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a b s t r a c t

The role of the so-called C-conditions, originally introduced in the general model space (GMS), state-
universal (SU), coupled-cluster (CC) theory with singles and doubles (GMS SU CCSD) to account for the
internal cluster amplitudes that vanish in the case of a complete model space, is explored in the context
of the state-selective Mukherjee MR-CC method (MkCCSD). Using three examples that involve a consid-
erable quasidegeneracy we show that the C-conditions can be usefully employed also in the MkCCSD
method once an incomplete (or general) model space is used.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

For nondegenerate closed-shell systems the single-reference
(SR) coupled-cluster (CC) method with singles and doubles (CCSD),
particularly its perturbatively corrected version for triples CCSD(T),
represents the method of choice in molecular electronic structure
calculations. Unfortunately, CCSD(T) breaks down once the mul-
tireference (MR) character of the state sets in, as is invariably the
case when breaking genuine chemical bonds or, generally, for
open-shell systems, such as various diradicaloid species (see, e.g.,
[1–4]). Although in many instances, when the implied quasidegen-
eracy is not too strong, this breakdown can be to a large extent
overcome via the renormalized or completely-renormalized (CR)
methods, in particular via the CR-CC(2,3) version [5,6] or via the
so-called KCCSD(T) method [7–9], a fundamental approach to
the quasidegeneracy problem should be based on a multireference
(MR) version of the CC formalism (see, e.g., [10–12]).

In contrast to configuration interaction (CI) methods, an exten-
sion of SR-CC to a MR-CC case is far from being unambiguous and
straightforward. It can be achieved in essentially two ways,
depending on whether we strive for a single cluster operator as
in the valence-universal (VU) or Fock space approaches [13–15] or
consider distinct operators for each reference spanning the model
space, as in the state-universal (SU) or Hilbert space methods [16].
Both of these MR-CC approaches lead to a rather formidable for-
malism and encounter a number of difficulties, primarily due to
the requirement of a complete model space (CMS) and an implied
presence of intruder states. For this reason, there has been various
ll rights reserved.
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attempts to focus on one state at a time via the so-called state-
selective or state-specific (SS) methods. Since this term has been
employed for a whole plethora of approaches, it is important to
distinguish at least those that rely on some modification of stan-
dard SR-CC methods by accounting, in one way or another, for
MR effects via higher-than-pair clusters (see, e.g., active-space
SSMRCC-type approaches [17–19]) from those that employ a gen-
uine MR-CC formalism.

From among the SR-based SS approaches we shall employ the
so-called reduced multireference (RMR) CCSD method [20–22],
which represents an externally corrected (ec) CCSD approach
[23] that employs some external source for an information about
the most important (primary) triples and quadruples. In the case
of RMR-CCSD one employs a modest size MR CISD wave function
for this purpose, exploiting the complementarity of CI and CC ap-
proaches in their handling of nondynamic and dynamic correlation
effects, respectively [24]. The remaining (secondary) triples are
then accounted for in a standard perturbative manner via the
RMR-CCSD(T) method [25].

The SS-type methods that are based on genuine MR-CC formal-
ism are best represented by the SS version of the MR-SU-CC ap-
proaches as formulated by Mukherjee et al. [26,27] (for an
excellent review of the SS-type approaches see [28]). These MR-
SS-SU CC approaches have recently attracted a considerable atten-
tion [29–32]. We shall refer to their SD version by the acronym
MkCCSD. Just as the standard MR-SU approaches, the original for-
mulation of the MkCCSD method requires the use of a CMS. Even
though the intruders are now largely avoided by considering one
state at a time (particularly when focusing on the ground state),
similarly as in the Brillouin–Wigner (BW) CCSD [33], the dimen-
sion of the model space rapidly increases with the number of active
MOs. It is thus desirable, in general, to truncate the model space to
an incomplete model space (IMS). For this reason we introduced
the general model space (GMS) MR-CC approach [34–40] that
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can employ an arbitrary model space (i.e., not necessarily a sub-
space of CMS as implied by some active space of MOs). In such a
case, however, a proper care must be taken of the so-called internal
cluster amplitudes that are associated with excitation operators
transforming one reference into another one. These amplitudes
vanish in the case of a CMS, but must be properly accounted for
via the so-called C-conditions [34] (C for constrained or connected),
in the GMS case.

It has been shown earlier that the C-conditions may be profit-
ably employed in other MR-CC approaches, specifically in the BW
CCSD [41]. In this paper we wish to point out the usefulness of
the C-conditions even for the MkCCSD method. Here we must note
that so far the exploitations of the MkCCSD method focused almost
exclusively on the ground state (or, generally, the lowest state of a
given symmetry species), even though, in principle, it should be
able to access excited states as well (in contrast to SR-based ap-
proaches like RMR-CCSD). In this paper we shall also limit our-
selves to the ground states and will consider the problem of
excited states elsewhere.

We next present a brief outline of the methods employed and
then illustrate the exploitation of the C-conditions and the role
they can play in the MkCCSD approach on a few simple examples.

2. Methods

The RMR-CCSD method [20–22,24,40] and its RMR CCSD(T) ver-
sion corrected for secondary triples [25] are amply documented in
the literature. We shall thus focus on those MR-CC methods that
are relevant for this work, namely on SS MkCCSD [26–28] and
the handling of model space incompleteness via the C-conditions
[34–37]. We recall that all genuine MR-CC methods are based on
the effective Hamiltonian formalism and a generalized Bloch equa-
tion (see, e.g., [12]).

Designating the references spanning the model space M0 by
jUii, i ¼ 1; . . . ;M, and the corresponding target states by jWii, the
MR-SU-CC Ansatz of Jeziorski and Monkhorst [16] takes the form

jWii ¼
XM

j¼1

cij expðT ½j�ÞjUji

¼
XM

j¼1

cijjUji þ
X
jNji2M?

0

dijjNji; ð1Þ

where the coefficients cij, C ¼ jjcijjj, are given by the eigenvectors of
the effective Hamiltonian matrix HðeffÞ ¼ jjHðeffÞ

ij jj,

HðeffÞ
ij ¼ hUijfHNj

expðT ½j�ÞgC jUji: ð2Þ

Further, M?
0 designates the orthogonal complement of M0 in

the N-electron space implied by a chosen basis set, HNj
stands for

the electronic Hamiltonian in the normal product form relative
to jUji as vacuum, and the subscript C implies the connected part.

We shall consider two types of approaches to the determination
of cluster amplitudes, namely the standard SU one and the Muk-
herjee-type SS approach. In the first one, the amplitude equations
that determine T ½i� are target-state independent and all the M tar-
get states are simultaneously generated by solving the same gener-
alized Bloch equation that takes the form [16,10–12]

hUq
a ½i�jH½i�jUii ¼

X
jð–iÞ

CijðUq
a ½i�ÞH

ðeffÞ
ji ; ð3Þ

where H½i� is a similarity transformed Hamiltonian H½i� ¼
expð�T ½i�ÞHNi

expðT ½i�Þ and CijðUq
a ½i�Þ represent the coupling

coefficients

CijðUq
a ½i�Þ ¼ hU

q
a ½i�j expð�T ½i�Þ expðT ½j�ÞjUji: ð4Þ
Note that the left-hand side of (3) has the standard form of SR
CC equations for the reference jUii, with jUq

a ½i�i 2M?
0 representing

excited configurations defined by the excitation operator Gq
a ½i�,

jUq
a ½i�i ¼ Gq

a ½i�jUii, characterized by the (spin) orbital hole and par-
ticle labels relative to jUii, a � fP1; . . . ; Pmg and q � fQ 1; . . . ;Qmg,
respectively.

In the second, SS-type approaches, the amplitude equations are
target-state dependent (i.e., state-selective), so that only one
eigenvalue and eigenvector of the effective Hamiltonian is optimal,
even though all target states are still generated in each calculation.
Consequently, the SS-MR-CC equations must be solved anew for
each target state. The MkCCSD SS version of the MR-SU-CC formal-
ism represents one such approach. Through a suitable manipula-
tion of the Schrödinger equation for a given state using the SU
CC Ansatz, resolution of the identity, and the sufficiency conditions
(see, e.g., [12]), the MkCCSD equations for the kth target state take
the form

hUq
a ½i�jH½i�jUiicik ¼ �

X
jð–iÞ

eCijðUq
a ½i�ÞH

ðeffÞ
ij cjk; ð5Þ

where the coupling coefficients eCijðUq
a ½i�Þ have now a different form,

namely

eCijðUq
a ½i�Þ ¼ hU

q
a ½i�j expð�T ½i�Þ expðT ½j�ÞjUii: ð6Þ

This form of coupling coefficients involves the same reference i
in the bra and the ket, facilitating their evaluation.

For a CMS, all excitation operators Gq
a ½i� are external by defini-

tion, i.e. Gq
a ½i�jUii 2M?

0 , so that one directly solves the above given
CC equations, Eqs. (3) or (5). However, when a GMS is used, some
of the excitation operators may be of an internal kind, i.e.,
Gq

a ½i�jUii 2M0, and the corresponding internal amplitudes must
be properly taken care of.

Now, the cluster operator expðT ½i�Þ transforms jUii into j eWii gi-
ven by a linear combination of target states jWji,

j eWii ¼ expðT ½i�ÞjUii ¼
XM

j¼1

ðC�1ÞijjWji

¼ jUii þ
X
jNji2M?

0

~dijjNji; ð7Þ

where now eD ¼ jj~dijjj ¼ C�1D, D ¼ jjdijjj, while eC ¼ jjeCijjj ¼ C�1C ¼ 1,
which is associated with the model space, becomes the identity. In
view of this fact the off-diagonal coefficients ~cq

a ½i� must vanish. This
implies that all singly-excited internal cluster amplitudes tQ

P ½i� auto-
matically vanish since, generally, C1 ¼ T1, while the higher excited
ones are given by the requirement that ~cq

a ½i� � 0. For example,
assuming that jU2i ¼ GQ1Q2

P1P2
½1�jU1i, we require that ~cQ1Q2

P1P2
½1� ¼ 0,

implying that

tQ1Q2
P1P2
½1� � �tQ1

P1
½1�tQ2

P2
½1� þ tQ2

P1
½1�tQ1

P2
½1�: ð8Þ

These relations for the internal amplitudes are referred to as the
C-conditions [34]. Clearly, the origin of the C-conditions does not
involve amplitude Eqs. (3) or (5), so that they apply not only to
the GMS-based SU CCSD method, but also to both the BW CCSD
[41] and MkCCSD methods.
3. Role of C-conditions

The usefulness and, in fact, the necessity of the C-conditions
when using incomplete model spaces in the MR-SU-CCSD method
has been demonstrated in a number of actual applications [34–
36,42–44], which demonstrate that one can avoid a CMS and ob-
tain highly-accurate results using relatively small, yet appropriate,
low-dimensional GMSs. An exploitation of the C-conditions in the



Table 1
Role of C-conditions in the SS MkCCSD method with a truncated model space for two
geometries Aa and Bb of the stretched H2O molecule using a TZc and aug-cc-pVTZ basis
sets. See the text for details.

Method Geometry A Geometry B

TZ aug-cc-
pVTZ

TZ aug-cc-
pVTZ

CCSD �76:00361 �76:13360 �75:95343 �76:06752
2R-MkCCSD

(C = 0)d
�76:00809 �76:14256 �75:95193 �76:06695

2R-MkCCSD �76:00971 �76:14505 �75:95335 �76:06837
DEe 0.00162 0.00249 0.00142 0.00142
4R-MkCCSD �76:00935 �76:14512 �75:95335 �76:06856
4R RMR-CCSD �76:01323 �76:15003 �75:95855 �76:07276
CCSD(T) �76:01845 �76:16026 �75:96530 �76:08909
CR-CC(2,3) �76:01575 �76:15536 �75:96475 �76:08669
4R-RMR-CCSD(T) �76:01574 �76:15816 �75:96552 �76:08927
FCI �76:01603 �75:96506

a Geometry A : R1 ¼ 4:4 a:u:;R2 ¼ 1:829 a:u:;\HOH ¼ 85:4� .
b R1 ¼ R2 ¼ 3:2 a:u:;\HOH ¼ 104:52� .
c TZ basis results from cc-pVTZ by deleting polarization functions.
d C = 0 implies that the C-conditions were ignored.
e DE gives the energy difference between the 2R-MkCCSD energies as obtained

with and without the C-conditions.
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Brillouin–Wigner CC approach [33] has also been outlined and
demonstrated on an actual example [41].

In this paper we wish to show that the C-conditions may be
conveniently exploited in the SS MkCCSD approach as well. For this
purpose we have chosen three examples that involve a significant
MR character: (i) The water molecule with stretched one or both
O–H bonds, (ii) the (2,5)-isomer of pyridynium (or didehydropyrid-
inium) cation, showing a strong diradical character [45], and (iii)
an artificial model of H2O with a strongly truncated virtual MO
set that allows only double excitations, so that already CISD and
CCSD yield the FCI result. In all these examples, the T1 amplitudes
are large, so that the C-conditions for internal doubles are non-neg-
ligible [cf. Eq. (8)]. As already pointed out we restrict ourselves in
this communication to the ground states. The examples presented
below are intended to show the difference between the MkCCSD
energies obtained with a CMS and IMS, when in the latter case
we use or ignore the C-conditions. To emphasize the effects of qua-
sidegeneracy, we consider models with significantly stretched
bond(s) or having a biradical nature. These, of course, represent a
rather special cases, so that we must be careful in drawing general
conclusions concerning the performance of the studied methods in
the entire region of potential energy surfaces.

3.1. Stretched H2O models

We first consider the H2O molecule using both the TZ and aug-
cc-pVTZ basis sets (the former one resulting by deleting polariza-
tion functions from the cc-pVTZ basis) for the two stretched geom-
etries designated as A and B. In geometry A, one O–H bond is
stretched to R1 ¼ 4:4 a:u. and the second bond length R2, as well
as the bond angle \HOH, are optimized at the CCSD/cc-pVTZ level,
yielding R2 ¼ 1:829 a:u. and \HOH ¼ 85:4�. In geometry B, both O–
H bonds are symmetrically stretched to R1 ¼ R2 ¼ 3:2 a:u:, while
keeping the equilibrium geometry bond angle at \HOH ¼ 104:52�.

In both cases we employ a simple two-electron/two-orbital ac-
tive space. The corresponding CMS thus involves four references
(4R) assuming that both orbitals belong to the same symmetry
species and we rely on a spin–orbital formalism, namely the Har-
tree–Fock (HF), two singly-excited, and one doubly-excited deter-
minants. A truncated two-dimensional model space (2R)
involving only the HF and doubly-excited determinants then repre-
sents an IMS. In such a case we require the C-conditions for the
internal double-excitations transforming one reference into the
other one.

In Table 1 we demonstrate the effect of C-conditions when
using the 2R model space in the MkCCSD method rather than the
4R CMS. The case when one ignores the C-conditions in the 2R-
MkCCSD method is indicated by the symbol ‘‘C = 0”. In the same ta-
ble we also give the 4R-MkCCSD results, as well as the SR CCSD, SR
CCSD(T), CR-CC(2,3), 4R-RMR-CCSD and 4R-RMR-CCSD(T) results.
For the TZ basis set we also present the benchmark FCI energies.
Since the 4R-RMR-CCSD(T)/TZ energies are very close to the FCI
ones, we can use them as a benchmark in the case of a large
aug-cc-pVTZ basis.

We see that the effect of the C-conditions amounts to about
1—2mEh. We also see that in the case of H2O the 2R-MkCCSD ener-
gies are very close to the 4R-MkCCSD results when we exploit the
C-conditions. We shall see in the next example that this is not al-
ways the case. In all cases, however, the effect of the C-conditions
decreases the energy and brings it closer to the FCI result.

We also note that for the given geometries, the SR CCSD and
CCSD(T) methods still provide reasonable results, since only sin-
gle-bonds are involved. Yet, we see already the trend of CCSD(T)
to overestimate the correlation energy and, eventually, to break
down completely. Indeed, for a symmetrically stretched geometry
B, we find already the CCSD(T) energy below the FCI one by
0:24 mEh. With an additional stretch to R1 ¼ R2 ¼ 4 a:u. (geometry
C; general results not shown for the sake of brevity), the CCSD(T)
energy is lower than the FCI one by 25 mEh. At the level of quaside-
generacy in our models, the breakdown of CCSD(T) is rather nicely
corrected by the CR-CC(2,3) method, which, however, also over-
shoots FCI by 3:82 mEh at the geometry C. In fact, even SR CCSD
has a tendency to fail at these geometries, the corresponding en-
ergy being below that of 2R-MkCCSD (C = 0) one by 2:2 mEh and
by 7:5 mEh for the geometry C. Even 4R RMR-CCSD(T) overshoots
the FCI energy, since the 4R model space becomes inadequate for
severely stretched geometries, in which case a larger 7R space is
required (e.g., for the C geometry, we find six two-body amplitudes
larger than 0.2; the corresponding 7R RMR-CCSD(T) then provides
a good approximation to FCI differing by only 2:2 mEh).

3.2. Pyridynium cation

Among the (m;n)-isomers of pyridynium cation C5NHþ4 the (2,5)
isomer shows the strongest MR character as already implied by the
fact that it may be regarded as an analog of para-benzyne with one
C–H group replaced by the (N–H)+ group. Moreover, it shows the
smallest singlet–triplet splitting of all the six isomers and a very
large CCSD t1 amplitude amounting to 0.31. Our earlier study of
this system [45] also showed the failure of CCSD(T) in this case,
predicting too low an energy for the singlet ground state.

The results in Table 2 show a similar behavior as in the preced-
ing case, except that now even 2R-MkCCSD with the C-conditions
differs significantly from 4R-MkCCSD by almost 7 mEh, the latter
one being very close to the 4R-RMR-CCSD result. The SR CCSD(T)
method again overestimates the correlation energy due to triples,
while CR-CC(2,3) is closest to 4R RMR-CCSD, the 4:5 mEh difference
being likely due to quadruples that are neglected in the former
approach.

3.3. Truncated H2O model

As a final illustration of the role of the C-conditions we employ a
truncated H2O model in which we correlate ten electrons in a six
orbital space. In other words, in addition to the five occupied
MOs of the HF reference we have only one virtual MO, all other vir-
tual MOs being frozen, so that the model admits at most double
excitations. This enables us to recover the FCI result at the



Table 2
Role of C-condition in the SS MkCCSD method with truncated
model space for (2,5)-pyridynium cation C5NHþ4 using a cc-
pVDZ basis set and the (2,5) geometry of Ref. [45].

Method Energy

CCSD �246:51446
2R-MkCCSD (C = 0)a �246:52721
2R-MkCCSD �246:52809
DEb 0.00088
4R-MkCCSD �246:53486
4R RMR-CCSD �246:53475
CCSD(T) �246:58980
CR-CC(2,3) �246:57317
4R-RMR-CCSD(T) �246:57776

a C = 0 implies that the C-conditions were ignored.
b DE gives the energy difference between the 2R-MkCCSD

energies as obtained with and without the C-conditions.

Table 3
Ten-electron/six-orbital model of H2O for the two geometries A and B (see Table 1 and
the text) using a TZ basis set. See the text for details.

Method Geometry A Geometry B

2R-MkCCSD (C = 0)a �75:8744840 �75:7367099
2R-MkCCSD �75:8756611 �75:7416133
DEb 0.0011771 0.0049034
4R-MkCCSD �75:8756611 �75:7416133
FCI �75:8756611 �75:7416133

a C = 0 implies that the C-conditions were ignored.
b DE gives the energy difference between the 2R-MkCCSD energies as obtained

with and without the C-conditions.
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one- and two-body cluster level. Thus, both SR CISD and CCSD will
be equivalent to FCI, yielding the exact result for this model. Other-
wise, the same geometries are used as in Section 3.1.

The results in Table 3 clearly indicate that indeed we obtain the
FCI energies using either the 4R CMS, or an incomplete 2R space
with the C-conditions, while without the C-conditions the 2R-
MkCCSD energies differ from the ‘‘exact” ones by up to about
5 mEh. Using the C-conditions, we achieve a full nine digit (or
10�7 a:u:) accuracy. Although the present example is rather con-
trived, it shows very clearly the role of the C-conditions, since it en-
ables us to recover the FCI result at the full cluster level even when
relying on an incomplete model space. Unfortunately, we are un-
able to carry out a similar test employing more than one virtual
orbital, since that would require handling of up to four-body clus-
ters. This facility is not available in our current implementation of
the MkCCSD codes.
4. Conclusions

The C-conditions have been originally introduced in the GMS-
SU-CCSD methods to account for the internal cluster amplitudes
that are associated with excitation operators transforming one ref-
erence into another one. While these amplitudes exactly vanish
when we employ a CMS, they must be properly accounted for
when an IMS is used, such as a GMS, in order to keep the connected
cluster character of the MR-CC formalism. The usefulness of these
conditions was also exploited in the Brillouin–Wigner version of
the MR-CC method [41].

In this paper we show that the C-conditions can also be advan-
tageously employed in the SS version of the SU-CC method as for-
mulated by Mukherjee et al. [26,27] and usually referred to by the
acronym MkCCSD [28]. We demonstrate on several examples, all
involving a considerable quasidegeneracy due to a MR or diradical
nature of the states considered, that the use of C-conditions when
employing an IMS always improves the performance, bringing the
result closer to that obtained with the CMS. This is particularly
clearly demonstrated by our last example that involves at most
pair cluster amplitudes.

In general, the C-conditions are given in terms of products of
lower-order cluster amplitudes, so that their importance depends
on the magnitude of such amplitudes. In the case of two-body clus-
ters, the C-conditions are given by products of t1 amplitudes.
Clearly, if these t1 amplitudes are small, say < 10�2, their products
will be of the order < 10�4, so that these conditions will have only
a marginal effect on the final energies. However, as we have seen
above, in the case of the (2,5)-pyridynium cation, the largest t1

amplitude is �0.3 and the effect is significant. The same will hold,
of course, for higher order cluster amplitudes, particularly when
the effect of connected quadruples will be non-negligible.
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