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1. PURPOSE

The purpose of this paper is to trace the evolution in the
interpretation of chemical observations that carried one from the
use of the theorems of physics tethered to observation to their
present day replacement by models, some of which are neither
related to observation nor derivable from the theorems of
quantummechanics. The development of the physics of an open
system made possible by the extension of the action principle to
an atom in a molecule has greatly extended the use of quantum
mechanical theorems in the interpretation of chemical observations,
prompting one to raise the possibility of interpretive chemistry being
more directly related to the underlying quantum mechanics, to
move from a world where the laws of physics are sometimes
bypassed to one where they hold sway. One naturally begins this
story with Slater’s 1933 paper “The Virial and Molecular Structure”
which marked the beginnings of our understanding of chemical
bonding.1 His approach to science has been aptly summarized by
Mulliken:2 “Slater constantly emphasizes and analyzes the interac-
tions between experiment and theory, and between physical and
chemical ideas and mathematical formulations.”

2. EVOLUTION OF HAMILTONIAN INTO LAGRANGIAN
MECHANICS

2.1. Rooting Quantum Mechanics in “Observables”. Hei-
senberg made clear the necessity of escaping the confines of
classical thinking as embodied in Bohr’s atom, to establish
quantum mechanics in the introductory sentence to his 1926

paper introducing his matrix formulation of quantummechanics:
“The present paper seeks to establish a basis for theoretical
quantum mechanics founded exclusively on relationships be-
tween quantities which are in principle observable.”3,4 His
approach, expressed in terms of the equation of motion for the
observables, emphasizes the ties that link theory to observation.
This was the pervading drive of the group of young theoreticians
that of course included Dirac, in establishing quantummechanics, a
story that is strikingly told in the book The Strangest Man, The
Hidden Life of Paul Dirac, Mystic of the Atom.4 While Dirac had to
introduce new, abstract mathematical ideas to express his develop-
ment of quantum mechanics, he left no doubt that the goal of the
theorywas to understand andpredict the observable properties of an
atom. When he did offer support for any branch of philosophy, it
was that presented by the “logical positivists”, who held that a
statement had meaning only if it could be verified by observation.
In the preface to the first edition of his bookQuantumMechanics,5

Dirac points out that he was faced with the choice of presenting the
theory in its “symbolic form”, which deals in an abstract waywith the
quantities of fundamental importance (the invariants, etc., of the
transformations) as opposed to the method of coordinates or
representations, which deals with sets of numbers corresponding
to these quantities, a method commonly known under the headings
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integral into quantummechanics that occupied Feynman’s mind, leading to his formulation of the path
integral technique. His contribution was followed two years later by Schwinger’s independently derived
statement of the quantum action principle, each contribution providing a complete formulation of quantummechanics stated in terms
of single principle. The present paper points out that the successful introduction of the action principle into quantum mechanics
made possible byDirac, enables one to proceed still further by extending Schwinger’s quantum action principle to an open system, to
an atom in a molecule. Thus the quantum theory of an atom in a molecule has its roots in the question posed by Dirac in 1933. The
paper proposes a return to a greater use of the theorems of quantummechanics in interpretive chemistry from that begun by Slater in
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of “Wave Mechanics” and “Matrix Mechanics”. These two different
approaches are complementary to one another and have since
evolved into today’s operational statement of quantum mechanics
that is presented in Scheme 1.
2.2. Operational Structure of Quantum Mechanics. The

underlying structure of quantum mechanics is illustrated in
Scheme 1, one that stresses that all of physics, which certainly
includes chemistry, originates in experiment followed by obser-
vation, observations that are then subjected to theoretical
analysis. A system is defined by its forces, the forces determining
the Hamiltonian in Schr€odinger’s equation. The molecular
Hamiltonian that is of interest here, is expressed in terms of
the potential energy operators determined by the Coulombic
forces between the electrons and nuclei, each system being
identified by its unique nuclear-electron potential, the “external
potential” of density functional theory. The resulting state vector
or wave function is expressed as a linear superposition of base
states spanning the Hilbert space. Dirac defines an observable to
be a linear Hermitian operator expressible in terms of the
dynamical (position and momentum) variables possessing a
complete set of eigenfunctions, the base states that are employed
in the representation of the state vector, a definition prompting
the usage “Dirac observable”.5 A change in representation of the
state vector from one set of base states that are eigenfunctions of
one particular set of commuting observables, to another, is
accomplished using Dirac’s transformation theory. There is a

Dirac observable associatedwith every property and it acts on a state
vector to yield eigenvalues or expectation values thatmay ormaynot
be measurable. Each observable obeys a Heisenberg equation of motion
and it is these equations that yield the theorems of quantum mechanics,
examples being the virial theorem and the Ehrenfest and Feynman force
theorems. Through these theorems, one is able to predict and
understand the properties of a system and relate the values of the
observables to the forces that define the system.
2.3. From Dirac to the Physics of an Open System. In 1933

Dirac published a very important paper entitled “The Lagrangian in
Quantum Mechanics”6 choosing to show his support for Soviet
Physics by publishing the paper in a new Soviet journal where it
remained essentially buried for a number of years. After outlining
why the Lagrangian formulation of classical mechanics should be
considered more fundamental than the approach based on Hamil-
tonian theory,Diracwent on to say “For these reasons it would seem
desirable to take up the question of what corresponds in the
quantum theory to the Lagrangian method of classical mechanics”.
Thus Dirac sought the classical limit of the transformation function
or transition amplitude Æqr2,t2|qr1,t1æ that connects two coordinate
eigenstates at times t1 and t2. He did this by the repeated use of his
multiplicative law of transformation functions to obtain a limiting
expression for the transformation function associated with the
time displacement from t1 to t2, showing it to be proportional to
exp{(i/p)W}. W is the action integral, equal to

R
L dt, taken

between the limits t1 and t2, and is interpreted as the sum over all
individual coordinate-dependent terms in the Lagrangian L in the
succession of values of t, an approach summarized in my book.7

Eight years later, Dirac’s limiting expression for the transformation
function served as the starting point for Feynman’s development of
the path integral technique, the story being told that Feynman over
the course of a beer, while a graduate student at Princeton, inquired
of a recent arrival from Schr€odinger’s group in Berlin whether he
knew of any application of the principle of least action in quantum
mechanics.8 The visitor most certainly did and told Feynman of
Dirac’s 1933 little known paper in the Soviet journal. The next day
they found the article in the library and from it Feynman was able to
deduce Schr€odinger’s equation! The rest is history.
Feynman of course, considered all of the paths that connect

the states at the initial and final times, each path having its own
actionW, and all values of exp{(i/p)W}must be added together
to obtain the total transition amplitude to yield Feynman’s path
integral.9 Each contribution has the same modulus, but its phase
is the classical action integral (i/p)

R
L dt for the path.

Æqr2;t2jqr1;t1æ ¼ ð1=NÞ
Z

expfði=pÞ
Z t2

t1

L dtgδqrðtÞ ð1Þ

The differential δqr(t) indicates that one must integrate over all
paths connecting qr1 at t1 and qr2 at t2.
Building on the same association, but starting from Dirac’s

expression for a differential statement of the transformation function
between times t1 and t2, Schwinger obtained his statement of the
quantum action principle which is a differential statement of Feyn-
man’s path integral formulation as stated in eq 210

δÆqr2;t2jqr1;t1æ ¼ ði=pÞÆqr2;t2jδŴ12jqr1;t1æ

¼ ði=pÞÆqr2;t2jδ
Z t2

t1

L̂½t� dtjqr1;t1æ ð2Þ

Equation 2 is expressed in terms of the action integral and Lagrange

Scheme 1a

aReprinted with permission from Springer.
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function operators. The derivation of Schwinger’s quantum action
principle is developed in detail in my book.7

Both Feynman’s and Schwinger’s principles yield not only the
equation of motion but also the commutation rules. To quote
Schwinger, “It is the latter aspect (the mathematical scheme of
linear operators and state vectors with its associated probability
interpretation in Hilbert space) that we wish to develop, by
substituting a single quantum dynamical principle for the con-
ventional array of assumptions based on classical Hamiltonian
dynamics and the correspondence principle.”10

Thus the whole of quantum mechanics as outlined in Scheme 1,
from Schr€odinger’s equation to the commutation relations, can be
deduced from a single dynamical principle, the quantum action
principle. The operational expression of this principle is obtained
from an alternate differential expression for the variation of the
transformation function that is characterized by the action of
generators of infinitesimal unitary transformations F̂(t1) and F̂(t2)
acting on the same eigenvectors, a comparison of the two expres-
sions yielding the principle of stationary action

δŴ12 ¼ F̂ðt2Þ � F̂ðt1Þ ð3Þ

Schwinger’s formulation is a marriage of Dirac’s transformation
theory and the action principle and thus it recovers Schr€odinger’s
equation and Heisenberg’s equation of motion for the observables,
everything needed for the application of quantum mechanics.
Infinitesimal unitary transformations, in addition to their role in
the application of Dirac’s transformation theory, are essential to the
linking of classical and quantummechanics, one of his primary goals,
as is clear from Dirac’ statement regarding infinitesimal contact and
unitary transformations, “We have here the mathematical founda-
tion of the analogy between the classical and quantum equations of
motion, and can develop it to bring out the quantum analogues of all
the main features of the classical theory of dynamics.”
Remarkable as this is, Schwinger’s new formulation does much

more; it enables the extension of quantummechanics as outlined
in Scheme 1 to an open system.7,11�13 This is a necessary step in
the generalization of quantum mechanics to an atom in a
molecule, the atom necessarily being an open system, as it may
exchange mass and momentum with its bonded neighbors.
Schr€odinger’s equation is again obtained for the total system in
the extension of his principle to an open system. The expectation
values and associated equations of motion for each Dirac
observable are defined for the open system, a bounded piece of
the total system. It is the extension of Schwinger’s principle to an
open system that forms the basis for the quantum theory of
atoms in molecules (QTAIM) by providing the quantum me-
chanical description of an atom in a molecule.13

Thus the basis for the development of the quantummechanics
of an open system was laid out by Dirac in his derivation of the
limiting expression for the quantum analogue of the classical
action for a single path linking the times t1 and t2. It took just
under twenty years for this suggestion to flower into the quantum
mechanical expressions of Feynman and Schwinger and another
thirty for its extension to an open system.
As important as the realization that the physics of an open

system is grounded in the quantum action principle, is the finding
that the boundary condition defining an open system is expressed
in terms of the expectation value of a system’s most important
Dirac observable, the electron density operator as stated in terms
of the Dirac delta function, F̂(r) = δ(̂r � r), thereby fulfilling the
opening statement of intent given in Heisenberg’s quotation, “to

establish a basis for theoretical quantum mechanics founded
exclusively on relationships between quantities which are in
principle observable.” The quantum boundary condition is
expressed in terms the gradient vector field of the electron
density that uniquely partitions a system into spatial regions
designated by Ω, satisfying the condition of exhibiting a local
zero-flux in the gradient of the vector field though the surface
S(Ω;r) bounding the open system,7,14

∇FðrÞ 3 nðrÞ ¼ 0 for all points r on the surface SðΩ;rÞ
ð4Þ

The Heisenberg equation of motion for an open system
obtained from the principle of least action is characterized by
the presence of a flux in the associated current through its surface,
the current along with the density, being the two quantities
Schr€odinger deemed essential for the understanding of the proper-
ties of matter. The Heisenberg equation of motion for an
observable Ĝ, generalized to any system Ω bounded by a “zero-
flux” surface S(Ω;r), one that includes the total system, is given in
eq 5, completing the outline of physics as presented in Scheme 1.

d
Z
FGðrÞ=dt ¼ N=2fði=pÞÆ½Ĥ;Ĝ�æΩ + ccg

� ð1=2Þf
Z

dSðr;ΩÞ JGðrÞ 3 nðrÞ + ccg

+ ð1=2Þf
Z

dSðr;ΩÞ ð∂S=∂tÞFGðrÞg ð5Þ

It is expressed in terms of the associated electron and vector
current densities FG(r) and JG(r), the two physical properties that
determine the properties of matter for an observable Ĝ.7

One more important demonstration by Schwinger cements
the extension of his principle given in eq 2 to an open system: his
demonstration that the variation of the action and the generating
operators of infinitesimal transformations must satisfy the ad-
ditive law of composition, that is, δŴ13 = δŴ12 + δŴ23. This
property ensures that the action integral operator may be
expressed as a sum over the operators for all of the open systems
(atoms) in a molecule, i.e., Ŵ12 = ΣΩδŴ[Ω]12 to yield

δÆq2;t2jq1;t1æ ¼ ði=pÞ∑
Ω

Æq2;t2jδW ½Ω�12jq1;t1æ ð6Þ

where each open system is bounded by a surface of zero-flux in
the gradient vector field of the electron density, eq 4.

3. BEGINNINGS OF QUANTUM CHEMISTRY

One could argue that quantum chemistry had its start with the
paper by Heitler and London in 192715 wherein they applied the
wave equation derived the previous year by Schr€odinger,16 to the
hydrogen diatomic molecule and demonstrated that quantum
mechanics could account for “covalent” bonding, as opposed to
ionic bonding, which at the time was accounted for in terms of
electrostatics. The Heitler�London (H�L) paper expressed the
wave function for H2 as a combination of two atomic-like terms:
a(1)b(2) assigning electrons 1 and 2 to atoms “a” and “b” and the
term a(2)b(1) where the electronic positions are exchanged
between the atoms. This process was likened to quantum
mechanical resonance (although H�L went to some lengths in
their paper to counter this analogy) and the interpretation of
bonding in terms of the wave function and “resonance” were to
dominate theory from that moment to the present day, as
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exemplified in the recent statement, “which showed that the
bond energy in H2 is due to resonance between the electrons as
they exchange positions between the two atoms.”17

London noted in 1928 that the physical consequence of
“resonance” was the accumulation of density between the nuclei,
something that since then has been shown to be true for all wave
functions that account for bonding and bonding cannot be
uniquely linked to “resonance”.18 Schr€odinger introduced the elec-
tron density F(r), the vector current density J(r), and the equa-
tion of continuity, linking them in his fourth paper of 1926.19

Schr€odinger, echoing the philosophy of Heisenberg and Dirac,
strongly advocated that one relegate the use of the wave function
to the determination of the observables F(r) and J(r) and to avoid
usingψ directly in the interpretation of physical observations. This
advice was not followed and experimental chemistry is presently
explained using empirical concepts, many of which do not relate
directly to any measurable property or to quantum mechanical
theorems. The use of the concept of “resonance”, for example,
removes one from the realm of definable physical forces.

The fundamental role of the density in understanding chemi-
cal bonding was first pointed out by London in 1928 in a little-
known companion paper to the one he coauthored with Heitler
giving the quantum mechanical description of homopolar
bonding.18 London gave contour diagrams of the density dis-
tributions associated with the antisymmetric and symmetric
solutions to the Heitler�London (H�L) equations, his dia-
grams having been recently reproduced.20 He obtained the
densities by integrating ψ*ψ(r1,r2) over the coordinates of one
of the electrons, employing the definition of the density F(r)
provided by Schr€odinger in the preceding year. London’s paper
presents the first calculated representations of the electron
density. “... the density for the symmetric state shows the two
atoms which are in a state of homo-polar binding. Here the two
densities seem to draw closer and become one. With the help of
these figures, one can imagine how in complicatedmolecules the atoms
which form a valence are connected by such a bridge of ψ*ψ-density,
while all remaining atoms stay separate.” His figure for the
symmetric state clearly illustrates the buildup of density between
the nuclei, an observation later commented on by Feynman:21 “It
now becomes clear why the strongest and most important
attractive forces arise when there is a concentration of charge
between two nuclei.” London was the first to define a bond path as a
“bridge of density” and to postulate its physical significance in the
understanding of bonding. Unfortunately, this paper went unheeded
(and remained so for 80 years) and instead the chemical commu-
nity embraced the “mysterious wave function” and its associated
“resonance”. It has in fact been stated by a proponent of this view
that the bonding process is too complicated to be understood by
the average chemist, the concept of a wave function being “too
abstract and too elusive” for chemists to grasp!22

4. RELATION OF CHEMICAL CONCEPTS TO THE
THEOREMS OF QUANTUM MECHANICS

Slater introduced the use of theorems of quantum mechanics
in the interpretation of chemical bonding in his famous paper
entitled “The Virial and Molecular Structure” in 1933. We begin
this section with a review of the original literature concerning the
derivation of the theorems necessary for the interpretation of
bonding. This section is necessary to correct the errors promul-
gated in the literature that attempt to downplay the pioneering
role of Slater’s contributions.

Pauli’s 1933 book, later reprinted in 1958,23,24 gives deriva-
tions of the virial theorem, the Ehrenfest theorem and what
became known as the Hellmann�Feynman theorem, crediting
the original derivation of the virial theorem to Sommerfeld.25

None of these theorems are employed by Pauli in discussions of
chemical bonding. It is frequently stated incorrectly in the
literature, as, for example, by Kutzelnigg,26 that Hellmann gave
a derivation of the virial theorem in 1933. He does not derive the
virial theorem but instead begins with a statement of the theorem
he ascribes to Fock.27

Slater published an original derivation of the virial theorem in
1933.1 His goal was to extend the virial theorem to describe the
mechanics of a molecule displaced from its equilibrium geome-
try, thus requiring the presence of external or “impressed” forces
to keep the nuclei fixed. He did this with the specific purpose of
applying the theorem to a discussion of chemical bonding. The
derivation begins with differentiation of Schr€odinger’s equation
with respect to an electronic coordinate xi followed with multi-
plication by xjψ*. The result can be rearranged to yield

∑
i
�ðp2=8mÞ∑

j
½xj½ψ�ð∂3ψ=∂xi2∂xjÞ

� ð∂2ψ�=∂xi2Þð∂ψ=∂xjÞ�� + ½∑
j
xjð∂V=∂xjÞ�ψ�ψ ¼ 0

ð7Þ
This is followed by integration over coordinate space, wherein
the first term is integrated by parts (the surface term so obtained
vanishing on the boundary at infinity) to yield

� 2T ¼
Z
dτ∑

j
xjð � ∂V=∂xjÞψ�ψ ¼ V ð8Þ

Recalling that Fj = (�∂V/∂xj), the term on the right-hand side
defines the virial of all the forces acting on the electrons, the virial
V . Slater applied this result to the formation of diatomic
molecules from the separated atoms, using empirical potential
energy functions to calculate the forces Fj acting on the nuclei for
geometries removed from the equilibrium separation Re, forces
that were later identified with the Feynman force.21

Out of interest, Slater’s original derivation of the virial theorem
served as the starting point for the first paper on the physics of an
open system, one yielding the sufficient conditions for an atomic
statement of the virial theorem.28 This derivation was followed in
1975 by its variational derivation, using both the variational
principle in a scaling of the electronic coordinates and the
calculus of variations, for a system bounded by a zero-flux
surface.29 The variational derivation was obtained by an exten-
sion to a bounded system of Schr€odinger’s original derivation of
his “wave equation”.16 Schr€odinger’s derivation is equivalent to
the variation of a constrained action integral for an infinitesimal
time interval30 using the calculus of variations.

The virial theorem is the Heisenberg equation of motion for
the Dirac observable r 3 p, which has the dimensions of action.
The potential energy defined in themolecular virialV is given by
the virial of the Ehrenfest forces exerted on the electron density,
the Ehrenfest force theorem being the Heisenberg equation of
motion for the Dirac observable p = �ipr and the force being
determined by the time-rate-of-change of the momentum, as in
classical theory. It is important that one understand that the
molecular virial as defined in terms of the Ehrenfest force
includes the virial of any external forces acting on the nuclei
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In 1933 Slater ascribed the forces acting on the nuclei to the
gradients of the potential energy surface, their identification as the
Feynman electrostatic forces acting on the nuclei having to await
the publication in 1939 of Feynman’s paper “Forces in Molecules”
submitted as a senior thesis under Professor Slater’s tutelage.21

The original derivation of the theorem that later became known as
the Hellmann�Feynman theorem was given by Pauli.

In 1933, Hellmann31 provided a derivation of the “Hellmann�
Feynman” theorem before that published by Feynman. However,
contrary to published statements, there is no discussion of the
role of this theorem in chemical bonding, neither in the 1933
paper31 nor in the German or Russian versions of his book
Introduction to Quantum Chemistry.32,33 This is to be contrasted
with Feynman’s 1939 paper establishing the electrostatic theorem
that is devoted to the mechanics of bonding.21

Feynman’s electrostatic theorem is the Heisenberg equation
of motion for the Dirac observable�iprR, the gradient operator
referring to the coordinates of a nucleus R. Feynman’s theorem
demonstrates that bonding is a result of the accumulation of
electron density between the nuclei exerting an attractive force
sufficient to overcome the force of repulsion between them. It
may be considered the cornerstone of the theory of chemical
bonding. It is this force and this force alone that determines whether a
given nucleus experiences an attractive, a repulsive, or a vanishing
force in any given geometry. This statement of physics should be
borne in mind when one encounters references to “Pauli or
nonbonded repulsions”.

The Ehrenfest force acting on the electron density and the
Feynman forces acting on the nuclei are the only forces involved in
the physics of chemical bonding, and they provide the tools that
are needed to describe the forces acting in a molecule. The virial
theorem provides a unified statement of these forces by relating
them to the molecule’s energy and its kinetic and potential
contributions. The Feynman, Ehrenfest, and virial theorems play
a dominant role in theories of chemical bonding, a topic central to
conceptual chemistry. Slater’s use of these theorems, begun in
1933, is used to illustrate the differences in the quantum mecha-
nical and model based approaches to bonding.
4.1. Bonding as Understood in Terms of Quantum Me-

chanical Theorems. Slater gave his 1933 derivation of the virial
theorem for the specific purpose of discussing the process of
bonding, beginning with infinitely separated atoms. Slater’s
interpretation, which was later expanded upon in his book,34

was the first attempt to account for chemical bonding using the
theorems of quantum mechanics, as opposed to the use of the
“resonance model” and other then current approaches based
upon the Heitler�London wave function. He did so with the
understanding that one must consider the contribution to the
virial and hence to the kinetic and potential energies arising from
the virial of the “Feynman forces” exerted on the nuclei.
Slater’s molecular virial theorem written for a diatomic mole-

cule may be expressed as

T ¼ � E� RðdE=dRÞ ¼ � E + RFðRÞ ð9Þ

The quantity F(R) = �(dE/dR), is the Feynman force on a
nucleus at separation R: One may recast eq 9 in terms of the
changes in the energies relative to their values at infinite
separation to give the relation between ΔE(R) and the kinetic
energy ΔT(R)

ΔTðRÞ ¼ �ΔEðRÞ + RFðRÞ ð10Þ

and the potential energy ΔV(R)

ΔVðRÞ ¼ 2ΔEðRÞ � RFðRÞ ð11Þ
Slater’s use of the virial and Feynman theorems in the

discussion of bonding is well-known and have been recently
reviewed in detail.35,36 The behavior of ΔE(R), ΔT(R), ΔV(R),
and F(R) as a function of the internuclear separation R in a
diatomic molecule are shown in Figure 1. This behavior of ΔT
and ΔV was first established by Slater in his 1933 paper through
the use of empirical molecular potential energy functions in
conjunction with the virial theorem. It is important to understand
that while the curves shown in Figure 1 are calculated for H2,
their forms are universal, as shown for shared (covalent), polar,
and van der Waals interactions.35,36

What at first might be surprising to some in terms of the oft
quoted statement of the virial theorem, that the kinetic energy
must increase on bonding by an amount equal to the decrease in
energy, is the apparent reversal in the stabilizing-destabilizing
roles of the kinetic and potential energies displayed in Figure 1,
with the potential energy initially increasing and the kinetic
energy decreasing, as the atoms approach from infinity. This
behavior is readily understandable by relating the changes in ΔT
and ΔV through eqs 10 and 11, to the changes in the Feynman
force on the nuclei F(R), changes that are readily related to
changes in the density displayed in the density difference maps
ΔF(r) and their profiles along the internuclear axis, for the
approach of two H atoms that are illustrated in Figures 2 and 3.
These diagrams emphasizes that the entire discussion of bonding
can be presented in terms of quantum mechanical theorems and
the “observable”, i,e, measurable, electron density.37,38

The virial of a force, the quantity RF(R) in eqs 10 and 11, is
negative and stabilizing when the Feynman force is attractive,
RF(R) < 0. It is only in the presence of an attractive force that ΔT
andΔV can change sign:ΔT < 0when |RF(R)| >�ΔE andΔT = 0
when |RF(R)| =�ΔE;ΔV > 0 when�RF(R) > 2|ΔE| andΔV =
0 when 2|ΔE| = �RF(R). Thus ΔV becomes negative before

Figure 1. Feynman force F = F(R) on a proton in ground state H2. The
equilibrium separation is denoted by Re and the inflection point in the E(R)
curve, whereF(R) ismaximally attractive byRi which by chance, is close to the
intersectionof the axiswithΔT. Results fromQCISD(full)/6-311++G(3pd),
giving Re = 1.401 (1.401) au andDe = 4.71 (4.75) eV, experimental values in
parentheses. Also shown is the variation inΔE,ΔT, andΔVwith internuclear
separation R for the ground state of the H2 molecule in atomic units.

http://pubs.acs.org/action/showImage?doi=10.1021/jp203531x&iName=master.img-002.jpg&w=240&h=189
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ΔT becomes positive. When the Feynman force is repulsive,
RF(R) > 0 and ΔT > 0 and ΔV < 0.
The behavior in the range ΔT < 0 and ΔV > 0 is under-

standable in terms of the changes in the electron density that
accompany the initial approach of the atoms as shown for R = 8
and 6 au in Figures 2 and 3. Electron density is removed from the
immediate vicinities of both nuclei where V(r) is maximally
negative and T(r) is maximally positive and accumulated in a
diffuse distribution in the binding region resulting in the relaxa-
tion of the gradients in F and thus further reducing T. Thus V is
increased, T is decreased, and the density accumulation in the
binding region and its removal from the antibinding regions
results in an attractive Feynman force on the nuclei. Each nucleus
is attracted by its own inwardly polarized density and the resulting
“boot strap” force is, as explained by Feynman, the origin of the
initial 1/R6 long-range attraction between neutral atoms.
Thus the initial decrease in T is a result of the creation of

attractive Feynman forces on the nuclei resulting from the
accumulation of density in the internuclear region (Slater’s
overlap density), the essential first step in bond formation and

one that continues up to the equilibrium separation where ΔE =
�ΔT. It is important to note that the decrease in T is found only
when attractive Feynman forces act on the nuclei, and thus it does not
occur at the equilibrium separation Re.
One may combine the virial and Feynman theorems through

the use of eqs 10 and 11 to obtain differential statements for
dT(R) and dV(R) that are shown to be determined in their entirety
by F(R) and dF(R)/dR. These expressions yield constraints on
the signs of the slopes dT(R)/dR and dV(R)/dR, which are seen
from Figure 1 to change sign with decreasing R. The derivation of
these equations and their full discussion have been given
previously.7,39 They demonstrate that the Feynman force and
the kinetic and potential energies are all interdetermined by the
virial theorem, noting in particular that the Feynman force F(R) and
its derivative dF(R)/dR, completely determine the behavior of both T
and V over the entire range of internuclear separations, as first
demonstrated by Slater in 1933 and illustrated in Figure 1. Figure 1
shows that the constraints imposed by F(R) and dF(R)/dR cause

Figure 2. Density difference plots for the formation of ground state H2

calculated from a correlated wave function. The interatomic separation is
listed under each figure in au. The solid and dashed contours increase or
decrease respectively from the zero contour in the order (2 � 10�n,
(4� 10�n,(8� 10�n au for decreasing values of n. The maps for R =
8, 6, and 4 au begin with n = 5 and those for 2.0, 1.4, and 1.0 au begin with
n = 3. Note the inward polarization of the atomic densities at large
separations as predicted by Feynman. At R = 2 au, the inflection point in
the E(R) curve, the boundary of the charge accumulation in the binding
region passes through the nuclei and F(R) is a maximum. For R < 2 au,
density is increasingly placed in the antibinding regions. Reprinted with
permission from: Bader, R. F. W. An Introduction to the Electronic
Structure of Atoms and Molecules; Clarke Irwin & Co Ltd.: Toronto,
Canada, 1970; available online at www.chemistry.mcmaster.ca/faculty/
bader/aim/.

Figure 3. Profiles of the density difference plots for the formation of the
hydrogen molecule along the internuclear axis. Note how the profiles
emphasize the principal changes in the density: from its initial removal in
the nuclear regions, to its ever increasing accumulation in the binding
region, as well as at the nuclear positions. All of the changes depicted here
result in attractive Feynman forces acting on the nuclei, as shown in
Figure 1. No one viewing these changes in the density can possibly dispute
Feynman’s electrostatic theorem, that bonding is a consequence of the
accumulation of electron density in the internuclear region. It should be
noted that theΔF(r) maps for shared interactions for atoms past He differ
from those for H2. They of course show an accumulation of density in the
binding region, but the density in the regions of the nuclei undergoes a
decrease rather an increase.61 The increase in density at the protons plays a
central role in the application of the “Hellmann model” to H2

+.26,42 The
model is thus inapplicable beyond hydrogen. Reprinted with permission
from: Bader, R. F. W. An Introduction to the Electronic Structure of Atoms
and Molecules; Clarke Irwin & Co Ltd.: Toronto, Canada, 1970; available
online at www.chemistry.mcmaster.ca/faculty/bader/aim/.
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ΔT to increase and ΔV to decrease before R = Re and thus ΔT
begins its increasewell beforeRe. Ruedenberg and Schmidt40make
an unfair criticism41 of Slater in relation to the demonstration that
F(R) and dF(R)/dR completely determine the behavior of T, V,
and E as a function of R.7,39 These same results demonstrate that a
statement by Ruedenberg and Feinberg43 to the contrary regard-
ing the role of the Feynman theorem in this regard is wrong.
4.2. Models of Bonding Based upon Hellmann’s Model.

Slater’s approach to bonding is counterbalanced by the work of
those26,40,42�44 who make use of a model first proposed by
Hellmann.32,33 Hellmann’s book Introduction to Quantum Chemistry
was first presented in a Russian translation of the German version.
Hellmann was forced to flee Nazi Germany for Russia, where,
unfortunately, he was later shot as a German spy. Hellmann’s
account, has been the subject of a careful reading of the Russian
text, a translation that has previously been presented in detail.45

This reading makes clear that Hellmann did not unequivocally
support what became known as “Hellmann’s model of bonding”,
one in which he ascribed bonding to a decrease in the kinetic
energy, in direct violation of the virial theorem. The translation of
the Russian text makes clear that any suggestion that Hellmann
relegated the virial theorem to a secondary position relative to
any of the models that he proposed are ill-founded. He used the
electron in a box model to consider the approach of two identical
atoms with a single valence electron each initially in its own box.
In forming the molecule, the boxes are linked together and the
electrostatic attraction of each valence electron with the field of
the other atom gives attraction. From this point on, the con-
tribution arising from the change in the potential energy of the
electrons is ignored, a point that is later rectified with the
statement in a discussion of the potential energy component of
the particle in a box model: “We are no longer convinced that the
actual cause of the bonding is the decrease in the kinetic energy, since a
portion of the charge has a potential energy that can decrease upon
the approach of the atoms”, a conclusion that reflects his stated
belief in the virial theorem.
The work of those who continue to follow and employ “Hell-

mann’s model” has recently been the subject of a review.45 They
dispute the understanding that bonding is a result of the accumula-
tion of electron density between the nuclei, a view summarized in
the statement,42 “The ubiquitous statement that overlap accumula-
tion of electrons in a bond leads to a lowering of the potential energy
is based upon fallacious reasoning.”A quotation from a recent paper
summarizes the present interpretation of Hellmann’s point of view:
“Hellmann ... was convinced that covalent bonding resulted from a
lowering of the kinetic energy due to the increase in volume available
to the electron in the molecule, i.e., to delocalization”,40 statements
in direct contradiction to Hellmann’s final view of bonding as
governed by the virial theorem. One school40,43 insists that an
understanding of bonding must be based upon what is termed
“variational reasoning”.46

Clearly, the proponents of “Hellmann’s model” inhabit a
world wherein the virial, Feynman, and Ehrenfest forces are
violated. In a review of Hellmann’s scientific contributions,
Schwarz et al.47 express surprise that there are still those who
believe in Slater’s and Feynman’s view that “bond formation ...
can arise only from the attraction between the positive nuclei and
a growing negative charge in the bond region.” In separating a
molecule into atoms, one must overcome the electrostatic force
of attraction of the nuclei for the electron density. There is no
other force operative and hence it provides a both necessary and
sufficient explanation of bonding. Schwarz et al. ignore the concept

of a force and its role in physics. Following Scheme 1, having once
determined the wave function, one is in the real world of
expectation values of observables. The observables of interest here
are the ones yielding the theorems of Feynman and Ehrenferst and
the virial theorem and, of course, the electron density. The density
for a bound state is predicted to result in the accumulation of
electron density in the internuclear region sufficient to overcome
the forces of repulsion and lead to chemical bonding, the forces
being determined by Feynman’s theorem. QM has answered the
question of how the electrostatic force yields bonding. The same
force, when integrated over a change in internuclear separation,
yields the corresponding change in energy, a quantity now related
to changes in the density, as illustrated in Figure 2 and Figure 3 for
the formation of the hydrogenmolecule.When combinedwith the
Ehrenfest and virial theorems, one has a complete physical
description of chemical bonding.
Statements that a decrease in kinetic energy can lead to an

increase in the stabilization of a system appear throughout the
literature, a statement in direct violation of the virial theorem,
because ΔT = �ΔE for a displacement from one to another
equilibrium geometry. It is, of course, possible for the kinetic
energy to exhibit a decrease, but only when attractive Feynman
forces act on the nuclei and contribute to the virial, as for
example, during a chemical reaction when the system is moving
on a downward slope of a potential energy surface and bond
formation exceeds any bond breaking. The attractive force will
attain a maximum value during this motion and then begin to
decrease in magnitude, eventually vanishing in the equilibrium
geometry of the product. The atomic statement of the virial
theorem enables one to monitor the contribution of the attractive
force to each atom’s virial through the equation ΔT(Ω) =
�ΔE(Ω) + W(Ω), where W(Ω) is the atomic contribution of
the virial of the Feynman forces acting on the nucleus of atomΩ.
This equation is, in effect, an atomic statement of the diatomic
result that ΔT = �ΔE + RF(R), eq 10, and may be interpreted
in the same manner; ΔT decreasing when attractive forces act
on the nucleus of the atom to yield a virial W(Ω) < 0, which
exceeds �ΔE(Ω). With further motion along the reaction coordi-
nate, E continues to decrease while the force diminishes as the
equilibrium structure is approached. At some point, �ΔE exceeds
W(Ω) and the kinetic energy begins to increase, attaining the value
equal to �ΔE at the termination of the reaction. This behavior of
the force and virial are the same as that shown in Figure 1 for the
formation of a molecule. This example demonstrates that all of the
theorems of quantum mechanics have an atomic counterpart, one
that provides an atomic view of every chemical change.
In their discussion of the box model, in which they replace the

“boxes” with orbitals, Schwarz et al.47 proffer the oversimplified
statement that the “electron clouds of the electrons can expand
into the space of the neighbouring orbitals (in an apparent
neglect of orbital overlap) leading to a reduction of the kinetic
and total energy, which then results in chemical bonding.” This
view is to be contrasted with that of Slater. After properly
accounting for the initial decrease in the kinetic energy at large
separations, a result of attractive forces acting on the nuclei as
portrayed in Figure 1 and accounted for by the virial and
Feynman theorems, he notes that the kinetic energy begins to
rise on closer approach because the electrons are forced into a
smaller space as a result of the overlapping of the atomic orbitals,
the decrease in volume being proportional to the overlap integral S of
the orbital model. This argument sounds more plausible than
Hellmann’s claiming a doubling in available volume as two
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“potential boxes” are joined together on bonding and in direct
opposition to the view of Schwarz et al.47 who state that
overlapping orbitals increase the volume available to the electrons.
This leads one to inquire “what happened to the orbital overlap
integral?”, which is proportional to the decrease in volume as
orbitals overlap. Slater’s argument sounds more plausible than
one claiming an increase in available volume as potential “boxes”
are joined together on bonding as in Hellmann’s model, and in
direct opposition to the view of Schwarz et al. that overlapping
orbitals increase the volume available to the electrons. One may
obtain a direct answer to the change in volume encountered in
passing from two isolated H atoms to the H2 molecule by using
the 0.001 au isodensity surface that determines the van derWaals
volume.48 The van der Waals volume of two isolated H atoms is
200 au compared to 119 au for the H2 molecule. Thus formation
of H2 results in a nearly 2-fold decrease in volume as opposed to
the doubling assumed by Hellmann.
Such criticisms are of no consequence to those who seek what

is to them a fuller understanding of bonding. Bitter, Ruedenberg,
and Schwarz for example, argue for the use of “Ruedenberg-type
models employing fictitious non-quantum states in understand-
ing bonding”, further stating that “all that can be said about
bonding using the virial theorem is that the energy decreases and
the kinetic energy undergoes an automatic concomitant
increase.”49 This point of view belies the discussion of bonding
presented here in terms of the theorems of quantum mechanics
known since the time of Slater’s 1933 paper.

5. CRITICISMS OF THE REAL WORLD APPROACH

A point that is emphasized in the quantum analysis of bonding
is that all bonding (van der Waals, “nonbonded interactions”,
metallic, covalent), followed by all degrees of polarity, down to
the ionic limit, have a common physical origin as illustrated by
the universality of the behavior of the energies and Feynman
force illustrated in Figure 1.35,36 All bonding is the result of the
accumulation of electron density in the binding region as
required by Feynman’s electrostatic theorem. It is difficult to
understand how one can dispute this physics in view of the
demonstration that bond paths—the lines of maximum electron
density linking bonded atoms—recover all of the classical “bond”
(i.e., textbook) structures of chemistry,36,50 just as predicted by
London in 1928.18 Just as important is the observation that there
are no cases where a bond is predicted in the absence of a bond
path. Even Slater emphasized that there is no fundamental
distinction in the bonding mechanism operative in the measured
extremes of van der Waals and covalent bonding.51 The response
of those who oppose the role of Feynman’s electrostatic theorem
in bonding, is to simply ignore the observational basis for the
identification of a molecular structure with that defined by the
linking of the bond paths.

This result of the universality of bonding is not shared by all, as
illustrated by the statement, “At present it seems likely that the
lowering of the kinetic energy pressure through electron sharing
will remain a valid basic ingredient for nonionic covalent bonds in
general, ...”.52 Invoking the universality of bonding has led to
misunderstandings of the theory, as exemplified recently: “It
(QTAIM) maintains that all possible facets of bonding are
considered, however, dismissing the chemically relevant differ-
ences between ionic, polar, covalent,H-bonding and van derWaals
nonbonding and other interactions.”53 These are the very examples
whose characteristic signatures were displayed to demonstrate the

universal character of the virial, Feynman, and Ehrenfest theorems
in atomic interactions.35,36,54�57 What distinguishes the bonding
between the sets is not its physical origin, but rather the manner in
which the density is distributed over the atomic basins; covalency
being characterized by an equal sharing of the valence density, the
ionic extreme by its localization within a single basin. The use of
the properties of the density and energy related quantities at a
bond critical point as bonding descriptors58 is now themostwidely
employed method for the characterization of bonding obtained in
experimental59,60 and theoretical densities.50,35,36,61 Its wide use is
illustrated by its recent adoption by Shaik and co-workers in the
classification of the different valence bond structures that partici-
pate in the so-called “charge-shift” model of chemical bonding.62

Of particular use in the topological classification scheme, is the
local statement of the virial theorem that relates the Laplacian of
the electron density to the competing contributions of the kinetic
and electronic potential energy densities. The kinetic energy (as
described in its positive definite form, denoted by Gb), in
particular, plays a dominant role in these discussions, because its
properties sharply distinguish the limiting forms of bonding. Thus
shared interactions are found to have Gb/Fb < 1 andr2Fb(r) < 0
while closed-shell interactions have Gb/Fb g 1 and r2Fb(r) > 0.
An excellent indication of the contrasting behavior of the kinetic
energy in the bonded region between shared and closed-shell
interactions is given by the ratio T )/T^ at the bond cp, the values
for shared interactions in general being >10 while for closed-shell
interactions it is in general <0.1.63

There are many published examples demonstrating that
QTAIM and its consequences are not accepted by those who
employ Morokuma’s energy decomposition analysis (EDA).64

EDA, as do those employingHellmann’s model, breaks a chemical
change into a sequence of envisioned steps, one step in particular
violating the Pauli exclusion principle (a point made by
Morokuma). These criticisms have been responded to20,36,65 but
one feels compelled to draw the attention of these critics to a
cornerstone of the scientific method: one who questions a theory
has two options; either disprove the theory or demonstrate that its
predictions do not agree with experiment. Ignoring a theory or
offering up unphysical criticisms do not suffice in science. It is
fitting here to quote Slater: “A theoretical physicist in these days
asks just one thing of his theories: if he uses them to calculate the
outcome of an experiment, the theoretical predictions must agree,
within limits, with the results of experiment. He does not ordinarily
argue about philosophical implications of his theory.”66

The ability of QTAIM to recover the experimental properties
of atoms in molecules and the recovery of characteristic proper-
ties associated with a functional group has been verified many
times and has served from the beginning as the source of its
chemical relevance.7,67 The empirical theorem arising from these
observations, that the electron density of an atom in a molecule
determines its additive contribution to all of the properties of the total
system,68 is second only to the demonstration that the definition
of an atom in a molecule is a consequence of the principle of least
action. One unfamiliar with Schwinger’s principle may satisfy
themselves with the quantum mechanical basis of the theory by
following a heuristic proof that requires only knowledge of
Schr€odinger’s equation and the ability to integrate by parts.69

6. EPILOGUE

I had the good fortune to attend Professor Slater’s lectures on
quantum mechanics while a graduate student at MIT. These
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lectures contributed to my decision to switch from experimental
work in physical organic chemistry, under the guidance of
Professor C. G. Swain, to theory, to better understand chemistry
and its relation to physics, a topic close to Professor Slater’s own
interests. Consequently, upon graduation, I spent a year with
Professor Longuett-Higgins in Cambridge. In later times, I had
discussions of my work on the electron density and Feynman’s
theorem with Professor Slater and Professor Mulliken, some-
times together, at APS and other meetings. The electron density
distributions were obtained from the laboratory of molecular
structure and spectra (LMSS) of professors Mulliken and
Roothaan. In 1968, Professor Slater attended a reception
at my home as an Honorary Chairman of the third Canadian
Theoretical Chemistry Conference.
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