DVR program implemented in FORTRAN

specifically for this purpose. The resulting cross section is

shown in Fig. 3.

The energy adjustments from POL to the WMR basis set

are as follow: A (�21.8 nm), B (�9.9 nm), and C (�9.4 nm).

These energies will be used for the rest of the data.

III Consider only those vibrations which are significantly

thermally populated

The calculated absorption cross section coming from the

primary mode alone is in fairly good agreement with the

experimentally obtained cross section. It may be sufficient

for this molecule. To further improve the results we need to

look at the other vibrational degrees of freedom and what

(if any) effect they have on the cross section.

Including the effects of other vibrational modes to the

dissociative mode will broaden the energy range of each peak

as well as make the intensities more representative of what is

experimentally observed. For example, this step would be

vital in getting an accurate absorption cross section for an

electronically forbidden excited state which is vibronically

allowed.

Fig. 2 Energies and dipole transition moments of NaOH along its dissociative coordinate. Solid lines for RHF solutions and dashed lines are

UHF solutions. The points at 6.0 Å represent the total energies of the dissociated products. The are no surface crossings observed.
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Vibrational energies can be found in two ways: 1) harmonic

frequencies are calculated using ACES II and 2) anharmonic

frequencies are determined from DVR. These values are

relatively consistent with each other as well as with experi-

mental data as listed on Table 3. Furthermore, these values are

consistent with the results of Lee and Wright who employ a

variety of methods and basis sets. The only exception is the

experimental bending mode which agrees poorly with calcula-

tions in this paper and the values calculated in the paper of Lee

and Wright. The experimental frequency should be less than

the computed harmonic value and this discrepancy should be

reconciled in the future. However, this small difference has no

significant effect on the current analysis.

The bending mode is the only low energy mode in this

molecule and it will be considered in the next steps. The OH

stretching mode is too high in energy to be significantly

populated and have an impact on the absorption cross section

so it will not be included. The stretching mode has consider-

able anharmonic character so that the Morse potential fit to

the ground state PES provides better agreement with the

experimental frequency than with the ab initio result.

The bending mode is fit to a quartic potential. The difference

in vibrational energy frequencies between the ab inito and the

DVR values is 35 wavenumbers for the stretching mode which

is attributed to anharmonicity of the PES. The bending mode,

better described by a harmonic potential, yields a much

smaller error between the ab initio and the DVR values.

Energy errors for vibrational modes on the order of 50

wavenumers introduce less than 0.5 nm error to the absorption

cross section in the UV/vis spectral range.

IV Determine the impact each secondary mode has on the

excitation energies of interest as well as the corresponding dipole

transition moments

In case of NaOH, the bending mode is the only one selected

to be in the secondary-mode set. For larger molecules, there

will be more low-energy vibrational degrees of freedom to

consider so further analysis of normal modes is needed to

identify the important degrees of freedom. Inclusion of

vibrational modes which strongly couple to the excited state

potential energy surfaces is vital for an accurate absorption

cross section. Emphasis is placed on the screening being both

quick and accurate to minimize the number of ab initio

calculations that need to be performed. This involves picking

each mode in the second set and calculating a few key points

along its surface. For each set of points the impact of the

molecular geometry deformation along a particular mode on

the excitation energy and the dipole transition moment is

determined.

The number of actual calculations can be optimally

minimized to a few key points on a surface: cis and trans

conformers for dihedral rotation modes, a � 30 degree

deformation in each direction is appropriate for bending

modes and � 0.5 Å for stretching modes. Since this approach

is still in the testing stage, the above parameters are not to be

Fig. 3 These cross sections are obtained from the FC overlap between the ZPE vibrational wavefunction of the ground state and the dissociative

continuum of the exited states weighed by the dipole transition moment. The surfaces are computed at the EOM-CCSD/POL level of theory and

the resulting cross sections are shown as dashed lines. Only the energies are adjusted to the best calculated values from Table 2

Table 3 Characteristics of the vibrational frequencies of NaOH. CCSD/POL frequencies were done at the CCSD/POL optimized geometry. The
CCSD/POL potential was used to compute the DVR frequencies

Calculated harmonic and anharmonic vibrational modes for NaOH

Mode Symmetry Type CCSD/POL (cm�1) DVR (cm�1) Exp.(cm�1)a Comments

1 P Bend 272.31 284.7 337 Include.
2 S Na–O Str. 559.83 526.6 540 Primary mode.
3 S O–H Str. 3969.79 — 3637 Exclude.

a Experimental data from Acquista et al.43
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taken as absolutes but as a staring point. Symmetry and

breaking thereof will need some attention paid to it since

symmetric modes and asymmetric modes have different

behaviors. Furthermore, there are special vibrational modes

that need to be taken into consideration like the umbrella

mode of ammonia or the ring-breathing mode of benzene.

The first step is to get a list of vibrations which have the

most impact and to exclude the ones that have little or no

effect. If there is a reason and capability to do more points on

the surfaces which matter most, then computer time may be

allocated more efficiently to get better surfaces for modes

which have a greater impact. Table 4 shows how this

procedure works for the bending mode of NaOH.

It is clear from Table 4 that the error in energy of the zeroth-

order cross section (Fig. 3) is no grater than 10.8 nm. The

lower energy valence excited state is most affected by the

bending mode and the errors in the Rydberg states are more

tolerable. The dipole transition moment for the A and B states

is significantly affected by the bending mode which would have

impact on intensities. Fig. 4 shows the energy surfaces and the

dipole transition moment surfaces as a function of the bending

mode while keeping the RNaO at it equilibrium value and

relaxing the ROH.

For a small molecule such as sodium hydroxide it is easy to

compute several more points along the bending mode, but this

is not necessary to do since we are only interested in the range

of the potentials which are close to the equilibrium. If a high

temperature spectrum were of interest where a significant

fraction of higher vibrational levels are populated, then it

would make sense to have more points. The agreement

between the DVR vibrational energy for this mode and the

ab initio frequency suggests that three points provide a good

enough fit. A large discrepancy between the energy values

would be a signal to do more points for a better potential.

V Add the effects of other degrees of freedom by perturbing

the primary mode ground state and excited state potentials

The fitting parameters of the energy surfaces and the dipole

transition moments for excited and ground states are used to

perturb the zeroth-order dissociative state and recalculate

Franck–Condon overlaps. This calculation is done at

two points as illustrated in Fig. 5: the original equilibrium

Table 4 The impact the bending normal mode has on the excited state potential energy surfaces and the dipole transition moments. Impacts for
excitation energies are calculated by taking the standard deviation. The dipole transition moment impacts are calculated by taking the ratio of
equilibrium value (DTM180) to the other values (DTM120 and DTM240) and then taking the standard deviation of the ratios. The equilibrium
geometry values are those where the angle is 180 degrees and deviation from equilibrium breaks the electronic degeneracy of the A and B states

Bending mode impact on excitation energy and dipole transition moment

Excited State A B C A0 B0 Na–O–H Angle

Excitation 325.8 237.8 232.1 349.7 245.9 120
Energy 344.5 239.3 227.4 344.5 239.3 180
(nm) 325.8 237.8 232.1 349.7 245.9 240
Impact (nm) 10.80 0.86 2.71 3.00 3.81

Dipole 0.66 0.03 0.13 0.34 0.02 120
Transition 0.30 0.05 0.19 0.30 0.05 180
Moment (a.u.) 0.66 0.03 0.13 0.34 0.02 240
Impact 0.69 0.23 0.18 0.08 0.35

Fig. 4 Energies and dipole transition moments of NaOH along its bending coordinate. The points which are listed in the table are the three points

encompassed by the vertical lines. Several more points were done for completeness but were not necessary for accuracy.

Fig. 5 This is a cartoon of a vibrational wavefunction in a potential

(in this case the potential of the bending mode). The change in the

surface energy between the equilibrium geometry and the geometry of

the half-maximum is what is added onto the zeroth-order dissociative

potential for the ground and excited states. The dipole strength

potential is multiplied by the fraction of the DTMHalf�Max/DTMMax.
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geometry overlap (which corresponds to the maximum of the

vibrational wavefunction) is given a weight factor of 0.50 and

a weight factor of 0.25 is assigned to the two half-maximum

points. Due to the symmetry in the bend, this distribution

simplifies to 50% of the intensity coming from the point at the

maximum and another 50% of the intensity coming from one

of the points at the half-maximum.

Due to the breaking of the electronic degeneracy for states

A and B, the distribution is 50% of the intensity coming from

the point at the maximum, 25% of the intensity coming from

one of the points at the half-maximum from one symmetry

(A and B) and another 25% of the intensity coming from one

of the points from the other symmetry (A0 and B0). Finally, the

peaks are convoluted into one cross section for each excited

state as shown in Fig. 6. The resulting convoluted spectrum is

correct in the 1st order. Taking more points: 66%/33% Max

would be 2nd order, 75%/50%/25% would be 3rd and

so forth.

VI Temperature effects can be introduced at this stage

The spectrum in Fig. 6 does not have any temperature

effects since only the first vibrational levels are populated.

Temperature effects may be added by putting quanta into

higher vibrational levels and recalculating the weights.

No extra time is required for this as all Franck–Condon

integrals are calculated at once. At 200 K the contribution

from the second ground state vibrational level of the primary

and the secondary modes to the absorption cross section is

only about 10% of the total intensity which is not very

noticeable. Only when the temperature used in determining

the Boltzmann distribution is raised above 500 K does any

significant change in peak intensity occur.

According to Self and Plane the significant increase in

intensity for the peak at 220 nm is due to the increase in the

Franck–Condon overlap. This assertion is based on the fact

that their Configuration-Interaction Singles calculation

(CIS/6-311+G(2d,p)) of the geometries of ground state and

excited state showed that while the ground state in linear, the

excited state is bent. In the present work, the ground state and

excited state potential energy surfaces in Fig. 4 show a lack of

a true double minimum on the excited state PESw which means

that a linear geometry is preferred for the excited states in the

energy range of the absorption cross section. Furthermore, the

dipole strength for excitations B and C tends to diminish as a

function of angle thereby reducing the total intensity

(as opposed to increasing it). This is in support of the

conclusion that hot bands originating from populating the

bending mode will not lead to a significant increase in intensity

for B and C states, but, possibly for A state. The higher

intensity cross section observed by Self and Plane at 300 K

may not be entirely due to a temperature dependence but to

Fig. 6 The convoluted cross sections are shown in thick lines. This is the 1st order spectrum.

Table 5 Oscillator strengths calculated from the DVR cross sections. The single point values correspond to oscillator strengths from
EOM-CCSD/POL calculation at the CCSD/POL equilibrium geometry. The ZPE values correspond to the cross section shown in Fig. 3 and
ZPE+P1 correspond to the cross section shown in Fig. 6. The convoluted values correspond to the cross section shown in Fig. 7

Oscillator strength consistency check

State Single Point ZPE ZPE+P1 Convoluted f exp. (200 K) f exp. (300 K)

A 0.054 0.051 0.051 0.051 0.017 0.023
B 0.092 0.095 0.084 0.108 0.060 0.106
C 0.026 0.027 0.024

w The energy surfaces in Figure Fig. 4 were calculated with the
constraint that RNaO is at it equilibrium. These surface were recom-
puted such that RNaO and ROH were allowed to relax and no double
minimum was found. The geometry of State B was optimized using a
Two-Determinant coupled cluster method44,45 with POL basis set and
was found to be linear.
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the fact that it is a higher resolution experiment and slightly

more accurate.

The consistency check described in the Methods section is

done and results presented in Table 5. It appears that as the

peaks get broadened, the integrated oscillator strengths

become slightly lower but no major discrepancies are noted.

The final theoretical spectrum is presented in Fig. 7.

4 Discussion

There is good agreement for energies between the experimental

absorption cross section and the calculated cross section for

both peaks of experimental NaOH spectrum. The low energy

excitation is more prone to error since any variation in the

excitation energy due to choice of basis set was greatly

amplified by the fact that the spectral range is in the near

UV. This will be a recurring theme in atmospherically relevant

molecules and special attention needs to be paid to get these

low-energy excitations correctly.

The disagreement in intensity between theoretical and

experimental spectra is more pronounced than the disagree-

ment in energies. It stems from the fact that the calculated

single point vertical excitation oscillator strengths do not

match (refer to Table 5). Historically the agreement of

oscillator strengths has always been good. The explanation

of Self and Plane for the temperature dependence due to hot

bands is not well supported by this study, so we are more likely

to conclude that the increase in intensity observed from 200 K

to 300 K is in fact due to the 300 K experiment being somehow

more accurate. Table 5 includes the oscillator strengths from

the 300 K experiment and shows that they are much closer

to the theoretical oscillator strengths than the ones from the

200 K experiment.

It is important to note that all of the calculated energy

surfaces which are accessible in the UV/vis spectral range are

radical-type dissociations. The excited states which lead to

ionic dissociation have excitation energies closer to the

vacuum UV spectral range (100s nm) and are not treated in

this work. Ionic dissociation cross section can be done in the

same fashion as described here provided one uses electronic

structure methods appropriate for charge transfer PESs.

There are a few points to stress in making this procedure

work for large molecules. It is not presently cost effective to

use the larger basis sets for these molecules but will become

increasingly possible with further development of the parallel

ACES III46 program. This will also make it possible to do

calculations at the CCSDT (and higher) level of theory. From

Fig. 3 it is obvious that by using the POL basis set one can

incur up to B20 nm error in energy (compared to a larger

WMR basis set) but the intensities remain almost constant.

There will also be times where even a POL basis set will be

too large to be practical. For cases such as these, it is recom-

mended that the chromophore be treated separately from the rest

of the molecule and the energy shifts from a low cost basis set to

the larger basis set be determined. This suggestion will work for

localized excitations but would not be accurate for excitations

involving charge transfer or large conjugated systems.

Aside from the errors in the electronic structure calculations

there are also errors incurred by selectively discarding

vibrational degrees of freedoms using the criteria described

in the methodology section. It is presently unclear what that

error is since no other procedure which treats dissociative

potentials and multiple degrees of freedom is currently

available. Since the approach used here works for dissociative

as well as bound potentials a study will be forthcoming where

our method will be compared with either VIBRON or

HOTFCHT for obtaining an absorption cross section of a

bound excited state to determine the errors and to investigate

any possible fixes.
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Fig. 7 The convoluted cross sections are shown in thick lines. This is the 1st order spectrum.
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